1
|
Li J, Serafin EK, Koorndyk N, Baccei ML. Astrocyte D1/D5 Dopamine Receptors Govern Non-Hebbian Long-Term Potentiation at Sensory Synapses onto Lamina I Spinoparabrachial Neurons. J Neurosci 2024; 44:e0170242024. [PMID: 38955487 PMCID: PMC11308343 DOI: 10.1523/jneurosci.0170-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/04/2024] Open
Abstract
Recent work demonstrated that activation of spinal D1 and D5 dopamine receptors (D1/D5Rs) facilitates non-Hebbian long-term potentiation (LTP) at primary afferent synapses onto spinal projection neurons. However, the cellular localization of the D1/D5Rs driving non-Hebbian LTP in spinal nociceptive circuits remains unknown, and it is also unclear whether D1/D5R signaling must occur concurrently with sensory input in order to promote non-Hebbian LTP at these synapses. Here we investigate these issues using cell-type-selective knockdown of D1Rs or D5Rs from lamina I spinoparabrachial neurons, dorsal root ganglion (DRG) neurons, or astrocytes in adult mice of either sex using Cre recombinase-based genetic strategies. The LTP evoked by low-frequency stimulation of primary afferents in the presence of the selective D1/D5R agonist SKF82958 persisted following the knockdown of D1R or D5R in spinoparabrachial neurons, suggesting that postsynaptic D1/D5R signaling was dispensable for non-Hebbian plasticity at sensory synapses onto these key output neurons of the superficial dorsal horn (SDH). Similarly, the knockdown of D1Rs or D5Rs in DRG neurons failed to influence SKF82958-enabled LTP in lamina I projection neurons. In contrast, SKF82958-induced LTP was suppressed by the knockdown of D1R or D5R in spinal astrocytes. Furthermore, the data indicate that the activation of D1R/D5Rs in spinal astrocytes can either retroactively or proactively drive non-Hebbian LTP in spinoparabrachial neurons. Collectively, these results suggest that dopaminergic signaling in astrocytes can strongly promote activity-dependent LTP in the SDH, which is predicted to significantly enhance the amplification of ascending nociceptive transmission from the spinal cord to the brain.
Collapse
Affiliation(s)
- Jie Li
- Department of Anesthesiology, Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Elizabeth K Serafin
- Department of Anesthesiology, Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Nathan Koorndyk
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| | - Mark L Baccei
- Department of Anesthesiology, Pain Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
- Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267
| |
Collapse
|
2
|
Montalant A, Kiehn O, Perrier JF. Dopamine and noradrenaline activate spinal astrocyte endfeet via D1-like receptors. Eur J Neurosci 2024; 59:1278-1295. [PMID: 38052454 DOI: 10.1111/ejn.16205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/02/2023] [Accepted: 11/10/2023] [Indexed: 12/07/2023]
Abstract
Astrocytes, the most abundant glial cells in the central nervous system, respond to a wide variety of neurotransmitters binding to metabotropic receptors. Here, we investigated the intracellular calcium responses of spinal cord astrocytes to dopamine and noradrenaline, two catecholamines released by specific descending pathways. In a slice preparation from the spinal cord of neonatal mice, puff application of dopamine resulted in intracellular calcium responses that remained in the endfeet. Noradrenaline induced stronger responses that also started in the endfeet but spread to neighbouring compartments. The intracellular calcium responses were unaffected by blocking neuronal activity or inhibiting various neurotransmitter receptors, suggesting a direct effect of dopamine and noradrenaline on astrocytes. The intracellular calcium responses induced by noradrenaline and dopamine were inhibited by the D1 receptor antagonist SCH 23390. We assessed the functional consequences of these astrocytic responses by examining changes in arteriole diameter. Puff application of dopamine or noradrenaline resulted in vasoconstriction of spinal arterioles. However, blocking D1 receptors or manipulating astrocytic intracellular calcium levels did not abolish the vasoconstrictions, indicating that the observed intracellular calcium responses in astrocyte endfeet were not responsible for the vascular changes. Our findings demonstrate a compartmentalized response of spinal cord astrocytes to catecholamines and expand our understanding of astrocyte-neurotransmitter interactions and their potential roles in the physiology of the central nervous system.
Collapse
Affiliation(s)
- Alexia Montalant
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ole Kiehn
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jean-François Perrier
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Ryczko D, Dubuc R. Dopamine control of downstream motor centers. Curr Opin Neurobiol 2023; 83:102785. [PMID: 37774481 DOI: 10.1016/j.conb.2023.102785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/18/2023] [Accepted: 08/26/2023] [Indexed: 10/01/2023]
Abstract
The role of dopamine in the control of movement is traditionally associated with ascending projections to the basal ganglia. However, more recently descending dopaminergic pathways projecting to downstream brainstem motor circuits were discovered. In lampreys, salamanders, and rodents, these include projections to the downstream Mesencephalic Locomotor Region (MLR), a brainstem region controlling locomotion. Such descending dopaminergic projections could prime brainstem networks controlling movement. Other descending dopaminergic projections have been shown to reach reticulospinal cells involved in the control of locomotion. In addition, dopamine directly modulates the activity of interneurons and motoneurons. Beyond locomotion, dopaminergic inputs modulate visuomotor transformations within the optic tectum (mammalian superior colliculus). Loss of descending dopaminergic inputs will likely contribute to pathological conditions such as in Parkinson's disease.
Collapse
Affiliation(s)
- Dimitri Ryczko
- Département de Pharmacologie-Physiologie, Université de Sherbrooke, Sherbrooke, Québec, Canada; Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Canada; Neurosciences Sherbrooke, Sherbrooke, Canada; Institut de Pharmacologie de Sherbrooke, Sherbrooke, Canada.
| | - Réjean Dubuc
- Groupe de Recherche en Activité Physique Adaptée, Département des Sciences de l'Activité Physique, Université du Québec à Montréal, Montréal, Québec, Canada; Groupe de recherche sur la Signalisation Neurale et la Circuiterie, Département de Neurosciences, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
4
|
Garau C, Hayes J, Chiacchierini G, McCutcheon JE, Apergis-Schoute J. Involvement of A13 dopaminergic neurons in prehensile movements but not reward in the rat. Curr Biol 2023; 33:4786-4797.e4. [PMID: 37816347 DOI: 10.1016/j.cub.2023.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 08/14/2023] [Accepted: 09/18/2023] [Indexed: 10/12/2023]
Abstract
Tyrosine hydroxylase (TH)-containing neurons of the dopamine (DA) cell group A13 are well positioned to impact known DA-related functions as their descending projections innervate target regions that regulate vigilance, sensory integration, and motor execution. Despite this connectivity, little is known regarding the functionality of A13-DA circuits. Using TH-specific loss-of-function methodology and techniques to monitor population activity in transgenic rats in vivo, we investigated the contribution of A13-DA neurons in reward and movement-related actions. Our work demonstrates a role for A13-DA neurons in grasping and handling of objects but not reward. A13-DA neurons responded strongly when animals grab and manipulate food items, whereas their inactivation or degeneration prevented animals from successfully doing so-a deficit partially attributed to a reduction in grip strength. By contrast, there was no relation between A13-DA activity and food-seeking behavior when animals were tested on a reward-based task that did not include a reaching/grasping response. Motivation for food was unaffected, as goal-directed behavior for food items was in general intact following A13 neuronal inactivation/degeneration. An anatomical investigation confirmed that A13-DA neurons project to the superior colliculus (SC) and also demonstrated a novel A13-DA projection to the reticular formation (RF). These results establish a functional role for A13-DA neurons in prehensile actions that are uncoupled from the motivational factors that contribute to the initiation of forelimb movements and help position A13-DA circuits into the functional framework regarding centrally located DA populations and their ability to coordinate movement.
Collapse
Affiliation(s)
- Celia Garau
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, University Road, Leicester LE1 9HN, UK.
| | - Jessica Hayes
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, University Road, Leicester LE1 9HN, UK
| | - Giulia Chiacchierini
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, University Road, Leicester LE1 9HN, UK; Department of Physiology and Pharmacology, La Sapienza University of Rome, 00185 Rome, Italy; Laboratory of Neuropsychopharmacology, Santa Lucia Foundation, 00143 Rome, Italy
| | - James E McCutcheon
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, University Road, Leicester LE1 9HN, UK; Department of Psychology, UiT The Arctic University of Norway, Huginbakken 32, 9037 Tromsø, Norway
| | - John Apergis-Schoute
- Department of Neuroscience, Psychology & Behaviour, University of Leicester, University Road, Leicester LE1 9HN, UK; Department of Biological and Experimental Psychology, Queen Mary University of London, London E1 4NS, UK.
| |
Collapse
|
5
|
Zhang Z, Shao H, Liu C, Song H, Wu X, Cao D, Zhu M, Fu Y, Wang J, Gao Y. Descending dopaminergic pathway facilitates itch signal processing via activating spinal GRPR + neurons. EMBO Rep 2023; 24:e56098. [PMID: 37522391 PMCID: PMC10561366 DOI: 10.15252/embr.202256098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 07/10/2023] [Accepted: 07/14/2023] [Indexed: 08/01/2023] Open
Abstract
A11 dopaminergic neurons regulate somatosensory transduction by projecting from the diencephalon to the spinal cord, but the function of this descending projection in itch remained elusive. Here, we report that dopaminergic projection neurons from the A11 nucleus to the spinal dorsal horn (dopaminergicA11-SDH ) are activated by pruritogens. Inhibition of these neurons alleviates itch-induced scratching behaviors. Furthermore, chemogenetic inhibition of spinal dopamine receptor D1-expressing (DRD1+ ) neurons decreases acute or chronic itch-induced scratching. Mechanistically, spinal DRD1+ neurons are excitatory and mostly co-localize with gastrin-releasing peptide (GRP), an endogenous neuropeptide for itch. In addition, DRD1+ neurons form synapses with GRP receptor-expressing (GRPR+ ) neurons and activate these neurons via AMPA receptor (AMPAR). Finally, spontaneous itch and enhanced acute itch induced by activating spinal DRD1+ neurons are relieved by antagonists against AMPAR and GRPR. Thus, the descending dopaminergic pathway facilitates spinal itch transmission via activating DRD1+ neurons and releasing glutamate and GRP, which directly augments GRPR signaling. Interruption of this descending pathway may be used to treat chronic itch.
Collapse
Affiliation(s)
- Zhi‐Jun Zhang
- Institute of Pain Medicine and Special Environmental Medicine, Co‐Innovation Center of NeuroregenerationNantong UniversityJiangsuChina
- Department of Human Anatomy, School of MedicineNantong UniversityJiangsuChina
| | - Han‐Yu Shao
- Department of Human Anatomy, School of MedicineNantong UniversityJiangsuChina
| | - Chuan Liu
- Department of Human Anatomy, School of MedicineNantong UniversityJiangsuChina
| | - Hao‐Lin Song
- Department of Human Anatomy, School of MedicineNantong UniversityJiangsuChina
| | - Xiao‐Bo Wu
- Institute of Pain Medicine and Special Environmental Medicine, Co‐Innovation Center of NeuroregenerationNantong UniversityJiangsuChina
| | - De‐Li Cao
- Institute of Pain Medicine and Special Environmental Medicine, Co‐Innovation Center of NeuroregenerationNantong UniversityJiangsuChina
| | - Meixuan Zhu
- University of North Carolina at Chapel HillChapel HillNCUSA
| | - Yuan‐Yuan Fu
- Institute of Pain Medicine and Special Environmental Medicine, Co‐Innovation Center of NeuroregenerationNantong UniversityJiangsuChina
| | - Juan Wang
- Department of Human Anatomy, School of MedicineNantong UniversityJiangsuChina
| | - Yong‐Jing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Co‐Innovation Center of NeuroregenerationNantong UniversityJiangsuChina
| |
Collapse
|
6
|
Psychostimulant Drugs Activate Cell-type Specific and Topographic cFos Expression in the Lumbar Spinal Cord. Neuroscience 2023; 510:9-20. [PMID: 36502959 DOI: 10.1016/j.neuroscience.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/02/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Psychostimulant drugs, such as cocaine, d-amphetamine and methylphenidate, alter a wide range of behaviors including locomotor activity and somatosensory perception. These altered behaviors are accompanied by the activation of specific neuronal populations within reward-, emotion- and locomotion-related circuits. However, whether such regulation occurs at the level of the spinal cord, a key node for neural circuits integrating and coordinating sensory and motor functions has never been addressed. By evaluating the temporal and spatial expression pattern of the phosphorylated form of the immediate early gene cFos at Ser32 (pS32-cFos), used as a proxy of neuronal activation, we demonstrate that, in adult male mice, d-amphetamine increases pS32-cFos expression in both inhibitory and excitatory neurons in dorsal and ventral horns at the lumbar spinal cord level. Interestingly, a fraction of neurons activated by a first exposure to d-amphetamine can be re-activated following d-amphetamine re-exposure. Similar expression patterns were observed in response to cocaine and methylphenidate, but not following morphine and dozilcipine administration. Finally, the blockade of dopamine reuptake was sufficient to recapitulate the increase in pS32-cFos expression induced by psychostimulant drugs. Our work provides evidence that cFos expression can be activated in lumbar spinal cord in response to acute psychostimulants administration.
Collapse
|
7
|
Piña-Leyva C, Lara-Lozano M, Rodríguez-Sánchez M, Vidal-Cantú GC, Barrientos Zavalza E, Jiménez-Estrada I, Delgado-Lezama R, Rodríguez-Sosa L, Granados-Soto V, González-Barrios JA, Florán-Garduño B. Hypothalamic A11 Nuclei Regulate the Circadian Rhythm of Spinal Mechanonociception through Dopamine Receptors and Clock Gene Expression. Life (Basel) 2022; 12:life12091411. [PMID: 36143447 PMCID: PMC9506518 DOI: 10.3390/life12091411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/26/2022] Open
Abstract
Several types of sensory perception have circadian rhythms. The spinal cord can be considered a center for controlling circadian rhythms by changing clock gene expression. However, to date, it is not known if mechanonociception itself has a circadian rhythm. The hypothalamic A11 area represents the primary source of dopamine (DA) in the spinal cord and has been found to be involved in clock gene expression and circadian rhythmicity. Here, we investigate if the paw withdrawal threshold (PWT) has a circadian rhythm, as well as the role of the dopaminergic A11 nucleus, DA, and DA receptors (DR) in the PWT circadian rhythm and if they modify clock gene expression in the lumbar spinal cord. Naïve rats showed a circadian rhythm of the PWT of almost 24 h, beginning during the night–day interphase and peaking at 14.63 h. Similarly, DA and DOPAC’s spinal contents increased at dusk and reached their maximum contents at noon. The injection of 6-hydroxydopamine (6-OHDA) into the A11 nucleus completely abolished the circadian rhythm of the PWT, reduced DA tissue content in the lumbar spinal cord, and induced tactile allodynia. Likewise, the repeated intrathecal administration of D1-like and D2-like DA receptor antagonists blunted the circadian rhythm of PWT. 6-OHDA reduced the expression of Clock and Per1 and increased Per2 gene expression during the day. In contrast, 6-OHDA diminished Clock, Bmal, Per1, Per2, Per3, Cry1, and Cry2 at night. The repeated intrathecal administration of the D1-like antagonist (SCH-23390) reduced clock genes throughout the day (Clock and Per2) and throughout the night (Clock, Per2 and Cry1), whereas it increased Bmal and Per1 throughout the day. In contrast, the intrathecal injection of the D2 receptor antagonists (L-741,626) increased the clock genes Bmal, Per2, and Per3 and decreased Per1 throughout the day. This study provides evidence that the circadian rhythm of the PWT results from the descending dopaminergic modulation of spinal clock genes induced by the differential activation of spinal DR.
Collapse
Affiliation(s)
- Celia Piña-Leyva
- · Department of Physiology, Biophysics, and Neurosciences, CINVESTAV, Av. No. 2508 National Polytechnic Institute, Mexico City 06760, Mexico
| | - Manuel Lara-Lozano
- · Department of Physiology, Biophysics, and Neurosciences, CINVESTAV, Av. No. 2508 National Polytechnic Institute, Mexico City 06760, Mexico
- Genomic Medicine Laboratory, Regional Hospital “October 1st”, ISSSTE, Av. No. 1669 National Polytechnic Institute, Mexico City 07760, Mexico
| | - Marina Rodríguez-Sánchez
- · Department of Physiology, Biophysics, and Neurosciences, CINVESTAV, Av. No. 2508 National Polytechnic Institute, Mexico City 06760, Mexico
| | - Guadalupe C. Vidal-Cantú
- Neurobiology of Pain Laboratory, Departamento de Farmacología, Cinvestav, Sede Sur, México City 14330, Mexico
| | - Ericka Barrientos Zavalza
- Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City 09340, Mexico
| | - Ismael Jiménez-Estrada
- · Department of Physiology, Biophysics, and Neurosciences, CINVESTAV, Av. No. 2508 National Polytechnic Institute, Mexico City 06760, Mexico
| | - Rodolfo Delgado-Lezama
- · Department of Physiology, Biophysics, and Neurosciences, CINVESTAV, Av. No. 2508 National Polytechnic Institute, Mexico City 06760, Mexico
| | - Leonardo Rodríguez-Sosa
- Department of Physiology, Medicine Faculty, National Autonomous University of Mexico, University City, Mexico City 04510, Mexico
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacología, Cinvestav, Sede Sur, México City 14330, Mexico
| | - Juan Antonio González-Barrios
- Genomic Medicine Laboratory, Regional Hospital “October 1st”, ISSSTE, Av. No. 1669 National Polytechnic Institute, Mexico City 07760, Mexico
- Correspondence: (J.A.G.-B.); (B.F.-G.); Tel.: +52-55-81077971 (J.A.G.-B.); +52-55-13848283 (B.F.-G.)
| | - Benjamín Florán-Garduño
- · Department of Physiology, Biophysics, and Neurosciences, CINVESTAV, Av. No. 2508 National Polytechnic Institute, Mexico City 06760, Mexico
- Correspondence: (J.A.G.-B.); (B.F.-G.); Tel.: +52-55-81077971 (J.A.G.-B.); +52-55-13848283 (B.F.-G.)
| |
Collapse
|
8
|
Szlaga A, Sambak P, Gugula A, Trenk A, Gundlach AL, Blasiak A. Catecholaminergic innervation and D2-like dopamine receptor-mediated modulation of brainstem nucleus incertus neurons in the rat. Neuropharmacology 2022; 218:109216. [PMID: 35973599 DOI: 10.1016/j.neuropharm.2022.109216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/19/2022]
Abstract
Nucleus incertus (NI) is a brainstem structure involved in the control of arousal, stress responses and locomotor activity. It was reported recently that NI neurons express the dopamine type 2 (D2) receptor that belongs to the D2-like receptor (D2R) family, and that D2R activation in the NI decreased locomotor activity. In this study, using multiplex in situ hybridization, we observed that GABAergic and glutamatergic NI neurons express D2 receptor mRNA, and that D2 receptor mRNA-positive neurons belong to partially overlapping relaxin-3- and cholecystokinin-positive NI neuronal populations. Our immunohistochemical and viral-based retrograde tract-tracing studies revealed a dense innervation of the NI area by fibers containing the catecholaminergic biosynthesis enzymes, tyrosine hydroxylase (TH) and dopamine β-hydroxylase (DBH), and indicated the major sources of the catecholaminergic innervation of the NI as the Darkschewitsch, raphe and hypothalamic A13 nuclei. Furthermore, using whole-cell patch clamp recordings, we demonstrated that D2R activation by quinpirole produced excitatory and inhibitory influences on neuronal activity in the NI, and that both effects were postsynaptic in nature. Moreover, the observed effects were cell-type specific, as type I NI neurons were either excited or inhibited, whereas type II NI neurons were mainly excited by D2R activation. Our results reveal that rat NI receives a strong catecholaminergic innervation and suggest that catecholamines acting within the NI are involved in the control of diverse processes, including locomotor activity, social interaction and nociceptive signaling. Our data also strengthen the hypothesis that the NI acts as a hub integrating arousal-related neuronal information.
Collapse
Affiliation(s)
- Agata Szlaga
- Department of Neurophysiology and Chronobiology, Jagiellonian University, Krakow, Poland
| | - Patryk Sambak
- Department of Neurophysiology and Chronobiology, Jagiellonian University, Krakow, Poland
| | - Anna Gugula
- Department of Neurophysiology and Chronobiology, Jagiellonian University, Krakow, Poland
| | - Aleksandra Trenk
- Department of Neurophysiology and Chronobiology, Jagiellonian University, Krakow, Poland
| | - Andrew L Gundlach
- The Florey Institute of Neuroscience and Mental Health, Florey Department of Neuroscience and Mental Health and Department of Anatomy and Physiology, The University of Melbourne, Victoria, Australia
| | - Anna Blasiak
- Department of Neurophysiology and Chronobiology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
9
|
Noga BR, Whelan PJ. The Mesencephalic Locomotor Region: Beyond Locomotor Control. Front Neural Circuits 2022; 16:884785. [PMID: 35615623 PMCID: PMC9124768 DOI: 10.3389/fncir.2022.884785] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/14/2022] [Indexed: 11/25/2022] Open
Abstract
The mesencephalic locomotor region (MLR) was discovered several decades ago in the cat. It was functionally defined based on the ability of low threshold electrical stimuli within a region comprising the cuneiform and pedunculopontine nucleus to evoke locomotion. Since then, similar regions have been found in diverse vertebrate species, including the lamprey, skate, rodent, pig, monkey, and human. The MLR, while often viewed under the lens of locomotion, is involved in diverse processes involving the autonomic nervous system, respiratory system, and the state-dependent activation of motor systems. This review will discuss the pedunculopontine nucleus and cuneiform nucleus that comprises the MLR and examine their respective connectomes from both an anatomical and functional angle. From a functional perspective, the MLR primes the cardiovascular and respiratory systems before the locomotor activity occurs. Inputs from a variety of higher structures, and direct outputs to the monoaminergic nuclei, allow the MLR to be able to respond appropriately to state-dependent locomotion. These state-dependent effects are roughly divided into escape and exploratory behavior, and the MLR also can reinforce the selection of these locomotor behaviors through projections to adjacent structures such as the periaqueductal gray or to limbic and cortical regions. Findings from the rat, mouse, pig, and cat will be discussed to highlight similarities and differences among diverse species.
Collapse
Affiliation(s)
- Brian R. Noga
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, Miami, FL, United States
- *Correspondence: Brian R. Noga Patrick J. Whelan
| | - Patrick J. Whelan
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Comparative Biology and Experimental Medicine, University of Calgary, Calgary, AB, Canada
- *Correspondence: Brian R. Noga Patrick J. Whelan
| |
Collapse
|
10
|
Boulain M, Yuan W, Oueghlani Z, Khsime I, Salvi V, Courtand G, Halgand C, Morin D, de Deurwaerdere P, Barrière G, Juvin L. L-DOPA and 5-HTP modulation of air-stepping in newborn rats. J Physiol 2021; 599:4455-4476. [PMID: 34411301 DOI: 10.1113/jp281983] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/03/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS In newborn rats, L-DOPA increases the occurrence of air-stepping activity without affecting movement characteristics. L-DOPA administration increases the spinal content of dopamine in a dose-dependent manner. Injection of 5-HTP increases the spinal serotonin content but does not trigger air-stepping. 5-HTP counteracts the pro-locomotor action of L-DOPA. Less dopamine and serotonin are synthesized when L-DOPA and 5-HTP are administered as a cocktail. ABSTRACT The catecholamine precursor, L-3,4-dihydroxyphenylalanine (L-DOPA), is a well-established pharmacological agent for promoting locomotor action in vertebrates, including triggering air-stepping activities in the neonatal rat. Serotonin is also a well-known neuromodulator of the rodent spinal locomotor networks. Here, using kinematic analysis, we compared locomotor-related activities expressed by newborn rats in response to varying doses of L-DOPA and the serotonin precursor 5-hydroxytryptophan (5-HTP) administered separately or in combination. L-DOPA alone triggered episodes of air-stepping in a dose-dependent manner (25-100 mg/kg), notably determining the duration of locomotor episodes, but without affecting step cycle frequency or amplitude. In contrast, 5-HTP (25-150 mg/kg) was ineffective in instigating air-stepping, but altered episode durations of L-DOPA-induced air-stepping, and decreased locomotor cycle frequency. High performance liquid chromatography revealed that L-DOPA, which was undetectable in control conditions, accumulated in a dose-dependent manner in the lumbar spinal cord 30 min after its administration. This was paralleled by an increase in dopamine levels, whereas the spinal content of noradrenaline and serotonin remained unaffected. In the same way, the spinal levels of serotonin increased in parallel with the dose of 5-HTP without affecting the levels of dopamine and noradrenaline. When both precursors are administrated, they counteract each other for the production of serotonin and dopamine. Our data thus indicate for the first time that both L-DOPA and 5-HTP exert opposing neuromodulatory actions on air-stepping behaviour in the developing rat, and we speculate that competition for the production of dopamine and serotonin occurs when they are administered as a cocktail.
Collapse
Affiliation(s)
- Marie Boulain
- CNRS, EPHE, INCIA, University of Bordeaux, UMR5287 F-33000, Bordeaux, France
| | - Wei Yuan
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang, China
| | - Zied Oueghlani
- CNRS, EPHE, INCIA, University of Bordeaux, UMR5287 F-33000, Bordeaux, France
| | - Inès Khsime
- CNRS, EPHE, INCIA, University of Bordeaux, UMR5287 F-33000, Bordeaux, France
| | - Vianney Salvi
- CNRS, EPHE, INCIA, University of Bordeaux, UMR5287 F-33000, Bordeaux, France
| | - Gilles Courtand
- CNRS, EPHE, INCIA, University of Bordeaux, UMR5287 F-33000, Bordeaux, France
| | - Christophe Halgand
- CNRS, EPHE, INCIA, University of Bordeaux, UMR5287 F-33000, Bordeaux, France
| | - Didier Morin
- CNRS, EPHE, INCIA, University of Bordeaux, UMR5287 F-33000, Bordeaux, France
| | | | - Grégory Barrière
- CNRS, EPHE, INCIA, University of Bordeaux, UMR5287 F-33000, Bordeaux, France
| | - Laurent Juvin
- CNRS, EPHE, INCIA, University of Bordeaux, UMR5287 F-33000, Bordeaux, France
| |
Collapse
|
11
|
Deciphering Spinal Endogenous Dopaminergic Mechanisms That Modulate Micturition Reflexes in Rats with Spinal Cord Injury. eNeuro 2021; 8:ENEURO.0157-21.2021. [PMID: 34244339 PMCID: PMC8328273 DOI: 10.1523/eneuro.0157-21.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/03/2021] [Accepted: 06/30/2021] [Indexed: 01/23/2023] Open
Abstract
Spinal neuronal mechanisms regulate recovered involuntary micturition after spinal cord injury (SCI). It was recently discovered that dopamine (DA) is synthesized in the rat injured spinal cord and is involved in lower urinary tract (LUT) activity. To fully understand the role of spinal DAergic machinery in micturition, we examined urodynamic responses in female rats during pharmacological modulation of the DA pathway. Three to four weeks after complete thoracic SCI, the DA precursor L-DOPA administered intravenously during bladder cystometrogram (CMG) and external urethral sphincter (EUS) electromyography (EMG) reduced bladder overactivity and increased the duration of EUS bursting, leading to remarkably improved voiding efficiency. Apomorphine (APO), a non-selective DA receptor (DR) agonist, or quinpirole, a selective DR2 agonist, induced similar responses, whereas a specific DR2 antagonist remoxipride alone had only minimal effects. Meanwhile, administration of SCH 23390, a DR1 antagonist, reduced voiding efficiency by increasing tonic EUS activity and shortening the EUS bursting period. Unexpectedly, SKF 38393, a selective DR1 agonist, increased EUS tonic activity, implying a complicated role of DR1 in LUT function. In metabolic cage assays, subcutaneous administration of quinpirole decreased spontaneous voiding frequency and increased voiding volume; L-DOPA and APO were inactive possibly because of slow entry into the CNS. Collectively, tonically active DR1 in SCI rats inhibit urine storage and enhance voiding by differentially modulating EUS tonic and bursting patterns, respectively, while pharmacologic activation of DR2, which are normally silent, improves voiding by enhancing EUS bursting. Thus, enhancing DA signaling achieves better detrusor-sphincter coordination to facilitate micturition function in SCI rats.
Collapse
|
12
|
Wood AN. New roles for dopamine in motor skill acquisition: lessons from primates, rodents, and songbirds. J Neurophysiol 2021; 125:2361-2374. [PMID: 33978497 DOI: 10.1152/jn.00648.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Motor learning is a core aspect of human life and appears to be ubiquitous throughout the animal kingdom. Dopamine, a neuromodulator with a multifaceted role in synaptic plasticity, may be a key signaling molecule for motor skill learning. Though typically studied in the context of reward-based associative learning, dopamine appears to be necessary for some types of motor learning. Mesencephalic dopamine structures are highly conserved among vertebrates, as are some of their primary targets within the basal ganglia, a subcortical circuit important for motor learning and motor control. With a focus on the benefits of cross-species comparisons, this review examines how "model-free" and "model-based" computational frameworks for understanding dopamine's role in associative learning may be applied to motor learning. The hypotheses that dopamine could drive motor learning either by functioning as a reward prediction error, through passive facilitating of normal basal ganglia activity, or through other mechanisms are examined in light of new studies using humans, rodents, and songbirds. Additionally, new paradigms that could enhance our understanding of dopamine's role in motor learning by bridging the gap between the theoretical literature on motor learning in humans and other species are discussed.
Collapse
Affiliation(s)
- A N Wood
- Department of Biology and Graduate Program in Neuroscience, Emory University, Atlanta, Georgia
| |
Collapse
|
13
|
Yamaguchi T, Ozawa H, Yamaguchi S, Hamaguchi S, Ueda S. Calbindin-Positive Neurons Co-express Functional Markers in a Location-Dependent Manner Within the A11 Region of the Rat Brain. Neurochem Res 2021; 46:853-865. [PMID: 33439431 DOI: 10.1007/s11064-020-03217-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 12/16/2020] [Accepted: 12/24/2020] [Indexed: 11/24/2022]
Abstract
The A11 region plays a role in numerous physiological functions, including pain and locomotor activity, and consists of a variety of neurons including GABAergic, calbindin positive (Calb+), and dopaminergic (DA) neurons. However, the neurochemical nature of Calb+ neurons and their regulatory role in the A11 region remain largely unknown. In this study, we examined the kind of functional markers co-expressed in the Calb+ neurons using sections from 8-week-old rats. To examine a marker related to classical neurotransmitters, we performed in situ hybridization for vesicular glutamate transporter 2 (vGluT2) or glutamate decarboxylase (GAD) 65 and 67, in conjunction with Calb immunohistochemistry. We found cellular co-expression of Calb with vGluT2 or GAD65/67 throughout the A11 region. Nearly all Calb+/GAD65/67+ neurons were found in the rostral-middle aspect of the A11 region. In contrast, Calb+/vGluT2+ neurons were found predominantly in the middle-caudal aspect of the A11 region. For receptors and neuropeptides, we performed immunohistochemistry for androgen receptor (AR), estrogen receptors (ERα and ERβ), and calcitonin gene-related peptide (CGRP). We found that Calb+ neurons co-expressed AR in the rostral aspect of the A11 region in both male and female rats. However, we rarely find cellular co-expression of Calb with ERα or ERβ in this region. For CGRP, we found both Calb+ neurons with or without CGRP expression. These results demonstrate that Calb+ neurons co-express many functional markers. Calb+ neurons have a distinct distribution pattern and may play a variety of regulatory roles, depending on their location within the A11 region.
Collapse
Affiliation(s)
- Tsuyoshi Yamaguchi
- Department of Histology and Neurobiology, Dokkyo Medical University, School of Medicine, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan.
| | - Hidechika Ozawa
- Department of Histology and Neurobiology, Dokkyo Medical University, School of Medicine, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan
- Department of Anesthesia and Pain Medicine, Dokkyo Medical University, School of Medicine, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan
| | - Shigeki Yamaguchi
- Department of Anesthesia and Pain Medicine, Dokkyo Medical University, School of Medicine, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan
| | - Shinsuke Hamaguchi
- Department of Anesthesia and Pain Medicine, Dokkyo Medical University, School of Medicine, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan
| | - Shuichi Ueda
- Department of Histology and Neurobiology, Dokkyo Medical University, School of Medicine, 880 Kitakobayashi, Mibu-machi, Shimotsuga-gun, Tochigi, 321-0293, Japan
| |
Collapse
|
14
|
Alterations of Dopamine-Related Transcripts in A11 Diencephalospinal Pathways after Spinal Cord Injury. Neural Plast 2021; 2021:8838932. [PMID: 33510781 PMCID: PMC7822663 DOI: 10.1155/2021/8838932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/04/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022] Open
Abstract
The diencephalic A11 nuclei are the primary source of spinal dopamine (DA). Neurons in this region project to all levels of the spinal cord. Traumatic spinal cord injury (SCI) often interrupts descending and ascending neuronal pathways and further elicits injury-induced neuronal plasticity. However, it is unknown how A11 neurons and projections respond to SCI-induced axotomy. Based on preliminary observation, we hypothesized that A11 DA-ergic neurons rostral to the lesion site might change their capacity to synthesize DA after SCI. Adult rats received a complete spinal cord transection at the 10th thoracic (T10) level. After 3 or 8 weeks, rostral (T5) and caudal (L1) spinal cord tissue was collected to measure mRNA levels of DA-related genes. Meanwhile, A11 neurons in the brain were explicitly isolated by laser capture microdissection, and single-cell qPCR was employed to evaluate mRNA levels in the soma. Histological analysis was conducted to assess the number of A11 DA-ergic neurons. The results showed that, compared to naïve rats, mRNA levels of tyrosine hydroxylase (TH), dopamine decarboxylase (DDC), and D2 receptors in the T5 spinal segment had a transient decrease and subsequent recovery. However, dopamine-β-hydroxylase (DBH), D1 receptors, and DA-associated transcription factors did not change following SCI. Furthermore, axon degeneration below the lesion substantially reduced mRNA levels of TH and D2 in the L1 spinal segment. However, DDC transcript underwent only a temporary decrease. Similar mRNA levels of DA-related enzymes were detected in the A11 neuronal soma between naïve and SCI rats. In addition, immunostaining revealed that the number of A11 DA neurons did not change after SCI, indicating a sustention of capacity to synthesize DA in the neuroplasm. Thus, impaired A11 diencephalospinal pathways following SCI may transiently reduce DA production in the spinal cord rostral to the lesion but not in the brain.
Collapse
|
15
|
Flaive A, Fougère M, van der Zouwen CI, Ryczko D. Serotonergic Modulation of Locomotor Activity From Basal Vertebrates to Mammals. Front Neural Circuits 2020; 14:590299. [PMID: 33224027 PMCID: PMC7674590 DOI: 10.3389/fncir.2020.590299] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
During the last 50 years, the serotonergic (5-HT) system was reported to exert a complex modulation of locomotor activity. Here, we focus on two key factors that likely contribute to such complexity. First, locomotion is modulated directly and indirectly by 5-HT neurons. The locomotor circuitry is directly innervated by 5-HT neurons in the caudal brainstem and spinal cord. Also, indirect control of locomotor activity results from ascending projections of 5-HT cells in the rostral brainstem that innervate multiple brain centers involved in motor action planning. Second, each approach used to manipulate the 5-HT system likely engages different 5-HT-dependent mechanisms. This includes the recruitment of different 5-HT receptors, which can have excitatory or inhibitory effects on cell activity. These receptors can be located far or close to the 5-HT release sites, making their activation dependent on the level of 5-HT released. Here we review the activity of different 5-HT nuclei during locomotor activity, and the locomotor effects of 5-HT precursors, exogenous 5-HT, selective 5-HT reuptake inhibitors (SSRI), electrical or chemical stimulation of 5-HT neurons, genetic deletions, optogenetic and chemogenetic manipulations. We highlight both the coherent and controversial aspects of 5-HT modulation of locomotor activity from basal vertebrates to mammals. This mini review may hopefully inspire future studies aiming at dissecting the complex effects of 5-HT on locomotor function.
Collapse
Affiliation(s)
- Aurélie Flaive
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Maxime Fougère
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Cornelis Immanuel van der Zouwen
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Dimitri Ryczko
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC, Canada.,Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke, QC, Canada.,Centre des Neurosciences de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
16
|
Ryczko D, Grätsch S, Alpert MH, Cone JJ, Kasemir J, Ruthe A, Beauséjour PA, Auclair F, Roitman MF, Alford S, Dubuc R. Descending Dopaminergic Inputs to Reticulospinal Neurons Promote Locomotor Movements. J Neurosci 2020; 40:8478-8490. [PMID: 32998974 PMCID: PMC7605428 DOI: 10.1523/jneurosci.2426-19.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 09/01/2020] [Accepted: 09/24/2020] [Indexed: 01/25/2023] Open
Abstract
Meso-diencephalic dopaminergic neurons are known to modulate locomotor behaviors through their ascending projections to the basal ganglia, which in turn project to the mesencephalic locomotor region, known to control locomotion in vertebrates. In addition to their ascending projections, dopaminergic neurons were found to increase locomotor movements through direct descending projections to the mesencephalic locomotor region and spinal cord. Intriguingly, fibers expressing tyrosine hydroxylase (TH), the rate-limiting enzyme of dopamine synthesis, were also observed around reticulospinal neurons of lampreys. We now examined the origin and the role of this innervation. Using immunofluorescence and tracing experiments, we found that fibers positive for dopamine innervate reticulospinal neurons in the four reticular nuclei of lampreys. We identified the dopaminergic source using tracer injections in reticular nuclei, which retrogradely labeled dopaminergic neurons in a caudal diencephalic nucleus (posterior tuberculum [PT]). Using voltammetry in brain preparations isolated in vitro, we found that PT stimulation evoked dopamine release in all four reticular nuclei, but not in the spinal cord. In semi-intact preparations where the brain is accessible and the body moves, PT stimulation evoked swimming, and injection of a D1 receptor antagonist within the middle rhombencephalic reticular nucleus was sufficient to decrease reticulospinal activity and PT-evoked swimming. Our study reveals that dopaminergic neurons have access to command neurons that integrate sensory and descending inputs to activate spinal locomotor neurons. As such, our findings strengthen the idea that dopamine can modulate locomotor behavior both via ascending projections to the basal ganglia and through descending projections to brainstem motor circuits.SIGNIFICANCE STATEMENT Meso-diencephalic dopaminergic neurons play a key role in modulating locomotion by releasing dopamine in the basal ganglia, spinal networks, and the mesencephalic locomotor region, a brainstem region that controls locomotion in a graded fashion. Here, we report in lampreys that dopaminergic neurons release dopamine in the four reticular nuclei where reticulospinal neurons are located. Reticulospinal neurons integrate sensory and descending suprareticular inputs to control spinal interneurons and motoneurons. By directly modulating the activity of reticulospinal neurons, meso-diencephalic dopaminergic neurons control the very last instructions sent by the brain to spinal locomotor circuits. Our study reports on a new direct descending dopaminergic projection to reticulospinal neurons that modulates locomotor behavior.
Collapse
Affiliation(s)
- Dimitri Ryczko
- Department of Neuroscience, Université de Montréal, Montréal, Québec H3C 3J7, Canada
- Department of Pharmacology-Physiology, Université de Sherbrooke, Sherbrooke J1H 5N4, Québec Canada
- Centre de recherche du CHUS, Sherbrooke, J1H 5N4, Québec, Canada
| | - Swantje Grätsch
- Department of Neuroscience, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Michael H Alpert
- Department of Biological Sciences, University of Illinois at Chicago, Chicago IL 60607, Illinois
| | - Jackson J Cone
- Department of Psychology, University of Illinois at Chicago, Chicago IL 60607, Illinois
| | - Jacquelin Kasemir
- Department of Neuroscience, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Angelina Ruthe
- Department of Neuroscience, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | | | - François Auclair
- Department of Neuroscience, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | - Mitchell F Roitman
- Department of Psychology, University of Illinois at Chicago, Chicago IL 60607, Illinois
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago IL 60612-7308, Illinois
| | - Réjean Dubuc
- Department of Neuroscience, Université de Montréal, Montréal, Québec H3C 3J7, Canada
- Groupe de Recherche en Activité Physique Adaptée, Department of Exercise Science, Université du Québec à Montréal, Montréal, Québec H3C 3P8, Canada
| |
Collapse
|
17
|
A dynamic role for dopamine receptors in the control of mammalian spinal networks. Sci Rep 2020; 10:16429. [PMID: 33009442 PMCID: PMC7532218 DOI: 10.1038/s41598-020-73230-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/11/2020] [Indexed: 12/21/2022] Open
Abstract
Dopamine is well known to regulate movement through the differential control of direct and indirect pathways in the striatum that express D1 and D2 receptors respectively. The spinal cord also expresses all dopamine receptors; however, how the specific receptors regulate spinal network output in mammals is poorly understood. We explore the receptor-specific mechanisms that underlie dopaminergic control of spinal network output of neonatal mice during changes in spinal network excitability. During spontaneous activity, which is a characteristic of developing spinal networks operating in a low excitability state, we found that dopamine is primarily inhibitory. We uncover an excitatory D1-mediated effect of dopamine on motoneurons and network output that also involves co-activation with D2 receptors. Critically, these excitatory actions require higher concentrations of dopamine; however, analysis of dopamine concentrations of neonates indicates that endogenous levels of spinal dopamine are low. Because endogenous levels of spinal dopamine are low, this excitatory dopaminergic pathway is likely physiologically-silent at this stage in development. In contrast, the inhibitory effect of dopamine, at low physiological concentrations is mediated by parallel activation of D2, D3, D4 and α2 receptors which is reproduced when endogenous dopamine levels are increased by blocking dopamine reuptake and metabolism. We provide evidence in support of dedicated spinal network components that are controlled by excitatory D1 and inhibitory D2 receptors that is reminiscent of the classic dopaminergic indirect and direct pathway within the striatum. These results indicate that network state is an important factor that dictates receptor-specific and therefore dose-dependent control of neuromodulators on spinal network output and advances our understanding of how neuromodulators regulate neural networks under dynamically changing excitability.
Collapse
|
18
|
Fougère M, van der Zouwen CI, Boutin J, Ryczko D. Heterogeneous expression of dopaminergic markers and Vglut2 in mouse mesodiencephalic dopaminergic nuclei A8-A13. J Comp Neurol 2020; 529:1273-1292. [PMID: 32869307 DOI: 10.1002/cne.25020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/17/2022]
Abstract
Co-transmission of glutamate by brain dopaminergic (DA) neurons was recently proposed as a potential factor influencing cell survival in models of Parkinson's disease. Intriguingly, brain DA nuclei are differentially affected in Parkinson's disease. Whether this is associated with different patterns of co-expression of the glutamatergic phenotype along the rostrocaudal brain axis is unknown in mammals. We hypothesized that, as in zebrafish, the glutamatergic phenotype is present preferentially in the caudal mesodiencephalic DA nuclei. Here, we used in mice a cell fate mapping strategy based on reporter protein expression (ZsGreen) consecutive to previous expression of the vesicular glutamate transporter 2 (Vglut2) gene, coupled with immunofluorescence experiments against tyrosine hydroxylase (TH) or dopamine transporter (DAT). We found three expression patterns in DA cells, organized along the rostrocaudal brain axis. The first pattern (TH-positive, DAT-positive, ZsGreen-positive) was found in A8-A10. The second pattern (TH-positive, DAT-negative, ZsGreen-positive) was found in A11. The third pattern (TH-positive, DAT-negative, ZsGreen-negative) was found in A12-A13. These patterns should help to refine the establishment of the homology of DA nuclei between vertebrate species. Our results also uncover that Vglut2 is expressed at some point during cell lifetime in DA nuclei known to degenerate in Parkinson's disease and largely absent from those that are preserved, suggesting that co-expression of the glutamatergic phenotype in DA cells influences their survival in Parkinson's disease.
Collapse
Affiliation(s)
- Maxime Fougère
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Cornelis Immanuel van der Zouwen
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Joël Boutin
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Dimitri Ryczko
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada
- Centre d'Excellence en Neurosciences de l'Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
19
|
Yu L, Thurston EMS, Hashem M, Dunn JF, Whelan PJ, Murari K. Fiber photometry for monitoring cerebral oxygen saturation in freely-moving rodents. BIOMEDICAL OPTICS EXPRESS 2020; 11:3491-3506. [PMID: 33014546 PMCID: PMC7510909 DOI: 10.1364/boe.393295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/16/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Hemodynamic parameters, such as tissue oxygen saturation and blood volume fraction, are important markers of brain physiology. They are also widely used surrogate markers of electrophysiological activity. Here, we present a single fiber spectroscopic (SFS) system for monitoring cerebral oxygen saturation in localized, non-line-of-sight brain regions in freely-moving rodents. We adapted the implantation ferrule and patch cable design from commercialized optogenetics and fiber photometry systems, enabling stereotaxic fiber implantation, longitudinal tissue access and measurement from freely-moving animals. The optical system delivers and collects light from the brain through a 200 µm-core-diameter, 0.39NA multimode fiber. We robustly measured oxygen saturation from phantoms with different optical properties mimicking brain tissue. In mice, we demonstrated, for the first time, measurements of oxygen saturation from a highly-localized, targeted brain region over 31 days and continuous measurements from a freely-moving animal for over an hour. These results suggest that single fiber spectroscopy has enormous potential for functional brain monitoring and investigating neurovascular coupling in freely-moving animals. In addition, this technique can potentially be combined with fiber photometry systems to correct for hemodynamic artifacts in the fluorescence detection.
Collapse
Affiliation(s)
- Linhui Yu
- University of Calgary, Schulich School of Engineering, Electrical and Computer Engineering, Calgary, Canada
- University of Calgary, Hotchkiss Brain Institute, Calgary, Canada
| | - Elizabeth M. S. Thurston
- University of Calgary, Hotchkiss Brain Institute, Calgary, Canada
- University of Calgary, Department of Neuroscience, Calgary, Canada
- These authors contributed equally to this work
| | - Mada Hashem
- University of Calgary, Hotchkiss Brain Institute, Calgary, Canada
- University of Calgary, Biomedical Engineering Graduate Program, Calgary, Canada
- These authors contributed equally to this work
| | - Jeff F. Dunn
- University of Calgary, Hotchkiss Brain Institute, Calgary, Canada
- University of Calgary, Biomedical Engineering Graduate Program, Calgary, Canada
| | - Patrick J. Whelan
- University of Calgary, Hotchkiss Brain Institute, Calgary, Canada
- University of Calgary, Department of Neuroscience, Calgary, Canada
| | - Kartikeya Murari
- University of Calgary, Schulich School of Engineering, Electrical and Computer Engineering, Calgary, Canada
- University of Calgary, Hotchkiss Brain Institute, Calgary, Canada
| |
Collapse
|
20
|
Han Q, Ordaz JD, Liu NK, Richardson Z, Wu W, Xia Y, Qu W, Wang Y, Dai H, Zhang YP, Shields CB, Smith GM, Xu XM. Descending motor circuitry required for NT-3 mediated locomotor recovery after spinal cord injury in mice. Nat Commun 2019; 10:5815. [PMID: 31862889 PMCID: PMC6925225 DOI: 10.1038/s41467-019-13854-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/29/2019] [Indexed: 01/22/2023] Open
Abstract
Locomotor function, mediated by lumbar neural circuitry, is modulated by descending spinal pathways. Spinal cord injury (SCI) interrupts descending projections and denervates lumbar motor neurons (MNs). We previously reported that retrogradely transported neurotrophin-3 (NT-3) to lumbar MNs attenuated SCI-induced lumbar MN dendritic atrophy and enabled functional recovery after a rostral thoracic contusion. Here we functionally dissected the role of descending neural pathways in response to NT-3-mediated recovery after a T9 contusive SCI in mice. We find that residual projections to lumbar MNs are required to produce leg movements after SCI. Next, we show that the spared descending propriospinal pathway, rather than other pathways (including the corticospinal, rubrospinal, serotonergic, and dopaminergic pathways), accounts for NT-3-enhanced recovery. Lastly, we show that NT-3 induced propriospino-MN circuit reorganization after the T9 contusion via promotion of dendritic regrowth rather than prevention of dendritic atrophy.
Collapse
Affiliation(s)
- Qi Han
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Josue D Ordaz
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Nai-Kui Liu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Zoe Richardson
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Wei Wu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yongzhi Xia
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Wenrui Qu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Ying Wang
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Heqiao Dai
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yi Ping Zhang
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY, 40202, USA
| | - Christopher B Shields
- Norton Neuroscience Institute, Norton Healthcare, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville, Louisville, KY, 40292, USA
| | - George M Smith
- Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Center for Neural Rehabilitation and Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19122, USA
| | - Xiao-Ming Xu
- Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
21
|
Hachoumi L, Sillar KT. Developmental stage-dependent switching in the neuromodulation of vertebrate locomotor central pattern generator networks. Dev Neurobiol 2019; 80:42-57. [PMID: 31705739 DOI: 10.1002/dneu.22725] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/24/2019] [Accepted: 11/05/2019] [Indexed: 12/27/2022]
Abstract
Neuromodulation plays important and stage-dependent roles in regulating locomotor central pattern (CPG) outputs during vertebrate motor system development. Dopamine, serotonin and nitric oxide are three neuromodulators that potently influence CPG outputs in the development of Xenopus frog tadpole locomotion. However, their roles switch from predominantly inhibitory early in development to mainly excitatory at later stages. In this review, we compare the stage-dependent switching in neuromodulation in Xenopus with other vertebrate systems, notably the mouse and the zebrafish, and highlight features that appear to be phylogenetically conserved.
Collapse
Affiliation(s)
- Lamia Hachoumi
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Keith T Sillar
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| |
Collapse
|
22
|
|
23
|
|