1
|
Zhang S, Zhang M, Zhang L, Wang Z, Tang S, Yang X, Li Z, Feng J, Qin X. Identification of Y‒linked biomarkers and exploration of immune infiltration of normal-appearing gray matter in multiple sclerosis by bioinformatic analysis. Heliyon 2024; 10:e28085. [PMID: 38515685 PMCID: PMC10956066 DOI: 10.1016/j.heliyon.2024.e28085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 03/23/2024] Open
Abstract
Background The knowledge of normal‒appearing cortical gray matter (NAGM) in multiple sclerosis (MS) remains unclear. In this study, we aimed to identify diagnostic biomarkers and explore the immune infiltration characteristics of NAGM in MS through bioinformatic analysis and validation in vivo. Methods Differentially expressed genes (DEGs) were analyzed. Subsequently, the functional pathways of the DEGs were determined. After screening the overlapping DEGs of MS with two machine learning methods, the biomarkers' efficacy and the expression levels of overlapping DEGs were calculated. Quantitative reverse transcription polymerase chain reaction (qRT‒PCR) identified the robust diagnostic biomarkers. Additionally, infiltrating immune cell populations were estimated and correlated with the biomarkers. Finally, the characteristics of immune infiltration of NAGM from MS were evaluated. Results A total of 98 DEGs were identified. They participated in sensory transduction of the olfactory system, synaptic signaling, and immune responses. Nine overlapping genes were screened by machine learning methods. After verified by ROC curve, four genes, namely HLA‒DRB1, RPS4Y1, EIF1AY and USP9Y, were screened as candidate biomarkers. The mRNA expression of RPS4Y1 and USP9Y was significantly lower in MS patients than that in the controls. They were selected as the robust diagnostic biomarkers for male MS patients. RPS4Y1 and USP9Y were both positively correlated with memory B cells. Moreover, naive CD4+ T cells and monocytes were increased in the NAGM of MS patients compared with those in controls. Conclusions Low expressed Y‒linked genes, RPS4Y1 and USP9Y, were identified as diagnostic biomarkers for MS in male patients. The inhomogeneity of immune cells in NAGM might exacerbate intricate interplay between the CNS and the immune system in the MS.
Collapse
Affiliation(s)
| | | | - Lei Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Zijie Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Shi Tang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xiaolin Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Zhizhong Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Jinzhou Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xinyue Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1st Youyi Road, Yuzhong District, Chongqing, 400016, China
| |
Collapse
|
2
|
Seyedmirzaei H, Nabizadeh F, Aarabi MH, Pini L. Neurite Orientation Dispersion and Density Imaging in Multiple Sclerosis: A Systematic Review. J Magn Reson Imaging 2023; 58:1011-1029. [PMID: 37042392 DOI: 10.1002/jmri.28727] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/13/2023] Open
Abstract
Diffusion-weighted imaging has been applied to investigate alterations in multiple sclerosis (MS). In the last years, advanced diffusion models were used to identify subtle changes and early lesions in MS. Among these models, neurite orientation dispersion and density imaging (NODDI) is an emerging approach, quantifying specific neurite morphology in both grey (GM) and white matter (WM) tissue and increasing the specificity of diffusion imaging. In this systematic review, we summarized the NODDI findings in MS. A search was conducted on PubMed, Scopus, and Embase, which yielded a total number of 24 eligible studies. Compared to healthy tissue, these studies identified consistent alterations in NODDI metrics involving WM (neurite density index), and GM lesions (neurite density index), or normal-appearing WM tissue (isotropic volume fraction and neurite density index). Despite some limitations, we pointed out the potential of NODDI in MS to unravel microstructural alterations. These results might pave the way to a deeper understanding of the pathophysiological mechanism of MS. EVIDENCE LEVEL: 2. TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
| | | | | | - Lorenzo Pini
- Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
| |
Collapse
|
3
|
Walker KA, Chen J, Shi L, Yang Y, Fornage M, Zhou L, Schlosser P, Surapaneni A, Grams ME, Duggan MR, Peng Z, Gomez GT, Tin A, Hoogeveen RC, Sullivan KJ, Ganz P, Lindbohm JV, Kivimaki M, Nevado-Holgado AJ, Buckley N, Gottesman RF, Mosley TH, Boerwinkle E, Ballantyne CM, Coresh J. Proteomics analysis of plasma from middle-aged adults identifies protein markers of dementia risk in later life. Sci Transl Med 2023; 15:eadf5681. [PMID: 37467317 PMCID: PMC10665113 DOI: 10.1126/scitranslmed.adf5681] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/28/2023] [Indexed: 07/21/2023]
Abstract
A diverse set of biological processes have been implicated in the pathophysiology of Alzheimer's disease (AD) and related dementias. However, there is limited understanding of the peripheral biological mechanisms relevant in the earliest phases of the disease. Here, we used a large-scale proteomics platform to examine the association of 4877 plasma proteins with 25-year dementia risk in 10,981 middle-aged adults. We found 32 dementia-associated plasma proteins that were involved in proteostasis, immunity, synaptic function, and extracellular matrix organization. We then replicated the association between 15 of these proteins and clinically relevant neurocognitive outcomes in two independent cohorts. We demonstrated that 12 of these 32 dementia-associated proteins were associated with cerebrospinal fluid (CSF) biomarkers of AD, neurodegeneration, or neuroinflammation. We found that eight of these candidate protein markers were abnormally expressed in human postmortem brain tissue from patients with AD, although some of the proteins that were most strongly associated with dementia risk, such as GDF15, were not detected in these brain tissue samples. Using network analyses, we found a protein signature for dementia risk that was characterized by dysregulation of specific immune and proteostasis/autophagy pathways in adults in midlife ~20 years before dementia onset, as well as abnormal coagulation and complement signaling ~10 years before dementia onset. Bidirectional two-sample Mendelian randomization genetically validated nine of our candidate proteins as markers of AD in midlife and inferred causality of SERPINA3 in AD pathogenesis. Last, we prioritized a set of candidate markers for AD and dementia risk prediction in midlife.
Collapse
Affiliation(s)
- Keenan A. Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD 21224, USA
| | - Jingsha Chen
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21210, USA
| | - Liu Shi
- Novo Nordisk Research Centre Oxford (NNRCO), Oxford OX3 7FZ, UK
| | - Yunju Yang
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School and Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School and Human Genetics Center, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Linda Zhou
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21210, USA
| | - Pascal Schlosser
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21210, USA
| | - Aditya Surapaneni
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21210, USA
| | - Morgan E. Grams
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21210, USA
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Michael R. Duggan
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD 21224, USA
| | - Zhongsheng Peng
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD 21224, USA
| | - Gabriela T. Gomez
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA
| | - Adrienne Tin
- MIND Center and Division of Nephrology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Ron C. Hoogeveen
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Kevin J. Sullivan
- Department of Medicine, Division of Geriatrics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Peter Ganz
- Department of Medicine, University of California-San Francisco, San Francisco, CA 94115, USA
| | - Joni V. Lindbohm
- Broad Institute of the Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA
| | - Mika Kivimaki
- Department of Mental Health of Older People, Faculty of Brain Sciences, University College London, London WC1E 6BT, UK
- Clinicum, Faculty of Medicine, University of Helsinki, Helsinki 00100, Finland
| | | | - Noel Buckley
- Department of Psychiatry, University of Oxford, Oxford OX1 2JD, UK
| | - Rebecca F. Gottesman
- National Institute of Neurological Disorders and Stroke, Intramural Research Program, Bethesda, MD 20892, USA
| | - Thomas H. Mosley
- Department of Medicine, Division of Geriatrics, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christie M. Ballantyne
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21210, USA
| |
Collapse
|
4
|
Marastoni D, Pisani AI, Schiavi G, Mazziotti V, Castellaro M, Tamanti A, Bosello F, Crescenzo F, Ricciardi GK, Montemezzi S, Pizzini FB, Calabrese M. CSF TNF and osteopontin levels correlate with the response to dimethyl fumarate in early multiple sclerosis. Ther Adv Neurol Disord 2022; 15:17562864221092124. [PMID: 35755969 PMCID: PMC9218430 DOI: 10.1177/17562864221092124] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/18/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Disease activity in the first years after a diagnosis of relapsing-remitting multiple sclerosis (RRMS) is a negative prognostic factor for long-term disability. Markers of both clinical and radiological responses to disease-modifying therapies (DMTs) are advocated. Objective: The objective of this study is to estimate the value of cerebrospinal fluid (CSF) inflammatory markers at the time of diagnosis in predicting the disease activity in treatment-naïve multiple sclerosis (MS) patients exposed to dimethyl fumarate (DMF). Methods: In total, 48 RRMS patients (31 females/17 males) treated with DMF after the diagnosis were included in this 2-year longitudinal study. All patients underwent a CSF examination, regular clinical and 3T magnetic resonance imaging (MRI) scans that included the assessment of white matter (WM) lesions, cortical lesions (CLs) and global cortical thickness. CSF levels of 10 pro-inflammatory markers – CXCL13 [chemokine (C-X-C motif) ligand 13 or B lymphocyte chemoattractant], CXCL12 (stromal cell-derived factor or C-X-C motif chemokine 12), tumour necrosis factor (TNF), APRIL (a proliferation-inducing ligand, or tumour necrosis factor ligand superfamily member 13), LIGHT (tumour necrosis factor ligand superfamily member 14 or tumour necrosis factor superfamily member 14), interferon (IFN) gamma, interleukin 12 (IL-12), osteopontin, sCD163 [soluble-CD163 (cluster of differentiation 163)] and Chitinase3-like1 – were assessed using immune-assay multiplex techniques. The combined three-domain status of ‘no evidence of disease activity’ (NEDA-3) was defined by no relapses, no disability worsening and no MRI activity, including CLs. Results: Twenty patients (42%) reached the NEDA-3 status; patients with disease activity showed higher CSF TNF (p = 0.009), osteopontin (p = 0.005), CXCL12 (p = 0.037), CXCL13 (p = 0.040) and IFN gamma levels (p = 0.019) compared with NEDA-3 patients. After applying a random forest approach, TNF and osteopontin revealed the most important variables associated with the NEDA-3 status. Six molecules that emerged at the random forest approach were added in a multivariate regression model with demographic, clinical and MRI measures of WM and grey matter damage as independent variables. TNF levels confirmed to be associated with the absence of disease activity: odds ratio (OR) = 0.25, CI% = 0.04–0.77. Conclusion: CSF inflammatory markers may provide prognostic information in predicting disease activity in the first years after DMF initiation. CSF TNF levels are a possible candidate in predicting treatment response, in addition to clinical, demographic and MRI variables.
Collapse
Affiliation(s)
- Damiano Marastoni
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Anna I Pisani
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Gianmarco Schiavi
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Valentina Mazziotti
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Marco Castellaro
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Agnese Tamanti
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Francesca Bosello
- Department of Neurosciences, Biomedicine and Movement Sciences, Eye Clinic, Ocular Immunology and Neuroophthalmology Service, AOUI-University of Verona, Verona, Italy
| | - Francesco Crescenzo
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giuseppe K Ricciardi
- Neuroradiology & Radiology Units, Integrated University Hospital of Verona, Verona, Italy
| | - Stefania Montemezzi
- Neuroradiology & Radiology Units, Integrated University Hospital of Verona, Verona, Italy
| | - Francesca B Pizzini
- Radiology, Department of Diagnostic and Public Health, Integrated University Hospital of Verona, Verona, Italy
| | - Massimiliano Calabrese
- Neurology B, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Policlinico 'G.B. Rossi' Borgo Roma, Piazzale L. A. Scuro, 10, 37134 Verona, Italy
| |
Collapse
|
5
|
Liu Y, Zhou Y, Yue H, Dou H, Rang X, Wang X, Xu C, Fu J. Identification of potential key genes and immune infiltration in Multiple sclerosis. Mult Scler Relat Disord 2022; 60:103748. [DOI: 10.1016/j.msard.2022.103748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/06/2022] [Accepted: 03/18/2022] [Indexed: 10/18/2022]
|
6
|
Cohan SL, Benedict RHB, Cree BAC, DeLuca J, Hua LH, Chun J. The Two Sides of Siponimod: Evidence for Brain and Immune Mechanisms in Multiple Sclerosis. CNS Drugs 2022; 36:703-719. [PMID: 35725892 PMCID: PMC9259525 DOI: 10.1007/s40263-022-00927-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/12/2022] [Indexed: 12/13/2022]
Abstract
Siponimod is a selective sphingosine 1-phosphate receptor subtype 1 (S1P1) and 5 (S1P5) modulator approved in the United States and the European Union as an oral treatment for adults with relapsing forms of multiple sclerosis (RMS), including active secondary progressive multiple sclerosis (SPMS). Preclinical and clinical studies provide support for a dual mechanism of action of siponimod, targeting peripherally mediated inflammation and exerting direct central effects. As an S1P1 receptor modulator, siponimod reduces lymphocyte egress from lymph nodes, thus inhibiting their migration from the periphery to the central nervous system. As a result of its peripheral immunomodulatory effects, siponimod reduces both magnetic resonance imaging (MRI) lesion (gadolinium-enhancing and new/enlarging T2 hyperintense) and relapse activity compared with placebo. Independent of these effects, siponimod can penetrate the blood-brain barrier and, by binding to S1P1 and S1P5 receptors on a variety of brain cells, including astrocytes, oligodendrocytes, neurons, and microglia, exert effects to modulate neural inflammation and neurodegeneration. Clinical data in patients with SPMS have shown that, compared with placebo, siponimod treatment is associated with reductions in levels of neurofilament light chain (a marker of neuroaxonal damage) and thalamic and cortical gray matter atrophy, with smaller reductions in MRI magnetization transfer ratio and reduced confirmed disability progression. This review examines the preclinical and clinical data supporting the dual mechanism of action of siponimod in RMS.
Collapse
Affiliation(s)
- Stanley L Cohan
- Providence Multiple Sclerosis Center, Providence Brain Institute, 9135 SW Barnes Rd Suite 461, Portland, OR, 97225, USA.
| | | | - Bruce A C Cree
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | | | - Le H Hua
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
7
|
Combining Human Genetics of Multiple Sclerosis with Oxidative Stress Phenotype for Drug Repositioning. Pharmaceutics 2021; 13:pharmaceutics13122064. [PMID: 34959343 PMCID: PMC8705550 DOI: 10.3390/pharmaceutics13122064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 01/08/2023] Open
Abstract
In multiple sclerosis (MS), oxidative stress (OS) is implicated in the neurodegenerative processes that occur from the beginning of the disease. Unchecked OS initiates a vicious circle caused by its crosstalk with inflammation, leading to demyelination, axonal damage and neuronal loss. The failure of MS antioxidant therapies relying on the use of endogenous and natural compounds drives the application of novel approaches to assess target relevance to the disease prior to preclinical testing of new drug candidates. To identify drugs that can act as regulators of intracellular oxidative homeostasis, we applied an in silico approach that links genome-wide MS associations and molecular quantitative trait loci (QTLs) to proteins of the OS pathway. We found 10 drugs with both central nervous system and oral bioavailability, targeting five out of the 21 top-scoring hits, including arginine methyltransferase (CARM1), which was first linked to MS. In particular, the direction of brain expression QTLs for CARM1 and protein kinase MAPK1 enabled us to select BIIB021 and PEITC drugs with the required target modulation. Our study highlights OS-related molecules regulated by functional MS variants that could be targeted by existing drugs as a supplement to the approved disease-modifying treatments.
Collapse
|
8
|
Pro-Inflammatory Cytokines and Antibodies Induce hnRNP A1 Dysfunction in Mouse Primary Cortical Neurons. Brain Sci 2021; 11:brainsci11101282. [PMID: 34679349 PMCID: PMC8533849 DOI: 10.3390/brainsci11101282] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/02/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system with a significant neurodegenerative component. Dysfunctional RNA-binding proteins (RBPs) are causally linked to neuronal damage and are a feature of MS, including the mislocalization of the RBP heterogeneous nuclear ribonucleoprotein A1 (A1). Here, we show that primary neurons exposed to pro-inflammatory cytokines and anti-A1 antibodies, both characteristic of an MS autoimmune response, displayed increased A1 mislocalization, stress granule formation, and decreased neurite length, a marker of neurodegeneration. These findings illustrate a significant relationship between secreted immune factors, A1 dysfunction, and neuronal damage in a disease-relevant model system.
Collapse
|
9
|
Fresegna D, Bullitta S, Musella A, Rizzo FR, De Vito F, Guadalupi L, Caioli S, Balletta S, Sanna K, Dolcetti E, Vanni V, Bruno A, Buttari F, Stampanoni Bassi M, Mandolesi G, Centonze D, Gentile A. Re-Examining the Role of TNF in MS Pathogenesis and Therapy. Cells 2020; 9:cells9102290. [PMID: 33066433 PMCID: PMC7602209 DOI: 10.3390/cells9102290] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple sclerosis (MS) is a common neurological disorder of putative autoimmune origin. Clinical and experimental studies delineate abnormal expression of specific cytokines over the course of the disease. One major cytokine that has been shown to play a pivotal role in MS is tumor necrosis factor (TNF). TNF is a pleiotropic cytokine regulating many physiological and pathological functions of both the immune system and the central nervous system (CNS). Convincing evidence from studies in human and experimental MS have demonstrated the involvement of TNF in various pathological hallmarks of MS, including immune dysregulation, demyelination, synaptopathy and neuroinflammation. However, due to the complexity of TNF signaling, which includes two-ligands (soluble and transmembrane TNF) and two receptors, namely TNF receptor type-1 (TNFR1) and type-2 (TNFR2), and due to its cell- and context-differential expression, targeting the TNF system in MS is an ongoing challenge. This review summarizes the evidence on the pathophysiological role of TNF in MS and in different MS animal models, with a special focus on pharmacological treatment aimed at controlling the dysregulated TNF signaling in this neurological disorder.
Collapse
Affiliation(s)
- Diego Fresegna
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome, Italy; (D.F.); (S.B.); (A.M.); (L.G.); (V.V.); (G.M.); (A.G.)
| | - Silvia Bullitta
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome, Italy; (D.F.); (S.B.); (A.M.); (L.G.); (V.V.); (G.M.); (A.G.)
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.R.); (S.B.); (K.S.); (E.D.); (A.B.)
| | - Alessandra Musella
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome, Italy; (D.F.); (S.B.); (A.M.); (L.G.); (V.V.); (G.M.); (A.G.)
- Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, 00166 Roma, Italy
| | - Francesca Romana Rizzo
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.R.); (S.B.); (K.S.); (E.D.); (A.B.)
| | - Francesca De Vito
- Unit of Neurology, IRCCS Neuromed, Pozzilli (Is), 86077 Pozzilli, Italy; (F.D.V.); (S.C.); (F.B.); (M.S.B.)
| | - Livia Guadalupi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome, Italy; (D.F.); (S.B.); (A.M.); (L.G.); (V.V.); (G.M.); (A.G.)
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.R.); (S.B.); (K.S.); (E.D.); (A.B.)
| | - Silvia Caioli
- Unit of Neurology, IRCCS Neuromed, Pozzilli (Is), 86077 Pozzilli, Italy; (F.D.V.); (S.C.); (F.B.); (M.S.B.)
| | - Sara Balletta
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.R.); (S.B.); (K.S.); (E.D.); (A.B.)
| | - Krizia Sanna
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.R.); (S.B.); (K.S.); (E.D.); (A.B.)
| | - Ettore Dolcetti
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.R.); (S.B.); (K.S.); (E.D.); (A.B.)
| | - Valentina Vanni
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome, Italy; (D.F.); (S.B.); (A.M.); (L.G.); (V.V.); (G.M.); (A.G.)
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.R.); (S.B.); (K.S.); (E.D.); (A.B.)
| | - Antonio Bruno
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.R.); (S.B.); (K.S.); (E.D.); (A.B.)
| | - Fabio Buttari
- Unit of Neurology, IRCCS Neuromed, Pozzilli (Is), 86077 Pozzilli, Italy; (F.D.V.); (S.C.); (F.B.); (M.S.B.)
| | - Mario Stampanoni Bassi
- Unit of Neurology, IRCCS Neuromed, Pozzilli (Is), 86077 Pozzilli, Italy; (F.D.V.); (S.C.); (F.B.); (M.S.B.)
| | - Georgia Mandolesi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome, Italy; (D.F.); (S.B.); (A.M.); (L.G.); (V.V.); (G.M.); (A.G.)
- Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, 00166 Roma, Italy
| | - Diego Centonze
- Synaptic Immunopathology Lab, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (F.R.R.); (S.B.); (K.S.); (E.D.); (A.B.)
- Unit of Neurology, IRCCS Neuromed, Pozzilli (Is), 86077 Pozzilli, Italy; (F.D.V.); (S.C.); (F.B.); (M.S.B.)
- Correspondence: ; Tel.: +39-06-7259-6010; Fax: +39-06-7259-6006
| | - Antonietta Gentile
- Synaptic Immunopathology Lab, IRCCS San Raffaele Pisana, 00166 Rome, Italy; (D.F.); (S.B.); (A.M.); (L.G.); (V.V.); (G.M.); (A.G.)
| |
Collapse
|