1
|
Naffaa MM. Neurogenesis dynamics in the olfactory bulb: deciphering circuitry organization, function, and adaptive plasticity. Neural Regen Res 2025; 20:1565-1581. [PMID: 38934393 PMCID: PMC11688548 DOI: 10.4103/nrr.nrr-d-24-00312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024] Open
Abstract
Adult neurogenesis persists after birth in the subventricular zone, with new neurons migrating to the granule cell layer and glomerular layers of the olfactory bulb, where they integrate into existing circuitry as inhibitory interneurons. The generation of these new neurons in the olfactory bulb supports both structural and functional plasticity, aiding in circuit remodeling triggered by memory and learning processes. However, the presence of these neurons, coupled with the cellular diversity within the olfactory bulb, presents an ongoing challenge in understanding its network organization and function. Moreover, the continuous integration of new neurons in the olfactory bulb plays a pivotal role in regulating olfactory information processing. This adaptive process responds to changes in epithelial composition and contributes to the formation of olfactory memories by modulating cellular connectivity within the olfactory bulb and interacting intricately with higher-order brain regions. The role of adult neurogenesis in olfactory bulb functions remains a topic of debate. Nevertheless, the functionality of the olfactory bulb is intricately linked to the organization of granule cells around mitral and tufted cells. This organizational pattern significantly impacts output, network behavior, and synaptic plasticity, which are crucial for olfactory perception and memory. Additionally, this organization is further shaped by axon terminals originating from cortical and subcortical regions. Despite the crucial role of olfactory bulb in brain functions and behaviors related to olfaction, these complex and highly interconnected processes have not been comprehensively studied as a whole. Therefore, this manuscript aims to discuss our current understanding and explore how neural plasticity and olfactory neurogenesis contribute to enhancing the adaptability of the olfactory system. These mechanisms are thought to support olfactory learning and memory, potentially through increased complexity and restructuring of neural network structures, as well as the addition of new granule granule cells that aid in olfactory adaptation. Additionally, the manuscript underscores the importance of employing precise methodologies to elucidate the specific roles of adult neurogenesis amidst conflicting data and varying experimental paradigms. Understanding these processes is essential for gaining insights into the complexities of olfactory function and behavior.
Collapse
Affiliation(s)
- Moawiah M. Naffaa
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
2
|
Sunil A, Pedroncini O, Schaefer AT, Ackels T. How do mammals convert dynamic odor information into neural maps for landscape navigation? PLoS Biol 2024; 22:e3002908. [PMID: 39571004 PMCID: PMC11581409 DOI: 10.1371/journal.pbio.3002908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024] Open
Abstract
Odors are transported by seemingly chaotic plumes, whose spatiotemporal structure contains rich information about space, with olfaction serving as a gateway for obtaining and processing this spatial information. Beyond tracking odors, olfaction provides localization and chemical communication cues for detecting conspecifics and predators, and linking external environments to internal cognitive maps. In this Essay, we discuss recent physiological, behavioral, and methodological advancements in mammalian olfactory research to present our current understanding of how olfaction can be used to navigate the environment. We also examine potential neural mechanisms that might convert dynamic olfactory inputs into environmental maps along this axis. Finally, we consider technological applications of odor dynamics for developing bio-inspired sensor technologies, robotics, and computational models. By shedding light on the principles underlying the processing of odor dynamics, olfactory research will pave the way for innovative solutions that bridge the gap between biology and technology, enriching our understanding of the natural world.
Collapse
Affiliation(s)
- Anantu Sunil
- Sensory Dynamics and Behaviour Lab, Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
| | - Olivia Pedroncini
- Sensory Circuits and Neurotechnology Laboratory, Francis Crick Institute, London, United Kingdom
| | - Andreas T. Schaefer
- Sensory Circuits and Neurotechnology Laboratory, Francis Crick Institute, London, United Kingdom
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Tobias Ackels
- Sensory Dynamics and Behaviour Lab, Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
3
|
Karunanayaka PR, Lu J, Elyan R, Yang QX, Sathian K. Olfactory-trigeminal integration in the primary olfactory cortex. Hum Brain Mapp 2024; 45:e26772. [PMID: 38962966 PMCID: PMC11222875 DOI: 10.1002/hbm.26772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 06/07/2024] [Accepted: 06/16/2024] [Indexed: 07/05/2024] Open
Abstract
Humans naturally integrate signals from the olfactory and intranasal trigeminal systems. A tight interplay has been demonstrated between these two systems, and yet the neural circuitry mediating olfactory-trigeminal (OT) integration remains poorly understood. Using functional magnetic resonance imaging (fMRI), combined with psychophysics, this study investigated the neural mechanisms underlying OT integration. Fifteen participants with normal olfactory function performed a localization task with air-puff stimuli, phenylethyl alcohol (PEA; rose odor), or a combination thereof while being scanned. The ability to localize PEA to either nostril was at chance. Yet, its presence significantly improved the localization accuracy of weak, but not strong, air-puffs, when both stimuli were delivered concurrently to the same nostril, but not when different nostrils received the two stimuli. This enhancement in localization accuracy, exemplifying the principles of spatial coincidence and inverse effectiveness in multisensory integration, was associated with multisensory integrative activity in the primary olfactory (POC), orbitofrontal (OFC), superior temporal (STC), inferior parietal (IPC) and cingulate cortices, and in the cerebellum. Multisensory enhancement in most of these regions correlated with behavioral multisensory enhancement, as did increases in connectivity between some of these regions. We interpret these findings as indicating that the POC is part of a distributed brain network mediating integration between the olfactory and trigeminal systems. PRACTITIONER POINTS: Psychophysical and neuroimaging study of olfactory-trigeminal (OT) integration. Behavior, cortical activity, and network connectivity show OT integration. OT integration obeys principles of inverse effectiveness and spatial coincidence. Behavioral and neural measures of OT integration are correlated.
Collapse
Affiliation(s)
- Prasanna R. Karunanayaka
- Department of RadiologyPennsylvania State University College of MedicineHersheyPennsylvaniaUSA
- Department of Neural and Behavioral SciencesPennsylvania State University College of MedicineHersheyPennsylvaniaUSA
- Department of Public Health SciencesPennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| | - Jiaming Lu
- Department of RadiologyPennsylvania State University College of MedicineHersheyPennsylvaniaUSA
- Drum Tower HospitalMedical School of Nanjing UniversityNanjingChina
| | - Rommy Elyan
- Department of RadiologyPennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| | - Qing X. Yang
- Department of RadiologyPennsylvania State University College of MedicineHersheyPennsylvaniaUSA
- Department of NeurosurgeryPennsylvania State University College of MedicineHersheyPennsylvaniaUSA
| | - K. Sathian
- Department of Neural and Behavioral SciencesPennsylvania State University College of MedicineHersheyPennsylvaniaUSA
- Department of NeurologyPenn State Health Milton S. Hershey Medical CenterHersheyPennsylvaniaUSA
- Department of PsychologyPennsylvania State University College of Liberal ArtsState CollegePennsylvaniaUSA
| |
Collapse
|
4
|
Mori K, Sakano H. Circuit formation and sensory perception in the mouse olfactory system. Front Neural Circuits 2024; 18:1342576. [PMID: 38434487 PMCID: PMC10904487 DOI: 10.3389/fncir.2024.1342576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/01/2024] [Indexed: 03/05/2024] Open
Abstract
In the mouse olfactory system, odor information is converted to a topographic map of activated glomeruli in the olfactory bulb (OB). Although the arrangement of glomeruli is genetically determined, the glomerular structure is plastic and can be modified by environmental stimuli. If the pups are exposed to a particular odorant, responding glomeruli become larger recruiting the dendrites of connecting projection neurons and interneurons. This imprinting not only increases the sensitivity to the exposed odor, but also imposes the positive quality on imprinted memory. External odor information represented as an odor map in the OB is transmitted to the olfactory cortex (OC) and amygdala for decision making to elicit emotional and behavioral outputs using two distinct neural pathways, innate and learned. Innate olfactory circuits start to work right after birth, whereas learned circuits become functional later on. In this paper, the recent progress will be summarized in the study of olfactory circuit formation and odor perception in mice. We will also propose new hypotheses on the timing and gating of olfactory circuit activity in relation to the respiration cycle.
Collapse
Affiliation(s)
| | - Hitoshi Sakano
- Department of Brain Function, School of Medical Sciences, University of Fukui, Matsuoka, Japan
| |
Collapse
|
5
|
Cohen O, Kahan A, Steinberg I, Malinowski ST, Rokni D, Spehr M, Ben-Shaul Y. Stimulus-Induced Theta-Band LFP Oscillations Format Neuronal Representations of Social Chemosignals in the Mouse Accessory Olfactory Bulb. J Neurosci 2023; 43:8700-8722. [PMID: 37903594 PMCID: PMC10727196 DOI: 10.1523/jneurosci.1055-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/01/2023] Open
Abstract
Social communication is crucial for the survival of many species. In most vertebrates, a dedicated chemosensory system, the vomeronasal system (VNS), evolved to process ethologically relevant chemosensory cues. The first central processing stage of the VNS is the accessory olfactory bulb (AOB), which sends information to downstream brain regions via AOB mitral cells (AMCs). Recent studies provided important insights about the functional properties of AMCs, but little is known about the principles that govern their coordinated activity. Here, we recorded local field potentials (LFPs) and single-unit activity in the AOB of adult male and female mice during presentation of natural stimuli. Our recordings reveal prominent LFP theta-band oscillatory episodes with a characteristic spatial pattern across the AOB. Throughout an experiment, the AOB network shows varying degrees of similarity to this pattern, in a manner that depends on the sensory stimulus. Analysis of LFP signal polarity and single-unit activity indicates that oscillatory episodes are generated locally within the AOB, likely representing a reciprocal interaction between AMCs and granule cells. Notably, spike times of many AMCs are constrained to the negative LFP oscillation phase in a manner that can drastically affect integration by downstream processing stages. Based on these observations, we propose that LFP oscillations may gate, bind, and organize outgoing signals from individual AOB neurons to downstream processing stages. Our findings suggest that, as in other neuronal systems and brain regions, population-level oscillations play a key role in organizing and enhancing transmission of socially relevant chemosensory information.SIGNIFICANCE STATEMENT The accessory olfactory bulb (AOB) is the first central stage of the vomeronasal system, a chemosensory system dedicated to processing cues from other organisms. Information from the AOB is conveyed to other brain regions via activity of its principal neurons, AOB mitral cells (AMCs). Here, we show that socially relevant sensory stimulation of the mouse vomeronasal system leads not only to changes in AMC activity, but also to distinct theta-band (∼5 Hz) oscillatory episodes in the local field potential. Notably AMCs favor the negative phase of these oscillatory events. Our findings suggest a novel mechanism for the temporal coordination of distributed patterns of neuronal activity, which can serve to efficiently activate downstream processing stages.
Collapse
Affiliation(s)
- Oksana Cohen
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Anat Kahan
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University, Rehovot 7610001, Israel
| | - Idan Steinberg
- Alpha Program, Future Scientist Center, The Hebrew University Youth Division, Jerusalem 9190401, Israel
| | - Sebastian T Malinowski
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52062 Aachen, Germany
| | - Dan Rokni
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52062 Aachen, Germany
| | - Yoram Ben-Shaul
- Department of Medical Neurobiology, Institute for Medical Research Israel Canada, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
6
|
Juventin M, Zbili M, Fourcaud-Trocmé N, Garcia S, Buonviso N, Amat C. Respiratory rhythm modulates membrane potential and spiking of nonolfactory neurons. J Neurophysiol 2023; 130:1552-1566. [PMID: 37964739 DOI: 10.1152/jn.00487.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 11/16/2023] Open
Abstract
In recent years, several studies have shown a respiratory drive of the local field potential (LFP) in numerous brain areas so that the respiratory rhythm could be considered as a master clock promoting communication between distant brain locations. However, outside of the olfactory system, it remains unknown whether the respiratory rhythm could shape membrane potential (MP) oscillations. To fill this gap, we co-recorded MP and LFP activities in different nonolfactory brain areas, medial prefrontal cortex (mPFC), primary somatosensory cortex (S1), primary visual cortex (V1), and hippocampus (HPC), in urethane-anesthetized rats. Using respiratory cycle-by-cycle analysis, we observed that respiration could modulate both MP and spiking discharges in all recorded areas during episodes that we called respiration-related oscillations (RRo). Further quantifications revealed that RRo episodes were transient in most neurons (5 consecutive respiratory cycles in average). RRo development in MP was largely correlated with the presence of respiratory modulation in the LFP. By showing that the respiratory rhythm influenced brain activities deep to the MP of nonolfactory neurons, our data support the idea that respiratory rhythm could mediate long-range communication between brain areas.NEW & NOTEWORTHY In this study, we evidenced strong respiratory-driven oscillations of neuronal membrane potential and spiking discharge in various nonolfactory areas of the mammal brain. These oscillations were found in the medial prefrontal cortex, primary somatosensory cortex, primary visual cortex, and hippocampus. These findings support the idea that respiratory rhythm could be used as a common clock to set the dynamics of large-scale neuronal networks on the same slow rhythm.
Collapse
Affiliation(s)
- Maxime Juventin
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Université Claude Bernard Lyon 1, CNRS, INSERM, Bron, France
| | - Mickael Zbili
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Université Claude Bernard Lyon 1, CNRS, INSERM, Bron, France
- Université Clermont Auvergne, CHU Clermont-Ferrand, INSERM, Clermont-Ferrand, France
| | - Nicolas Fourcaud-Trocmé
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Université Claude Bernard Lyon 1, CNRS, INSERM, Bron, France
| | - Samuel Garcia
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Université Claude Bernard Lyon 1, CNRS, INSERM, Bron, France
| | - Nathalie Buonviso
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Université Claude Bernard Lyon 1, CNRS, INSERM, Bron, France
| | - Corine Amat
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Université Claude Bernard Lyon 1, CNRS, INSERM, Bron, France
| |
Collapse
|
7
|
Hassan MF, El-Sankary K, Freund MS. Artificial Olfactory Signal Modulation for Detection in Changing Environments. ACS Sens 2023; 8:527-533. [PMID: 36780337 DOI: 10.1021/acssensors.2c02852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Animals have evolved to sense in complex environments through both modulation behavior including sniffing as well as sophisticated neural processing including memory and neuromodulation. Here, we explore thermal modulation of chemically diverse sensor arrays, where response patterns are based on partitioning of odorants across the array. The differential response patterns contain information about the chemical nature of the odorant for identification. By transitioning away from well-defined concentration modulation, traditionally used in the field, to thermal modulation, it is possible to capture both diagnostic patterns as well as intensity information in complex environments. This performance is demonstrated with carbon-black based, chemically diverse sensor arrays, that are thermally modulated with light at 25 mHz exposed to different analytes of varying concentrations.
Collapse
Affiliation(s)
- Mohamed F Hassan
- Department of Chemistry and Department of Electrical & Computer Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada.,Analysis and Evaluation Department, Egyptian Petroleum Research Institute, Nasr City, P.B. 11727, Cairo, Egypt
| | - Kamal El-Sankary
- Department of Chemistry and Department of Electrical & Computer Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Michael S Freund
- Department of Chemistry and Department of Electrical & Computer Engineering, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
8
|
Respiratory influence on brain dynamics: the preponderant role of the nasal pathway and deep slow regime. Pflugers Arch 2023; 475:23-35. [PMID: 35768698 DOI: 10.1007/s00424-022-02722-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 01/31/2023]
Abstract
As a possible body signal influencing brain dynamics, respiration is fundamental for perception, cognition, and emotion. The olfactory system has recently acquired its credentials by proving to be crucial in the transmission of respiratory influence on the brain via the sensitivity to nasal airflow of its receptor cells. Here, we present recent findings evidencing respiration-related activities in the brain. Then, we review the data explaining the fact that breathing is (i) nasal and (ii) being slow and deep is crucial in its ability to stimulate the olfactory system and consequently influence the brain. In conclusion, we propose a possible scenario explaining how this optimal respiratory regime can promote changes in brain dynamics of an olfacto-limbic-respiratory circuit, providing a possibility to induce calm and relaxation by coordinating breathing regime and brain state.
Collapse
|
9
|
Kostka JK, Bitzenhofer SH. How the sense of smell influences cognition throughout life. NEUROFORUM 2022; 28:177-185. [PMID: 36067120 PMCID: PMC9380998 DOI: 10.1515/nf-2022-0007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Although mostly unaware, we constantly navigate a complex landscape of airborne molecules. The perception of these molecules helps us navigate, shapes our social life, and can trigger emotionally charged memories transporting us back to the past within a split second. While the processing of olfactory information in early sensory areas is well understood, how the sense of smell affects cognition only recently gained attention in the field of neuroscience. Here, we review links between olfaction and cognition and explore the idea that the activity in olfactory areas may be critical for coordinating cognitive networks. Further, we discuss how olfactory activity may shape the development of cognitive networks and associations between the decline of olfactory and cognitive abilities in aging. Olfaction provides a great tool to study large-scale networks underlying cognitive abilities and bears the potential for a better understanding of cognitive symptoms associated with many mental disorders.
Collapse
Affiliation(s)
- Johanna K. Kostka
- Center for Molecular Neurobiology Hamburg, Institute of Developmental Neurophysiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Sebastian H. Bitzenhofer
- Center for Molecular Neurobiology Hamburg, Institute of Developmental Neurophysiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| |
Collapse
|
10
|
Zhang Y, Ackels T, Pacureanu A, Zdora MC, Bonnin A, Schaefer AT, Bosch C. Sample Preparation and Warping Accuracy for Correlative Multimodal Imaging in the Mouse Olfactory Bulb Using 2-Photon, Synchrotron X-Ray and Volume Electron Microscopy. Front Cell Dev Biol 2022; 10:880696. [PMID: 35756997 PMCID: PMC9213878 DOI: 10.3389/fcell.2022.880696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/22/2022] [Indexed: 11/23/2022] Open
Abstract
Integrating physiology with structural insights of the same neuronal circuit provides a unique approach to understanding how the mammalian brain computes information. However, combining the techniques that provide both streams of data represents an experimental challenge. When studying glomerular column circuits in the mouse olfactory bulb, this approach involves e.g., recording the neuronal activity with in vivo 2-photon (2P) calcium imaging, retrieving the circuit structure with synchrotron X-ray computed tomography with propagation-based phase contrast (SXRT) and/or serial block-face scanning electron microscopy (SBEM) and correlating these datasets. Sample preparation and dataset correlation are two key bottlenecks in this correlative workflow. Here, we first quantify the occurrence of different artefacts when staining tissue slices with heavy metals to generate X-ray or electron contrast. We report improvements in the staining procedure, ultimately achieving perfect staining in ∼67% of the 0.6 mm thick olfactory bulb slices that were previously imaged in vivo with 2P. Secondly, we characterise the accuracy of the spatial correlation between functional and structural datasets. We demonstrate that direct, single-cell precise correlation between in vivo 2P and SXRT tissue volumes is possible and as reliable as correlating between 2P and SBEM. Altogether, these results pave the way for experiments that require retrieving physiology, circuit structure and synaptic signatures in targeted regions. These correlative function-structure studies will bring a more complete understanding of mammalian olfactory processing across spatial scales and time.
Collapse
Affiliation(s)
- Yuxin Zhang
- Sensory Circuits and Neurotechnology Lab, The Francis Crick Institute, London, United Kingdom
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Tobias Ackels
- Sensory Circuits and Neurotechnology Lab, The Francis Crick Institute, London, United Kingdom
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Alexandra Pacureanu
- Sensory Circuits and Neurotechnology Lab, The Francis Crick Institute, London, United Kingdom
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
- ESRF, The European Synchrotron, Grenoble, France
| | - Marie-Christine Zdora
- Department of Physics and Astronomy, University College London, London, United Kingdom
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, United Kingdom
- School of Physics and Astronomy, University of Southampton, Highfield Campus, Southampton, United Kingdom
- Paul Scherrer Institut, Villigen, Switzerland
| | - Anne Bonnin
- Paul Scherrer Institut, Villigen, Switzerland
| | - Andreas T. Schaefer
- Sensory Circuits and Neurotechnology Lab, The Francis Crick Institute, London, United Kingdom
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Carles Bosch
- Sensory Circuits and Neurotechnology Lab, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
11
|
Dasgupta D, Warner TPA, Erskine A, Schaefer AT. Coupling of Mouse Olfactory Bulb Projection Neurons to Fluctuating Odor Pulses. J Neurosci 2022; 42:4278-4296. [PMID: 35440491 PMCID: PMC9145232 DOI: 10.1523/jneurosci.1422-21.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 11/28/2022] Open
Abstract
Odors are transported by turbulent air currents, creating complex temporal fluctuations in odor concentration that provide a potentially informative stimulus dimension. We have shown that mice are able to discriminate odor stimuli based on their temporal structure, indicating that information contained in the temporal structure of odor plumes can be extracted by the mouse olfactory system. Here, using in vivo extracellular and intracellular electrophysiological recordings, we show that mitral cells (MCs) and tufted cells (TCs) of the male C57BL/6 mouse olfactory bulb can encode the dominant temporal frequencies present in odor stimuli up to at least 20 Hz. A substantial population of cell-odor pairs showed significant coupling of their subthreshold membrane potential with the odor stimulus at both 2 Hz (29/70) and the suprasniff frequency 20 Hz (24/70). Furthermore, mitral/tufted cells (M/TCs) show differential coupling of their membrane potential to odor concentration fluctuations with tufted cells coupling more strongly for the 20 Hz stimulation. Frequency coupling was always observed to be invariant to odor identity, and M/TCs that coupled well to a mixture also coupled to at least one of the components of the mixture. Interestingly, pharmacological blocking of the inhibitory circuitry strongly modulated frequency coupling of cell-odor pairs at both 2 Hz (10/15) and 20 Hz (9/15). These results provide insight into how both cellular and circuit properties contribute to the encoding of temporal odor features in the mouse olfactory bulb.SIGNIFICANCE STATEMENT Odors in the natural environment have a strong temporal structure that can be extracted and used by mice in their behavior. Here, using in vivo extracellular and intracellular electrophysiological techniques, we show that the projection neurons in the olfactory bulb can encode and couple to the dominant frequency present in an odor stimulus. Furthermore, frequency coupling was observed to be differential between mitral and tufted cells and was odor invariant but strongly modulated by local inhibitory circuits. In summary, this study provides insight into how both cellular and circuit properties modulate encoding of odor temporal features in the mouse olfactory bulb.
Collapse
Affiliation(s)
- Debanjan Dasgupta
- Sensory Circuits and Neurotechnology Laboratory, Francis Crick Institute, London NW1 1AT, United Kingdom
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | - Tom P A Warner
- Sensory Circuits and Neurotechnology Laboratory, Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Andrew Erskine
- Sensory Circuits and Neurotechnology Laboratory, Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Andreas T Schaefer
- Sensory Circuits and Neurotechnology Laboratory, Francis Crick Institute, London NW1 1AT, United Kingdom
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
12
|
Karalis N, Sirota A. Breathing coordinates cortico-hippocampal dynamics in mice during offline states. Nat Commun 2022; 13:467. [PMID: 35075139 PMCID: PMC8786964 DOI: 10.1038/s41467-022-28090-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022] Open
Abstract
Network dynamics have been proposed as a mechanistic substrate for the information transfer across cortical and hippocampal circuits. However, little is known about the mechanisms that synchronize and coordinate these processes across widespread brain regions during offline states. Here we address the hypothesis that breathing acts as an oscillatory pacemaker, persistently coupling distributed brain circuit dynamics. Using large-scale recordings from a number of cortical and subcortical brain regions in behaving mice, we uncover the presence of an intracerebral respiratory corollary discharge, that modulates neural activity across these circuits. During offline states, the respiratory modulation underlies the coupling of hippocampal sharp-wave ripples and cortical DOWN/UP state transitions, which mediates systems memory consolidation. These results highlight breathing, a perennial brain rhythm, as an oscillatory scaffold for the functional coordination of the limbic circuit that supports the segregation and integration of information flow across neuronal networks during offline states.
Collapse
Affiliation(s)
- Nikolaos Karalis
- Faculty of Medicine, Ludwig-Maximilian University, Munich, 82152, Martinsried, Germany.
- Friedrich Miescher Institute for Biomedical Research, 4058, Basel, Switzerland.
| | - Anton Sirota
- Faculty of Medicine, Ludwig-Maximilian University, Munich, 82152, Martinsried, Germany.
| |
Collapse
|
13
|
Koldaeva A, Zhang C, Huang YP, Reinert JK, Mizuno S, Sugiyama F, Takahashi S, Soliman T, Matsunami H, Fukunaga I. Generation and Characterization of a Cell Type-Specific, Inducible Cre-Driver Line to Study Olfactory Processing. J Neurosci 2021; 41:6449-6467. [PMID: 34099512 PMCID: PMC8318078 DOI: 10.1523/jneurosci.3076-20.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 02/06/2023] Open
Abstract
In sensory systems of the brain, mechanisms exist to extract distinct features from stimuli to generate a variety of behavioral repertoires. These often correspond to different cell types at various stages in sensory processing. In the mammalian olfactory system, complex information processing starts in the olfactory bulb, whose output is conveyed by mitral cells (MCs) and tufted cells (TCs). Despite many differences between them, and despite the crucial position they occupy in the information hierarchy, Cre-driver lines that distinguish them do not yet exist. Here, we sought to identify genes that are differentially expressed between MCs and TCs of the mouse, with an ultimate goal to generate a cell type-specific Cre-driver line, starting from a transcriptome analysis using a large and publicly available single-cell RNA-seq dataset (Zeisel et al., 2018). Many genes were differentially expressed, but only a few showed consistent expressions in MCs and at the specificity required. After further validating these putative markers using ISH, two genes (i.e., Pkib and Lbdh2) remained as promising candidates. Using CRISPR/Cas9-mediated gene editing, we generated Cre-driver lines and analyzed the resulting recombination patterns. This indicated that our new inducible Cre-driver line, Lbhd2-CreERT2, can be used to genetically label MCs in a tamoxifen dose-dependent manner, both in male and female mice, as assessed by soma locations, projection patterns, and sensory-evoked responses in vivo Hence, this is a promising tool for investigating cell type-specific contributions to olfactory processing and demonstrates the power of publicly accessible data in accelerating science.SIGNIFICANCE STATEMENT In the brain, distinct cell types play unique roles. It is therefore important to have tools for studying unique cell types specifically. For the sense of smell in mammals, information is processed first by circuits of the olfactory bulb, where two types of cells, mitral cells and tufted cells, output different information. We generated a transgenic mouse line that enables mitral cells to be specifically labeled or manipulated. This was achieved by looking for genes that are specific to mitral cells using a large and public gene expression dataset, and creating a transgenic mouse using the gene editing technique, CRISPR/Cas9. This will allow scientists to better investigate parallel information processing underlying the sense of smell.
Collapse
Affiliation(s)
- Anzhelika Koldaeva
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan, 904-0495
| | - Cary Zhang
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan, 904-0495
| | - Yu-Pei Huang
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan, 904-0495
| | - Janine Kristin Reinert
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan, 904-0495
| | - Seiya Mizuno
- Laboratory Animal Resource Center, Tsukuba University, Ibaraki, Japan, 305-8577
| | - Fumihiro Sugiyama
- Laboratory Animal Resource Center, Tsukuba University, Ibaraki, Japan, 305-8577
| | - Satoru Takahashi
- Laboratory Animal Resource Center, Tsukuba University, Ibaraki, Japan, 305-8577
| | - Taha Soliman
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan, 904-0495
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology and Department of Neurobiology, Duke University, Durham, North Carolina, 27710
| | - Izumi Fukunaga
- Sensory and Behavioural Neuroscience Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan, 904-0495
| |
Collapse
|
14
|
Zeppilli S, Ackels T, Attey R, Klimpert N, Ritola KD, Boeing S, Crombach A, Schaefer AT, Fleischmann A. Molecular characterization of projection neuron subtypes in the mouse olfactory bulb. eLife 2021; 10:e65445. [PMID: 34292150 PMCID: PMC8352594 DOI: 10.7554/elife.65445] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 07/21/2021] [Indexed: 12/14/2022] Open
Abstract
Projection neurons (PNs) in the mammalian olfactory bulb (OB) receive input from the nose and project to diverse cortical and subcortical areas. Morphological and physiological studies have highlighted functional heterogeneity, yet no molecular markers have been described that delineate PN subtypes. Here, we used viral injections into olfactory cortex and fluorescent nucleus sorting to enrich PNs for high-throughput single nucleus and bulk RNA deep sequencing. Transcriptome analysis and RNA in situ hybridization identified distinct mitral and tufted cell populations with characteristic transcription factor network topology, cell adhesion, and excitability-related gene expression. Finally, we describe a new computational approach for integrating bulk and snRNA-seq data and provide evidence that different mitral cell populations preferentially project to different target regions. Together, we have identified potential molecular and gene regulatory mechanisms underlying PN diversity and provide new molecular entry points into studying the diverse functional roles of mitral and tufted cell subtypes.
Collapse
Affiliation(s)
- Sara Zeppilli
- Department of Neuroscience, Division of Biology and Medicine, and the Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, and CNRS UMR 7241 and INSERM U1050ParisFrance
| | - Tobias Ackels
- The Francis Crick Institute, Sensory Circuits and Neurotechnology LaboratoryLondonUnited Kingdom
- Department of Neuroscience, Physiology & Pharmacology, University College LondonLondonUnited Kingdom
| | - Robin Attey
- Department of Neuroscience, Division of Biology and Medicine, and the Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Nell Klimpert
- Department of Neuroscience, Division of Biology and Medicine, and the Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - Kimberly D Ritola
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Stefan Boeing
- The Francis Crick Institute, Bioinformatics and BiostatisticsLondonUnited Kingdom
- The Francis Crick Institute, Scientific Computing - Digital Development TeamLondonUnited Kingdom
| | - Anton Crombach
- Inria Antenne Lyon La DouaVilleurbanneFrance
- Université de Lyon, INSA-Lyon, LIRIS, UMR 5205VilleurbanneFrance
| | - Andreas T Schaefer
- The Francis Crick Institute, Sensory Circuits and Neurotechnology LaboratoryLondonUnited Kingdom
- Department of Neuroscience, Physiology & Pharmacology, University College LondonLondonUnited Kingdom
| | - Alexander Fleischmann
- Department of Neuroscience, Division of Biology and Medicine, and the Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, and CNRS UMR 7241 and INSERM U1050ParisFrance
| |
Collapse
|
15
|
Huang Z, Tatti R, Loeven AM, Landi Conde DR, Fadool DA. Modulation of Neural Microcircuits That Control Complex Dynamics in Olfactory Networks. Front Cell Neurosci 2021; 15:662184. [PMID: 34239417 PMCID: PMC8259627 DOI: 10.3389/fncel.2021.662184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Neuromodulation influences neuronal processing, conferring neuronal circuits the flexibility to integrate sensory inputs with behavioral states and the ability to adapt to a continuously changing environment. In this original research report, we broadly discuss the basis of neuromodulation that is known to regulate intrinsic firing activity, synaptic communication, and voltage-dependent channels in the olfactory bulb. Because the olfactory system is positioned to integrate sensory inputs with information regarding the internal chemical and behavioral state of an animal, how olfactory information is modulated provides flexibility in coding and behavioral output. Herein we discuss how neuronal microcircuits control complex dynamics of the olfactory networks by homing in on a special class of local interneurons as an example. While receptors for neuromodulation and metabolic peptides are widely expressed in the olfactory circuitry, centrifugal serotonergic and cholinergic inputs modulate glomerular activity and are involved in odor investigation and odor-dependent learning. Little is known about how metabolic peptides and neuromodulators control specific neuronal subpopulations. There is a microcircuit between mitral cells and interneurons that is comprised of deep-short-axon cells in the granule cell layer. These local interneurons express pre-pro-glucagon (PPG) and regulate mitral cell activity, but it is unknown what initiates this type of regulation. Our study investigates the means by which PPG neurons could be recruited by classical neuromodulators and hormonal peptides. We found that two gut hormones, leptin and cholecystokinin, differentially modulate PPG neurons. Cholecystokinin reduces or increases spike frequency, suggesting a heterogeneous signaling pathway in different PPG neurons, while leptin does not affect PPG neuronal firing. Acetylcholine modulates PPG neurons by increasing the spike frequency and eliciting bursts of action potentials, while serotonin does not affect PPG neuron excitability. The mechanisms behind this diverse modulation are not known, however, these results clearly indicate a complex interplay of metabolic signaling molecules and neuromodulators that may fine-tune neuronal microcircuits.
Collapse
Affiliation(s)
- Zhenbo Huang
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Roberta Tatti
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Ashley M Loeven
- Cell and Molecular Biology Program, Department of Biological Science, Florida State University, Tallahassee, FL, United States
| | - Daniel R Landi Conde
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States
| | - Debra Ann Fadool
- Program in Neuroscience, Florida State University, Tallahassee, FL, United States.,Cell and Molecular Biology Program, Department of Biological Science, Florida State University, Tallahassee, FL, United States.,Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, United States
| |
Collapse
|
16
|
Dynamics of Glutamatergic Drive Underlie Diverse Responses of Olfactory Bulb Outputs In Vivo. eNeuro 2021; 8:ENEURO.0110-21.2021. [PMID: 33795414 PMCID: PMC8059884 DOI: 10.1523/eneuro.0110-21.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 03/19/2021] [Indexed: 11/24/2022] Open
Abstract
Mitral/tufted (MT) cells of the olfactory bulb (OB) show diverse temporal responses to odorant stimulation that are thought to encode odor information. Much of this diversity is thought to arise from inhibitory OB circuits, but the dynamics of excitatory input to MT cells, which is driven in a feedforward manner by sensory afferents, may also be important. To examine the contribution of excitatory input dynamics to generating temporal diversity in MT cells, we imaged glutamate signaling onto MT cell dendrites in anesthetized and awake mice. We found surprising diversity in the temporal dynamics of these signals. Inhalation-linked glutamate transients were variable in onset latency and duration, and in awake mice the degree of coupling to inhalation varied substantially with odorant identity and concentration. Successive inhalations of odorant produced nonlinear changes in glutamate signaling that included facilitating, adapting and suppressive responses and which varied with odorant identity and concentration. Dual-color imaging of glutamate and calcium signals from MT cells in the same glomerulus revealed highly correlated presynaptic and postsynaptic signals across these different response types. Suppressive calcium responses in MT cells were nearly always accompanied by suppression in the glutamate signal, providing little evidence for MT cell suppression by lateral or feedforward inhibition. These results indicate a high degree of diversity in the dynamics of excitatory input to MT cells, and suggest that these dynamics may account for much of the diversity in MT cell responses that underlies OB odor representations.
Collapse
|
17
|
Brunert D, Rothermel M. Extrinsic neuromodulation in the rodent olfactory bulb. Cell Tissue Res 2021; 383:507-524. [PMID: 33355709 PMCID: PMC7873007 DOI: 10.1007/s00441-020-03365-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022]
Abstract
Evolutionarily, olfaction is one of the oldest senses and pivotal for an individual's health and survival. The olfactory bulb (OB), as the first olfactory relay station in the brain, is known to heavily process sensory information. To adapt to an animal's needs, OB activity can be influenced by many factors either from within (intrinsic neuromodulation) or outside (extrinsic neuromodulation) the OB which include neurotransmitters, neuromodulators, hormones, and neuropeptides. Extrinsic sources seem to be of special importance as the OB receives massive efferent input from numerous brain centers even outweighing the sensory input from the nose. Here, we review neuromodulatory processes in the rodent OB from such extrinsic sources. We will discuss extrinsic neuromodulation according to points of origin, receptors involved, affected circuits, and changes in behavior. In the end, we give a brief outlook on potential future directions in research on neuromodulation in the OB.
Collapse
Affiliation(s)
- Daniela Brunert
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, 52074, Aachen, Germany
| | - Markus Rothermel
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
18
|
Penker S, Licht T, Hofer KT, Rokni D. Mixture Coding and Segmentation in the Anterior Piriform Cortex. Front Syst Neurosci 2020; 14:604718. [PMID: 33328914 PMCID: PMC7710992 DOI: 10.3389/fnsys.2020.604718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
Coding of odorous stimuli has been mostly studied using single isolated stimuli. However, a single sniff of air in a natural environment is likely to introduce airborne chemicals emitted by multiple objects into the nose. The olfactory system is therefore faced with the task of segmenting odor mixtures to identify objects in the presence of rich and often unpredictable backgrounds. The piriform cortex is thought to be the site of object recognition and scene segmentation, yet the nature of its responses to odorant mixtures is largely unknown. In this study, we asked two related questions. (1) How are mixtures represented in the piriform cortex? And (2) Can the identity of individual mixture components be read out from mixture representations in the piriform cortex? To answer these questions, we recorded single unit activity in the piriform cortex of naïve mice while sequentially presenting single odorants and their mixtures. We find that a normalization model explains mixture responses well, both at the single neuron, and at the population level. Additionally, we show that mixture components can be identified from piriform cortical activity by pooling responses of a small population of neurons-in many cases a single neuron is sufficient. These results indicate that piriform cortical representations are well suited to perform figure-background segmentation without the need for learning.
Collapse
Affiliation(s)
| | | | | | - Dan Rokni
- Department of Medical Neurobiology, School of Medicine and IMRIC, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
19
|
Yao F, Ye Y, Zhou W. Nasal airflow engages central olfactory processing and shapes olfactory percepts. Proc Biol Sci 2020; 287:20201772. [PMID: 33109009 DOI: 10.1098/rspb.2020.1772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Binding of airborne odour molecules to olfactory receptors at the top of the nasal cavity gives rise to our rich olfactory experience. Whether airflow plays a role in human olfactory perception beyond the transportation of odorants is scantly known. Combining psychophysical measures with strict controls of nasal flow parameters, we demonstrate in four experiments that the perceived intensity of a unilaterally presented odour decreases systematically with the amount of contralateral nasal airflow, in manners that are independent of odour flow rate, nasal pressure, perceived sniff vigour or attentional allocation. Moreover, the effect is due to the sensed rather than the factual amount of nasal flow, as applying a local anaesthetic to the contralateral nostril produces the same effect as physically blocking it. Our findings indicate that nasal flow spontaneously engages central olfactory processing and serves as an integral part of the olfactory percept in humans.
Collapse
Affiliation(s)
- Fangshu Yao
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuting Ye
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Wen Zhou
- State Key Laboratory of Brain and Cognitive Science, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.,Chinese Institute for Brain Research, Beijing 102206, People's Republic of China
| |
Collapse
|