1
|
Tashiro S, Tsuji O, Shinozaki M, Shibata T, Yoshida T, Tomioka Y, Unai K, Kondo T, Itakura G, Kobayashi Y, Yasuda A, Nori S, Fujiyoshi K, Nagoshi N, Kawakami M, Uemura O, Yamada S, Tsuji T, Okano H, Nakamura M. Current progress of rehabilitative strategies in stem cell therapy for spinal cord injury: a review. NPJ Regen Med 2021; 6:81. [PMID: 34824291 PMCID: PMC8616941 DOI: 10.1038/s41536-021-00191-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 10/21/2021] [Indexed: 12/21/2022] Open
Abstract
Stem cell-based regenerative therapy has opened an avenue for functional recovery of patients with spinal cord injury (SCI). Regenerative rehabilitation is attracting wide attention owing to its synergistic effects, feasibility, non-invasiveness, and diverse and systemic properties. In this review article, we summarize the features of rehabilitation, describe the mechanism of combinatorial treatment, and discuss regenerative rehabilitation in the context of SCI. Although conventional rehabilitative methods have commonly been implemented alone, especially in studies of acute-to-subacute SCI, the combinatorial effects of intensive and advanced methods, including various neurorehabilitative approaches, have also been reported. Separating the concept of combined rehabilitation from regenerative rehabilitation, we suggest that the main roles of regenerative rehabilitation can be categorized as conditioning/reconditioning, functional training, and physical exercise, all of which are indispensable for enhancing functional recovery achieved using stem cell therapies.
Collapse
Affiliation(s)
- Syoichi Tashiro
- Department of Rehabilitation Medicine, Keio University School of Medicine, Shinjuku, Tokyo, Japan. .,Department of Rehabilitation Medicine, Kyorin University School of Medicine, Mitaka, Tokyo, Japan.
| | - Osahiko Tsuji
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Munehisa Shinozaki
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Takahiro Shibata
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Takashi Yoshida
- Department of Rehabilitation Medicine, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Yohei Tomioka
- Department of Rehabilitation, Murayama Medical Center, Musashi-Murayama, Tokyo, Japan
| | - Kei Unai
- Department of Rehabilitation Medicine, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Takahiro Kondo
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Go Itakura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Yoshiomi Kobayashi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan.,Department of Orthopaedic Surgery, Murayama Medical Center, Musashi-Murayama, Tokyo, Japan
| | - Akimasa Yasuda
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan.,Department of Orthopaedic surgery, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Satoshi Nori
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Kanehiro Fujiyoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan.,Department of Orthopaedic Surgery, Murayama Medical Center, Musashi-Murayama, Tokyo, Japan
| | - Narihito Nagoshi
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Michiyuki Kawakami
- Department of Rehabilitation Medicine, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Osamu Uemura
- Department of Rehabilitation Medicine, Keio University School of Medicine, Shinjuku, Tokyo, Japan.,Department of Rehabilitation, Murayama Medical Center, Musashi-Murayama, Tokyo, Japan
| | - Shin Yamada
- Department of Rehabilitation Medicine, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | - Tetsuya Tsuji
- Department of Rehabilitation Medicine, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| |
Collapse
|
2
|
Zhang L, Wang L, Xia H, Tan Y, Li C, Fang C. Connectomic mapping of brain-spinal cord neural networks: future directions in assessing spinal cord injury at rest. Neurosci Res 2021; 176:9-17. [PMID: 34699861 DOI: 10.1016/j.neures.2021.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/01/2022]
Abstract
Following spinal cord injury (SCI), the central nervous system undergoes significant reconstruction. The dynamic change in the interaction of the brain-spinal cord axis as well as in structure-function relations plays a vital role in the determination of neurological functions, which might have important clinical implications for the treatment and its efficacy evaluation of patients with SCI. Brain connectomes based on neuroimaging data is a relatively new field of research that maps the brain's large-scale structural and functional networks at rest. Importantly, increasing evidence shows that such resting-state signals can also be seen in the spinal cord. In the present review, we focus on the reconstruction of multi-level neural circuits after SCI. We also describe how the connectome concept could further our understanding of neuroplasticity after SCI. We propose that mapping the cortical-subcortical-spinal cord networks can provide novel insights into the pathologies of SCI.
Collapse
Affiliation(s)
- Lijian Zhang
- Postdoctoral Research Station of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, China; Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, China; Key Laboratory of Precise Diagnosis and Treatment of Glioma in Hebei Province, Affiliated Hospital of Hebei University, Hebei University, China
| | - Luxuan Wang
- Department of Neurology, Affiliated Hospital of Hebei University, Hebei University, China
| | - Hechun Xia
- Department of Neurosurgery, General Hospital of Ningxia Medical University, Ningxia Medical University, China
| | - Yanli Tan
- Key Laboratory of Precise Diagnosis and Treatment of Glioma in Hebei Province, Affiliated Hospital of Hebei University, Hebei University, China; Department of Pathology, Affiliated Hospital of Hebei University, Hebei University, China.
| | - Chunhui Li
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, China.
| | - Chuan Fang
- Postdoctoral Research Station of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, China; Department of Neurosurgery, Affiliated Hospital of Hebei University, Hebei University, China; Key Laboratory of Precise Diagnosis and Treatment of Glioma in Hebei Province, Affiliated Hospital of Hebei University, Hebei University, China.
| |
Collapse
|
3
|
Fadeev F, Eremeev A, Bashirov F, Shevchenko R, Izmailov A, Markosyan V, Sokolov M, Kalistratova J, Khalitova A, Garifulin R, Islamov R, Lavrov I. Combined Supra- and Sub-Lesional Epidural Electrical Stimulation for Restoration of the Motor Functions after Spinal Cord Injury in Mini Pigs. Brain Sci 2020; 10:brainsci10100744. [PMID: 33081405 PMCID: PMC7650717 DOI: 10.3390/brainsci10100744] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022] Open
Abstract
This study evaluates the effect of combined epidural electrical stimulation (EES) applied above (C5) and below (L2) the spinal cord injury (SCI) at T8–9 combined with motor training on the restoration of sensorimotor function in mini pigs. The motor evoked potentials (MEP) induced by EES applied at C5 and L2 levels were recorded in soleus muscles before and two weeks after SCI. EES treatment started two weeks after SCI and continued for 6 weeks led to improvement in multiple metrics, including behavioral, electrophysiological, and joint kinematics outcomes. In control animals after SCI a multiphasic M-response was observed during M/H-response testing, while animals received EES-enable training demonstrated the restoration of the M-response and H-reflex, although at a lower amplitude. The joint kinematic and assessment with Porcine Thoracic Injury Behavior scale (PTIBS) motor recovery scale demonstrated improvement in animals that received EES-enable training compared to animals with no treatment. The positive effect of two-level (cervical and lumbar) epidural electrical stimulation on functional restoration in mini pigs following spinal cord contusion injury in mini pigs could be related with facilitation of spinal circuitry at both levels and activation of multisegmental coordination. This approach can be taken as a basis for the future development of neuromodulation and neurorehabilitation therapy for patients with spinal cord injury.
Collapse
Affiliation(s)
- Filip Fadeev
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Anton Eremeev
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia;
| | - Farid Bashirov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Roman Shevchenko
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Andrei Izmailov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Vage Markosyan
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Mikhail Sokolov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Julia Kalistratova
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Anastasiia Khalitova
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Ravil Garifulin
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Rustem Islamov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
- Correspondence: (R.I.); (I.L.)
| | - Igor Lavrov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia;
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: (R.I.); (I.L.)
| |
Collapse
|
4
|
Grau JW, Baine RE, Bean PA, Davis JA, Fauss GN, Henwood MK, Hudson KE, Johnston DT, Tarbet MM, Strain MM. Learning to promote recovery after spinal cord injury. Exp Neurol 2020; 330:113334. [PMID: 32353465 PMCID: PMC7282951 DOI: 10.1016/j.expneurol.2020.113334] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/19/2020] [Accepted: 04/26/2020] [Indexed: 02/06/2023]
Abstract
The present review explores the concept of learning within the context of neurorehabilitation after spinal cord injury (SCI). The aim of physical therapy and neurorehabilitation is to bring about a lasting change in function-to encourage learning. Traditionally, it was assumed that the adult spinal cord is hardwired-immutable and incapable of learning. Research has shown that neurons within the lower (lumbosacral) spinal cord can support learning after communication with the brain has been disrupted by means of a thoracic transection. Noxious stimulation can sensitize nociceptive circuits within the spinal cord, engaging signal pathways analogous to those implicated in brain-dependent learning and memory. After a spinal contusion injury, pain input can fuel hemorrhage, increase the area of tissue loss (secondary injury), and undermine long-term recovery. Neurons within the spinal cord are sensitive to environmental relations. This learning has a metaplastic effect that counters neural over-excitation and promotes adaptive learning through an up-regulation of brain-derived neurotrophic factor (BDNF). Exposure to rhythmic stimulation, treadmill training, and cycling also enhances the expression of BDNF and counters the development of nociceptive sensitization. SCI appears to enable plastic potential within the spinal cord by down-regulating the Cl- co-transporter KCC2, which reduces GABAergic inhibition. This enables learning, but also fuels over-excitation and nociceptive sensitization. Pairing epidural stimulation with activation of motor pathways also promotes recovery after SCI. Stimulating motoneurons in response to activity within the motor cortex, or a targeted muscle, has a similar effect. It is suggested that a neurofunctionalist approach can foster the discovery of processes that impact spinal function and how they may be harnessed to foster recovery after SCI.
Collapse
Affiliation(s)
- James W Grau
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA.
| | - Rachel E Baine
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Paris A Bean
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Jacob A Davis
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Gizelle N Fauss
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Melissa K Henwood
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Kelsey E Hudson
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - David T Johnston
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Megan M Tarbet
- Behavioral and Cellular Neuroscience, Department of Psychology, Texas A&M University, College Station, TX 77843, USA
| | - Misty M Strain
- Battlefield Pain Research, U.S. Army Institute of Surgical Research, 3698 Chambers Pass, BHT-1, BSA Fort Sam Houston, TX 78234, USA
| |
Collapse
|
5
|
A Review of Functional Electrical Stimulation Treatment in Spinal Cord Injury. Neuromolecular Med 2020; 22:447-463. [DOI: 10.1007/s12017-019-08589-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/28/2019] [Indexed: 12/11/2022]
|
6
|
Yu P, Zhang W, Liu Y, Sheng C, So KF, Zhou L, Zhu H. The effects and potential mechanisms of locomotor training on improvements of functional recovery after spinal cord injury. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 147:199-217. [DOI: 10.1016/bs.irn.2019.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Zholudeva LV, Iyer N, Qiang L, Spruance VM, Randelman ML, White NW, Bezdudnaya T, Fischer I, Sakiyama-Elbert SE, Lane MA. Transplantation of Neural Progenitors and V2a Interneurons after Spinal Cord Injury. J Neurotrauma 2018; 35:2883-2903. [PMID: 29873284 DOI: 10.1089/neu.2017.5439] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
There is growing interest in the use of neural precursor cells to treat spinal cord injury (SCI). Despite extensive pre-clinical research, it remains unclear as to which donor neuron phenotypes are available for transplantation, whether the same populations exist across different sources of donor tissue (e.g., developing tissue vs. cultured cells), and whether donor cells retain their phenotype once transplanted into the hostile internal milieu of the injured adult spinal cord. In addition, while functional improvements have been reported after neural precursor transplantation post-SCI, the extent of recovery is limited and variable. The present work begins to address these issues by harnessing ventrally derived excitatory pre-motor V2a spinal interneurons (SpINs) to repair the phrenic motor circuit after cervical SCI. Recent studies have demonstrated that Chx10-positive V2a SpINs contribute to anatomical plasticity within the phrenic circuitry after cervical SCI, thus identifying them as a therapeutic candidate. Building upon this discovery, the present work tests the hypothesis that transplantation of neural progenitor cells (NPCs) enriched with V2a INs can contribute to neural networks that promote repair and enhance respiratory plasticity after cervical SCI. Cultured NPCs (neuronal and glial restricted progenitor cells) isolated from E13.5 Green fluorescent protein rats were aggregated with TdTomato-mouse embryonic stem cell-derived V2a INs in vitro, then transplanted into the injured cervical (C3-4) spinal cord. Donor cells survive, differentiate and integrate with the host spinal cord. Functional diaphragm electromyography indicated recovery 1 month following treatment in transplant recipients. Animals that received donor cells enriched with V2a INs showed significantly greater functional improvement than animals that received NPCs alone. The results from this study offer insight into the neuronal phenotypes that might be effective for (re)establishing neuronal circuits in the injured adult central nervous system.
Collapse
Affiliation(s)
- Lyandysha V Zholudeva
- 1 Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania.,2 Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Nisha Iyer
- 3 Wisconsin Institute for Discovery, University of Wisconsin, Madison, Wisconsin
| | - Liang Qiang
- 1 Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania.,2 Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Victoria M Spruance
- 1 Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania.,2 Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Margo L Randelman
- 1 Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania.,2 Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Nicholas W White
- 4 Department of Biomedical Engineering, University of Texas, Austin, Texas
| | - Tatiana Bezdudnaya
- 1 Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania.,2 Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | - Itzhak Fischer
- 1 Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania.,2 Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| | | | - Michael A Lane
- 1 Department of Neurobiology and Anatomy, College of Medicine, Drexel University, Philadelphia, Pennsylvania.,2 Spinal Cord Research Center, College of Medicine, Drexel University, Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Consideration of Dose and Timing When Applying Interventions After Stroke and Spinal Cord Injury. J Neurol Phys Ther 2018. [PMID: 28628593 DOI: 10.1097/npt.0000000000000165] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Nearly 4 decades of investigation into the plasticity of the nervous system suggest that both timing and dose could matter. This article provides a synopsis of our lectures at the IV STEP meeting, which presented a perspective of current data on the issues of timing and dose for adult stroke and spinal cord injury motor rehabilitation. SUMMARY OF KEY POINTS For stroke, the prevailing evidence suggests that greater amounts of therapy do not result in better outcomes for upper extremity interventions, regardless of timing. Whether or not greater amounts of therapy result in better outcomes for lower extremity and mobility interventions needs to be explicitly tested. For spinal cord injury, there is a complex interaction of timing postinjury, task-specificity, and the microenvironment of the spinal cord. Inflammation appears to be a key determinant of whether or not an intervention will be beneficial or maladaptive, and specific retraining of eccentric control during gait may be necessary. RECOMMENDATIONS FOR CLINICAL PRACTICE To move beyond the limitations of our current interventions and to effectively reach nonresponders, greater precision in task-specific interventions that are well-timed to the cellular environment may hold the key. Neurorehabilitation that ameliorates persistent deficits, attains greater recovery, and reclaims nonresponders will decrease institutionalization, improve quality of life, and prevent multiple secondary complications common after stroke and spinal cord injury.
Collapse
|
9
|
Buen EPD, Salgado-Ceballos H, González-Tapia D, Leal-Cortés C, Mondragón-Lozano R, Sánchez-Torres S, Álvarez-Mejía L, Fabela-Sánchez O, Martínez-Torres NI, González-Ramírez MM, Vázquez-Hernández N, González-Burgos I. Spinogenesis and Plastic Changes in the Dendritic Spines of Spinal Cord Motoneurons After Traumatic Injury in Rats. Arch Med Res 2018. [PMID: 29530339 DOI: 10.1016/j.arcmed.2018.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Spinal cord injury (SCI) is highly incapacitating, and the neurobiological factors involved in an eventual functional recovery remain uncertain. Plastic changes to dendritic spines are closely related with the functional modifications of behavior. AIM OF THE STUDY To explore the plastic response of dendritic spines in motoneurons after SCI. METHODS Female rats were assigned to either of three groups: Intact (no manipulations), Sham (T9 laminectomy), and SCI (T9 laminectomy and spinal cord contusion). RESULTS Motor function according to a BBBscale was progressively recovered from 2 week through 8 week postinjury, reaching a plateau through week 16. Dendritic spine density was greater in SCI vs. control groups, rostral as well as caudal to the lesion, at 8 and 16 weeks postinjury. Thin and stubby/wide spines were more abundant at both locations and time points, whereas mushroom spines predominated at 2 and 4 months in rostral to the lesion. Filopodia and atypical structures resembling dendritic spines were observed. Synaptophysin expression was lower in SCI at the caudal portion at 8 weeks, and was higher at week 16. CONCLUSION Spinogenesis in spinal motoneurons may be a crucial plastic response to favor spontaneous recovery after SCI.
Collapse
Affiliation(s)
- Eliseo Portilla-de Buen
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jal., México
| | - Hermelinda Salgado-Ceballos
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México; Proyecto Camina, A.C., Ciudad de México, México
| | - David González-Tapia
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jal., México; Universidad Politécnica de la Zona Metropolitana de Guadalajara, Tlajomulco de Zúñiga, Jal., México; Instituto de Ciencias de la Rehabilitación Integral, Guadalajara, Jal., México
| | - Caridad Leal-Cortés
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jal., México
| | - Rodrigo Mondragón-Lozano
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México; Proyecto Camina, A.C., Ciudad de México, México; CONACyT- Instituto Mexicano del Seguro Social, Ciudad de México, México
| | - Stephanie Sánchez-Torres
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México; Proyecto Camina, A.C., Ciudad de México, México; Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México, México
| | - Laura Álvarez-Mejía
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de México, México; Proyecto Camina, A.C., Ciudad de México, México; Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México, México
| | - Omar Fabela-Sánchez
- Proyecto Camina, A.C., Ciudad de México, México; Universidad Autónoma Metropolitana Iztapalapa, Ciudad de México, México
| | - Néstor I Martínez-Torres
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jal., México; Centro Universitario del Norte, Universidad de Guadalajara, Colotlán, Jalisco, México
| | - Myrna M González-Ramírez
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jal., México
| | - Nallely Vázquez-Hernández
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jal., México
| | - Ignacio González-Burgos
- Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social, Guadalajara, Jal., México.
| |
Collapse
|
10
|
Boyko A, Ksenofontov A, Ryabov S, Baratova L, Graf A, Bunik V. Delayed Influence of Spinal Cord Injury on the Amino Acids of NO • Metabolism in Rat Cerebral Cortex Is Attenuated by Thiamine. Front Med (Lausanne) 2018; 4:249. [PMID: 29379782 PMCID: PMC5775235 DOI: 10.3389/fmed.2017.00249] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/19/2017] [Indexed: 01/02/2023] Open
Abstract
Severe spinal cord injuries (SCIs) result in chronic neuroinflammation in the brain, associated with the development of cognitive and behavioral impairments. Nitric oxide (NO•) is a gaseous messenger involved in neuronal signaling and inflammation, contributing to nitrosative stress under dysregulated production of reactive nitrogen species. In this work, biochemical changes induced in the cerebral cortex of rats 8 weeks after SCI are assessed by quantification of the levels of amino acids participating in the NO• and glutathione metabolism. The contribution of the injury-induced neurodegeneration is revealed by comparison of the SCI- and laminectomy (LE)-subjected animals. Effects of the operative interventions are assessed by comparison of the operated (LE/SCI) and non-operated animals. Lower ratios of citrulline (Cit) to arginine (Arg) or Cit to ornithine and a more profound decrease in the ratio of lysine to glycine distinguish SCI animals from those after LE. The data suggest decreased NO• production from both Arg and homoarginine in the cortex 8 weeks after SCI. Both LE and SCI groups show a strong decrease in the level of cortex glutathione. The neurotropic, anti-inflammatory, and antioxidant actions of thiamine (vitamin B1) prompted us to study the thiamine effects on the SCI-induced changes in the NO• and glutathione metabolism. A thiamine injection (400 mg/kg intraperitoneally) within 24 h after SCI abrogates the changes in the cerebral cortex amino acids related to NO•. Thiamine-induced normalization of the brain glutathione levels after LE and SCI may involve increased supply of glutamate for glutathione biosynthesis. Thus, thiamine protects from sequelae of SCI on NO•-related amino acids and glutathione in cerebral cortex.
Collapse
Affiliation(s)
- Alexandra Boyko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander Ksenofontov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey Ryabov
- Russian Cardiology Research-and-Production Complex, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Lyudmila Baratova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anastasia Graf
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Faculty of Nano-, Bio-, Informational and Cognitive Technologies, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Victoria Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
11
|
Hinahon E, Estrada C, Tong L, Won DS, de Leon RD. Robot-Applied Resistance Augments the Effects of Body Weight-Supported Treadmill Training on Stepping and Synaptic Plasticity in a Rodent Model of Spinal Cord Injury. Neurorehabil Neural Repair 2017; 31:746-757. [PMID: 28741434 DOI: 10.1177/1545968317721016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND The application of resistive forces has been used during body weight-supported treadmill training (BWSTT) to improve walking function after spinal cord injury (SCI). Whether this form of training actually augments the effects of BWSTT is not yet known. OBJECTIVE To determine if robotic-applied resistance augments the effects of BWSTT using a controlled experimental design in a rodent model of SCI. METHODS Spinally contused rats were treadmill trained using robotic resistance against horizontal (n = 9) or vertical (n = 8) hind limb movements. Hind limb stepping was tested before and after 6 weeks of training. Two control groups, one receiving standard training (ie, without resistance; n = 9) and one untrained (n = 8), were also tested. At the terminal experiment, the spinal cords were prepared for immunohistochemical analysis of synaptophysin. RESULTS Six weeks of training with horizontal resistance increased step length, whereas training with vertical resistance enhanced step height and movement velocity. None of these changes occurred in the group that received standard (ie, no resistance) training or in the untrained group. Only standard training increased the number of step cycles and shortened cycle period toward normal values. Synaptophysin expression in the ventral horn was highest in rats trained with horizontal resistance and in untrained rats and was positively correlated with step length. CONCLUSIONS Adding robotic-applied resistance to BWSTT produced gains in locomotor function over BWSTT alone. The impact of resistive forces on spinal connections may depend on the nature of the resistive forces and the synaptic milieu that is present after SCI.
Collapse
Affiliation(s)
| | | | - Lin Tong
- 1 California State University Los Angeles, CA, USA
| | | | | |
Collapse
|
12
|
Tail Nerve Electrical Stimulation and Electro-Acupuncture Can Protect Spinal Motor Neurons and Alleviate Muscle Atrophy after Spinal Cord Transection in Rats. Neural Plast 2017; 2017:7351238. [PMID: 28744378 PMCID: PMC5506460 DOI: 10.1155/2017/7351238] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/08/2017] [Accepted: 03/19/2017] [Indexed: 01/12/2023] Open
Abstract
Spinal cord injury (SCI) often results in death of spinal neurons and atrophy of muscles which they govern. Thus, following SCI, reorganizing the lumbar spinal sensorimotor pathways is crucial to alleviate muscle atrophy. Tail nerve electrical stimulation (TANES) has been shown to activate the central pattern generator (CPG) and improve the locomotion recovery of spinal contused rats. Electroacupuncture (EA) is a traditional Chinese medical practice which has been proven to have a neural protective effect. Here, we examined the effects of TANES and EA on lumbar motor neurons and hindlimb muscle in spinal transected rats, respectively. From the third day postsurgery, rats in the TANES group were treated 5 times a week and those in the EA group were treated once every other day. Four weeks later, both TANES and EA showed a significant impact in promoting survival of lumbar motor neurons and expression of choline acetyltransferase (ChAT) and ameliorating atrophy of hindlimb muscle after SCI. Meanwhile, the expression of neurotrophin-3 (NT-3) in the same spinal cord segment was significantly increased. These findings suggest that TANES and EA can augment the expression of NT-3 in the lumbar spinal cord that appears to protect the motor neurons as well as alleviate muscle atrophy.
Collapse
|
13
|
Noga BR, Sanchez FJ, Villamil LM, O'Toole C, Kasicki S, Olszewski M, Cabaj AM, Majczyński H, Sławińska U, Jordan LM. LFP Oscillations in the Mesencephalic Locomotor Region during Voluntary Locomotion. Front Neural Circuits 2017; 11:34. [PMID: 28579945 PMCID: PMC5437718 DOI: 10.3389/fncir.2017.00034] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 04/28/2017] [Indexed: 11/28/2022] Open
Abstract
Oscillatory rhythms in local field potentials (LFPs) are thought to coherently bind cooperating neuronal ensembles to produce behaviors, including locomotion. LFPs recorded from sites that trigger locomotion have been used as a basis for identification of appropriate targets for deep brain stimulation (DBS) to enhance locomotor recovery in patients with gait disorders. Theta band activity (6–12 Hz) is associated with locomotor activity in locomotion-inducing sites in the hypothalamus and in the hippocampus, but the LFPs that occur in the functionally defined mesencephalic locomotor region (MLR) during locomotion have not been determined. Here we record the oscillatory activity during treadmill locomotion in MLR sites effective for inducing locomotion with electrical stimulation in rats. The results show the presence of oscillatory theta rhythms in the LFPs recorded from the most effective MLR stimulus sites (at threshold ≤60 μA). Theta activity increased at the onset of locomotion, and its power was correlated with the speed of locomotion. In animals with higher thresholds (>60 μA), the correlation between locomotor speed and theta LFP oscillations was less robust. Changes in the gamma band (previously recorded in vitro in the pedunculopontine nucleus (PPN), thought to be a part of the MLR) were relatively small. Controlled locomotion was best achieved at 10–20 Hz frequencies of MLR stimulation. Our results indicate that theta and not delta or gamma band oscillation is a suitable biomarker for identifying the functional MLR sites.
Collapse
Affiliation(s)
- Brian R Noga
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| | - Francisco J Sanchez
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| | - Luz M Villamil
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| | - Christopher O'Toole
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| | - Stefan Kasicki
- Department of Neurophysiology, Nencki Institute of Experimental BiologyWarsaw, Poland
| | - Maciej Olszewski
- Department of Neurophysiology, Nencki Institute of Experimental BiologyWarsaw, Poland
| | - Anna M Cabaj
- Department of Neurophysiology, Nencki Institute of Experimental BiologyWarsaw, Poland
| | - Henryk Majczyński
- Department of Neurophysiology, Nencki Institute of Experimental BiologyWarsaw, Poland
| | - Urszula Sławińska
- Department of Neurophysiology, Nencki Institute of Experimental BiologyWarsaw, Poland
| | - Larry M Jordan
- Department of Physiology, Spinal Cord Research Centre, University of ManitobaWinnipeg, MB, Canada
| |
Collapse
|
14
|
Chawla RS, Züchner M, Mastrangelopoulou M, Lambert FM, Glover JC, Boulland JL. Cellular reactions and compensatory tissue re-organization during spontaneous recovery after spinal cord injury in neonatal mice. Dev Neurobiol 2017; 77:928-946. [PMID: 28033684 DOI: 10.1002/dneu.22479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 11/08/2016] [Accepted: 12/06/2016] [Indexed: 01/23/2023]
Abstract
Following incomplete spinal cord injuries, neonatal mammals display a remarkable degree of behavioral recovery. Previously, we have demonstrated in neonatal mice a wholesale re-establishment and reorganization of synaptic connections from some descending axon tracts (Boulland et al.: PLoS One 8 (2013)). To assess the potential cellular mechanisms contributing to this recovery, we have here characterized a variety of cellular sequelae following thoracic compression injuries, focusing particularly on cell loss and proliferation, inflammation and reactive gliosis, and the dynamics of specific types of synaptic terminals. Early during the period of recovery, regressive events dominated. Tissue loss near the injury was severe, with about 80% loss of neurons and a similar loss of axons that later make up the white matter. There was no sign of neurogenesis, no substantial astroglial or microglial proliferation, no change in the ratio of M1 and M2 microglia and no appreciable generation of the terminal complement peptide C5a. One day after injury the number of synaptic terminals on lumbar motoneurons had dropped by a factor of 2, but normalized by 6 days. The ratio of VGLUT1/2+ to VGAT+ terminals remained similar in injured and uninjured spinal cords during this period. By 24 days after injury, when functional recovery is nearly complete, the density of 5-HT+ fibers below the injury site had increased by a factor of 2.5. Altogether this study shows that cellular reactions are diverse and dynamic. Pronounced recovery of both excitatory and inhibitory terminals and an increase in serotonergic innervation below the injury, coupled with a general lack of inflammation and reactive gliosis, are likely to contribute to the recovery. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 928-946, 2017.
Collapse
Affiliation(s)
- Rishab S Chawla
- Laboratory of Neural Development and Optical Recording (NDEVOR), Division of Physiology, Department of Molecular Medicine, University of Oslo
| | - Mark Züchner
- Norwegian Center for Stem Cell Research, Oslo University Hospital.,Department of Neurosurgery, Oslo University Hospital
| | - Maria Mastrangelopoulou
- Laboratory of Neural Development and Optical Recording (NDEVOR), Division of Physiology, Department of Molecular Medicine, University of Oslo
| | - François M Lambert
- Laboratory of Neural Development and Optical Recording (NDEVOR), Division of Physiology, Department of Molecular Medicine, University of Oslo.,INCIA CNRS UMR 5287 Université de Bordeaux, Bordeaux, France
| | - Joel C Glover
- Laboratory of Neural Development and Optical Recording (NDEVOR), Division of Physiology, Department of Molecular Medicine, University of Oslo.,Norwegian Center for Stem Cell Research, Oslo University Hospital
| | - Jean-Luc Boulland
- Laboratory of Neural Development and Optical Recording (NDEVOR), Division of Physiology, Department of Molecular Medicine, University of Oslo.,Norwegian Center for Stem Cell Research, Oslo University Hospital
| |
Collapse
|
15
|
Huie JR, Morioka K, Haefeli J, Ferguson AR. What Is Being Trained? How Divergent Forms of Plasticity Compete To Shape Locomotor Recovery after Spinal Cord Injury. J Neurotrauma 2017; 34:1831-1840. [PMID: 27875927 DOI: 10.1089/neu.2016.4562] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Spinal cord injury (SCI) is a devastating syndrome that produces dysfunction in motor and sensory systems, manifesting as chronic paralysis, sensory changes, and pain disorders. The multi-faceted and heterogeneous nature of SCI has made effective rehabilitative strategies challenging. Work over the last 40 years has aimed to overcome these obstacles by harnessing the intrinsic plasticity of the spinal cord to improve functional locomotor recovery. Intensive training after SCI facilitates lower extremity function and has shown promise as a tool for retraining the spinal cord by engaging innate locomotor circuitry in the lumbar cord. As new training paradigms evolve, the importance of appropriate afferent input has emerged as a requirement for adaptive plasticity. The integration of kinematic, sensory, and loading force information must be closely monitored and carefully manipulated to optimize training outcomes. Inappropriate peripheral input may produce lasting maladaptive sensory and motor effects, such as central pain and spasticity. Thus, it is important to closely consider the type of afferent input the injured spinal cord receives. Here we review preclinical and clinical input parameters fostering adaptive plasticity, as well as those producing maladaptive plasticity that may undermine neurorehabilitative efforts. We differentiate between passive (hindlimb unloading [HU], limb immobilization) and active (peripheral nociception) forms of aberrant input. Furthermore, we discuss the timing of initiating exposure to afferent input after SCI for promoting functional locomotor recovery. We conclude by presenting a candidate rapid synaptic mechanism for maladaptive plasticity after SCI, offering a pharmacological target for restoring the capacity for adaptive spinal plasticity in real time.
Collapse
Affiliation(s)
- J Russell Huie
- 1 Department of Neurological Surgery, Brain and Spinal Injury Center, University of California , San Francisco, California
| | - Kazuhito Morioka
- 1 Department of Neurological Surgery, Brain and Spinal Injury Center, University of California , San Francisco, California
| | - Jenny Haefeli
- 1 Department of Neurological Surgery, Brain and Spinal Injury Center, University of California , San Francisco, California
| | - Adam R Ferguson
- 1 Department of Neurological Surgery, Brain and Spinal Injury Center, University of California , San Francisco, California.,2 San Francisco Veterans Affairs Medical Center , San Francisco, California
| |
Collapse
|
16
|
Côté MP, Murray M, Lemay MA. Rehabilitation Strategies after Spinal Cord Injury: Inquiry into the Mechanisms of Success and Failure. J Neurotrauma 2016; 34:1841-1857. [PMID: 27762657 DOI: 10.1089/neu.2016.4577] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Body-weight supported locomotor training (BWST) promotes recovery of load-bearing stepping in lower mammals, but its efficacy in individuals with a spinal cord injury (SCI) is limited and highly dependent on injury severity. While animal models with complete spinal transections recover stepping with step-training, motor complete SCI individuals do not, despite similarly intensive training. In this review, we examine the significant differences between humans and animal models that may explain this discrepancy in the results obtained with BWST. We also summarize the known effects of SCI and locomotor training on the muscular, motoneuronal, interneuronal, and supraspinal systems in human and non-human models of SCI and address the potential causes for failure to translate to the clinic. The evidence points to a deficiency in neuronal activation as the mechanism of failure, rather than muscular insufficiency. While motoneuronal and interneuronal systems cannot be directly probed in humans, the changes brought upon by step-training in SCI animal models suggest a beneficial re-organization of the systems' responsiveness to descending and afferent feedback that support locomotor recovery. The literature on partial lesions in humans and animal models clearly demonstrate a greater dependency on supraspinal input to the lumbar cord in humans than in non-human mammals for locomotion. Recent results with epidural stimulation that activates the lumbar interneuronal networks and/or increases the overall excitability of the locomotor centers suggest that these centers are much more dependent on the supraspinal tonic drive in humans. Sensory feedback shapes the locomotor output in animal models but does not appear to be sufficient to drive it in humans.
Collapse
Affiliation(s)
- Marie-Pascale Côté
- 1 Department of Neurobiology and Anatomy, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Marion Murray
- 1 Department of Neurobiology and Anatomy, Drexel University College of Medicine , Philadelphia, Pennsylvania
| | - Michel A Lemay
- 2 Department of Bioengineering, Temple University , Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Functional Recovery from Neural Stem/Progenitor Cell Transplantation Combined with Treadmill Training in Mice with Chronic Spinal Cord Injury. Sci Rep 2016; 6:30898. [PMID: 27485458 PMCID: PMC4971501 DOI: 10.1038/srep30898] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 07/10/2016] [Indexed: 12/17/2022] Open
Abstract
Most studies targeting chronic spinal cord injury (SCI) have concluded that neural stem/progenitor cell (NS/PC) transplantation exerts only a subclinical recovery; this in contrast to its remarkable effect on acute and subacute SCI. To determine whether the addition of rehabilitative intervention enhances the effect of NS/PC transplantation for chronic SCI, we used thoracic SCI mouse models to compare manifestations secondary to both transplantation and treadmill training, and the two therapies combined, with a control group. Significant locomotor recovery in comparison with the control group was only achieved in the combined therapy group. Further investigation revealed that NS/PC transplantation improved spinal conductivity and central pattern generator activity, and that treadmill training promoted the appropriate inhibitory motor control. The combined therapy enhanced these independent effects of each single therapy, and facilitated neuronal differentiation of transplanted cells and maturation of central pattern generator activity synergistically. Our data suggest that rehabilitative treatment represents a therapeutic option for locomotor recovery after NS/PC transplantation, even in chronic SCI.
Collapse
|
18
|
Hansen CN, Norden DM, Faw TD, Deibert R, Wohleb ES, Sheridan JF, Godbout JP, Basso DM. Lumbar Myeloid Cell Trafficking into Locomotor Networks after Thoracic Spinal Cord Injury. Exp Neurol 2016; 282:86-98. [PMID: 27191729 DOI: 10.1016/j.expneurol.2016.05.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 04/28/2016] [Accepted: 05/13/2016] [Indexed: 01/05/2023]
Abstract
Spinal cord injury (SCI) promotes inflammation along the neuroaxis that jeopardizes plasticity, intrinsic repair and recovery. While inflammation at the injury site is well-established, less is known within remote spinal networks. The presence of bone marrow-derived immune (myeloid) cells in these areas may further impede functional recovery. Previously, high levels of the gelatinase, matrix metalloproteinase-9 (MMP-9) occurred within the lumbar enlargement after thoracic SCI and impeded activity-dependent recovery. Since SCI-induced MMP-9 potentially increases vascular permeability, myeloid cell infiltration may drive inflammatory toxicity in locomotor networks. Therefore, we examined neurovascular reactivity and myeloid cell infiltration in the lumbar cord after thoracic SCI. We show evidence of region-specific recruitment of myeloid cells into the lumbar but not cervical region. Myeloid infiltration occurred with concomitant increases in chemoattractants (CCL2) and cell adhesion molecules (ICAM-1) around lumbar vasculature 24h and 7days post injury. Bone marrow GFP chimeric mice established robust infiltration of bone marrow-derived myeloid cells into the lumbar gray matter 24h after SCI. This cell infiltration occurred when the blood-spinal cord barrier was intact, suggesting active recruitment across the endothelium. Myeloid cells persisted as ramified macrophages at 7days post injury in parallel with increased inhibitory GAD67 labeling. Importantly, macrophage infiltration required MMP-9.
Collapse
Affiliation(s)
- Christopher N Hansen
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH 43210, USA; School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Diana M Norden
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH 43210, USA; School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Timothy D Faw
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH 43210, USA; School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; Neuroscience Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Rochelle Deibert
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH 43210, USA; School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Eric S Wohleb
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; Division of Biosciences, , The Ohio State University, Columbus, OH 43210, USA.
| | - John F Sheridan
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH 43210, USA; Division of Biosciences, , The Ohio State University, Columbus, OH 43210, USA; Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH 43210, USA
| | - Jonathan P Godbout
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH 43210, USA; Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA; Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH 43210, USA
| | - D Michele Basso
- Center for Brain and Spinal Cord Repair, The Ohio State University, Columbus, OH 43210, USA; School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|