1
|
Hamad MIK, Daoud S, Petrova P, Rabaya O, Jbara A, Al Houqani S, BaniYas S, Alblooshi M, Almheiri A, Nakhal MM, Ali BR, Shehab S, Allouh MZ, Emerald BS, Schneider-Lódi M, Bataineh MF, Herz J, Förster E. Reelin differentially shapes dendrite morphology of medial entorhinal cortical ocean and island cells. Development 2024; 151:dev202449. [PMID: 38856043 PMCID: PMC11234379 DOI: 10.1242/dev.202449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
The function of medial entorhinal cortex layer II (MECII) excitatory neurons has been recently explored. MECII dysfunction underlies deficits in spatial navigation and working memory. MECII neurons comprise two major excitatory neuronal populations, pyramidal island and stellate ocean cells, in addition to the inhibitory interneurons. Ocean cells express reelin and surround clusters of island cells that lack reelin expression. The influence of reelin expression by ocean cells and interneurons on their own morphological differentiation and that of MECII island cells has remained unknown. To address this, we used a conditional reelin knockout (RelncKO) mouse to induce reelin deficiency postnatally in vitro and in vivo. Reelin deficiency caused dendritic hypertrophy of ocean cells, interneurons and only proximal dendritic compartments of island cells. Ca2+ recording showed that both cell types exhibited an elevation of calcium frequencies in RelncKO, indicating that the hypertrophic effect is related to excessive Ca2+ signalling. Moreover, pharmacological receptor blockade in RelncKO mouse revealed malfunctioning of GABAB, NMDA and AMPA receptors. Collectively, this study emphasizes the significance of reelin in neuronal growth, and its absence results in dendrite hypertrophy of MECII neurons.
Collapse
Affiliation(s)
- Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| | - Solieman Daoud
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Petya Petrova
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Obada Rabaya
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Abdalrahim Jbara
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Shaikha Al Houqani
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| | - Shamsa BaniYas
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| | - Meera Alblooshi
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| | - Ayesha Almheiri
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| | - Mohammed M. Nakhal
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| | - Bassam R. Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| | - Safa Shehab
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| | - Mohammed Z. Allouh
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| | - Mária Schneider-Lódi
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| | - Mo'ath F. Bataineh
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| | - Joachim Herz
- Departments of Molecular Genetics, Neuroscience, Neurology and Neurotherapeutics; Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Eckart Förster
- Department of Neuroanatomy and Molecular Brain Research, Medical Faculty, Ruhr University Bochum, Bochum 44801, Germany
| |
Collapse
|
2
|
Hamad MIK, Emerald BS, Kumar KK, Ibrahim MF, Ali BR, Bataineh MF. Extracellular molecular signals shaping dendrite architecture during brain development. Front Cell Dev Biol 2023; 11:1254589. [PMID: 38155836 PMCID: PMC10754048 DOI: 10.3389/fcell.2023.1254589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023] Open
Abstract
Proper growth and branching of dendrites are crucial for adequate central nervous system (CNS) functioning. The neuronal dendritic geometry determines the mode and quality of information processing. Any defects in dendrite development will disrupt neuronal circuit formation, affecting brain function. Besides cell-intrinsic programmes, extrinsic factors regulate various aspects of dendritic development. Among these extrinsic factors are extracellular molecular signals which can shape the dendrite architecture during early development. This review will focus on extrinsic factors regulating dendritic growth during early neuronal development, including neurotransmitters, neurotrophins, extracellular matrix proteins, contact-mediated ligands, and secreted and diffusible cues. How these extracellular molecular signals contribute to dendritic growth has been investigated in developing nervous systems using different species, different areas within the CNS, and different neuronal types. The response of the dendritic tree to these extracellular molecular signals can result in growth-promoting or growth-limiting effects, and it depends on the receptor subtype, receptor quantity, receptor efficiency, the animal model used, the developmental time windows, and finally, the targeted signal cascade. This article reviews our current understanding of the role of various extracellular signals in the establishment of the architecture of the dendrites.
Collapse
Affiliation(s)
- Mohammad I. K. Hamad
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Kukkala K. Kumar
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Marwa F. Ibrahim
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bassam R. Ali
- Department of Genetics and Genomics, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mo’ath F. Bataineh
- Department of Nutrition and Health, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
3
|
Kulesh B, Reese BE, Keeley PW. Contraction of axonal and dendritic fields in Sox5-deficient cone bipolar cells is accompanied by axonal sprouting and dendritic hyper-innervation of pedicles. Front Neuroanat 2022; 16:944706. [PMID: 36093292 PMCID: PMC9459848 DOI: 10.3389/fnana.2022.944706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
Multiple factors regulate the differentiation of neuronal morphology during development, including interactions with afferents, targets, and homotypic neighbors, as well as cell-intrinsic transcriptional regulation. Retinal bipolar cells provide an exemplary model system for studying the control of these processes, as there are 15 transcriptionally and morphologically distinct types, each extending their dendritic and axonal arbors in respective strata within the synaptic layers of the retina. Here we have examined the role of the transcription factor Sox5 in the control of the morphological differentiation of one type of cone bipolar cell (CBC), the Type 7 cell. We confirm selective expression of SOX5 in this single bipolar cell type, emerging at the close of the first post-natal week, prior to morphological differentiation. Conditional knockout mice were generated by crossing a bipolar cell-specific cre-expressing line with mice carrying floxed Sox5 alleles, as well as the Gustducin-gfp reporter which labels Type 7 CBCs. Loss of SOX5 was confirmed in the bipolar cell stratum, in GFP+ Type 7 cells. Such SOX5-deficient Type 7 cells differentiate axonal and dendritic arbors that are each reduced in areal extent. The axonal arbors exhibit sprouting in the inner plexiform layer (IPL), thereby extending their overall radial extent, while the dendritic arbors connect with fewer cone pedicles in the outer plexiform layer, showing an increase in the average number of dendritic contacts at each pedicle. SOX5-deficient Type 7 CBCs should therefore exhibit smaller receptive fields derived from fewer if now hyper-innervated pedicles, transmitting their signals across a broader depth through the IPL.
Collapse
Affiliation(s)
- Bridget Kulesh
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Benjamin E. Reese
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Patrick W. Keeley
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA, United States
- *Correspondence: Patrick W. Keeley
| |
Collapse
|
4
|
Plata ALD, Robles E. NMDA Receptor Antagonist MK801 Reduces Dendritic Spine Density and Stability in Zebrafish Pyramidal Neurons. Neuroscience 2022; 498:50-63. [PMID: 35718218 DOI: 10.1016/j.neuroscience.2022.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/02/2022] [Accepted: 06/10/2022] [Indexed: 11/25/2022]
Abstract
NMDA-type glutamate receptors play a critical role in activity-dependent neurite growth. We employed cell type-specific genetic labeling in zebrafish to examine the effects of NMDA receptor antagonism on the morphological development of tectal pyramidal neurons (PyrNs). Our data demonstrate that the NMDA receptor antagonist MK801 reduces PyrN spine density and stability without significantly altering dendritic growth and branching. However, the axons that synapse onto PyrN dendritic spines do exhibit reduced arbor growth and branching in response to MK801 treatment. Axons that synapse with PyrNs, but not on spines, are unaffected by MK801 treatment. These findings may reflect different roles for NMDARs during the development of spiny and aspiny dendrites.
Collapse
Affiliation(s)
- Amanda Lamarca Dela Plata
- Department of Biological Sciences and Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Estuardo Robles
- Department of Biological Sciences and Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
5
|
Molecular mechanisms regulating the spatial configuration of neurites. Semin Cell Dev Biol 2022; 129:103-114. [PMID: 35248463 DOI: 10.1016/j.semcdb.2022.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 02/08/2023]
Abstract
Precise neural networks, composed of axons and dendrites, are the structural basis for information processing in the brain. Therefore, the correct formation of neurites is critical for accurate neural function. In particular, the three-dimensional structures of dendrites vary greatly among neuron types, and the unique shape of each dendrite is tightly linked to specific synaptic connections with innervating axons and is correlated with its information processing. Although many systems are involved in neurite formation, the developmental mechanisms that control the orientation, size, and arborization pattern of neurites definitively defines their three-dimensional structure in tissues. In this review, we summarize these regulatory mechanisms that establish proper spatial configurations of neurites, especially dendrites, in invertebrates and vertebrates.
Collapse
|
6
|
Kilo L, Stürner T, Tavosanis G, Ziegler AB. Drosophila Dendritic Arborisation Neurons: Fantastic Actin Dynamics and Where to Find Them. Cells 2021; 10:2777. [PMID: 34685757 PMCID: PMC8534399 DOI: 10.3390/cells10102777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/12/2021] [Accepted: 10/12/2021] [Indexed: 01/27/2023] Open
Abstract
Neuronal dendrites receive, integrate, and process numerous inputs and therefore serve as the neuron's "antennae". Dendrites display extreme morphological diversity across different neuronal classes to match the neuron's specific functional requirements. Understanding how this structural diversity is specified is therefore important for shedding light on information processing in the healthy and diseased nervous system. Popular models for in vivo studies of dendrite differentiation are the four classes of dendritic arborization (c1da-c4da) neurons of Drosophila larvae with their class-specific dendritic morphologies. Using da neurons, a combination of live-cell imaging and computational approaches have delivered information on the distinct phases and the time course of dendrite development from embryonic stages to the fully developed dendritic tree. With these data, we can start approaching the basic logic behind differential dendrite development. A major role in the definition of neuron-type specific morphologies is played by dynamic actin-rich processes and the regulation of their properties. This review presents the differences in the growth programs leading to morphologically different dendritic trees, with a focus on the key role of actin modulatory proteins. In addition, we summarize requirements and technological progress towards the visualization and manipulation of such actin regulators in vivo.
Collapse
Affiliation(s)
- Lukas Kilo
- Dendrite Differentiation, German Center for Neurodegenerative Diseases, 53115 Bonn, Germany; (L.K.); (G.T.)
| | - Tomke Stürner
- Department of Zoology, University of Cambridge, Cambridge CB2 1TN, UK;
| | - Gaia Tavosanis
- Dendrite Differentiation, German Center for Neurodegenerative Diseases, 53115 Bonn, Germany; (L.K.); (G.T.)
- LIMES-Institute, University of Bonn, 53115 Bonn, Germany
| | - Anna B. Ziegler
- Institute of Neuro- and Behavioral Biology, University of Münster, 48149 Münster, Germany
| |
Collapse
|
7
|
Tavosanis G. Dendrite enlightenment. Curr Opin Neurobiol 2021; 69:222-230. [PMID: 34134010 DOI: 10.1016/j.conb.2021.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 12/18/2022]
Abstract
Neuronal dendrites acquire complex morphologies during development. These are not just the product of cell-intrinsic developmental programs; rather they are defined in close interaction with the cellular environment. Thus, to understand the molecular cascades that yield appropriate morphologies, it is essential to investigate them in vivo, in the actual complex tissue environment encountered by the differentiating neuron in the developing animal. Particularly, genetic approaches have pointed to factors controlling dendrite differentiation in vivo. These suggest that localized and transient molecular cascades might underlie the formation and stabilization of dendrite branches with neuron type-specific characteristics. Here, I highlight the need for studies of neuronal dendrite differentiation in the animal, the challenges provided by such an approach, and the promising pathways that have recently opened.
Collapse
Affiliation(s)
- Gaia Tavosanis
- German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, Bonn, 53127, Germany; LIMES Institute, University of Bonn, Carl-Troll-Str. 3, Bonn, 53115, Germany.
| |
Collapse
|