1
|
Kristensen SS, Jörntell H. Local field potential sharp waves with diversified impact on cortical neuronal encoding of haptic input. Sci Rep 2024; 14:15243. [PMID: 38956102 PMCID: PMC11219916 DOI: 10.1038/s41598-024-65200-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
Cortical sensory processing is greatly impacted by internally generated activity. But controlling for that activity is difficult since the thalamocortical network is a high-dimensional system with rapid state changes. Therefore, to unwind the cortical computational architecture there is a need for physiological 'landmarks' that can be used as frames of reference for computational state. Here we use a waveshape transform method to identify conspicuous local field potential sharp waves (LFP-SPWs) in the somatosensory cortex (S1). LFP-SPW events triggered short-lasting but massive neuronal activation in all recorded neurons with a subset of neurons initiating their activation up to 20 ms before the LFP-SPW onset. In contrast, LFP-SPWs differentially impacted the neuronal spike responses to ensuing tactile inputs, depressing the tactile responses in some neurons and enhancing them in others. When LFP-SPWs coactivated with more distant cortical surface (ECoG)-SPWs, suggesting an involvement of these SPWs in global cortical signaling, the impact of the LFP-SPW on the neuronal tactile response could change substantially, including inverting its impact to the opposite. These cortical SPWs shared many signal fingerprint characteristics as reported for hippocampal SPWs and may be a biomarker for a particular type of state change that is possibly shared byboth hippocampus and neocortex.
Collapse
Affiliation(s)
- Sofie S Kristensen
- Department of Experimental Medical Science, Neural Basis of Sensorimotor Control, Lund University, Lund, Sweden
| | - Henrik Jörntell
- Department of Experimental Medical Science, Neural Basis of Sensorimotor Control, Lund University, Lund, Sweden.
| |
Collapse
|
2
|
Hu C, Hasenstaub AR, Schreiner CE. Basic Properties of Coordinated Neuronal Ensembles in the Auditory Thalamus. J Neurosci 2024; 44:e1729232024. [PMID: 38561224 PMCID: PMC11079962 DOI: 10.1523/jneurosci.1729-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024] Open
Abstract
Coordinated neuronal activity has been identified to play an important role in information processing and transmission in the brain. However, current research predominantly focuses on understanding the properties and functions of neuronal coordination in hippocampal and cortical areas, leaving subcortical regions relatively unexplored. In this study, we use single-unit recordings in female Sprague Dawley rats to investigate the properties and functions of groups of neurons exhibiting coordinated activity in the auditory thalamus-the medial geniculate body (MGB). We reliably identify coordinated neuronal ensembles (cNEs), which are groups of neurons that fire synchronously, in the MGB. cNEs are shown not to be the result of false-positive detections or by-products of slow-state oscillations in anesthetized animals. We demonstrate that cNEs in the MGB have enhanced information-encoding properties over individual neurons. Their neuronal composition is stable between spontaneous and evoked activity, suggesting limited stimulus-induced ensemble dynamics. These MGB cNE properties are similar to what is observed in cNEs in the primary auditory cortex (A1), suggesting that ensembles serve as a ubiquitous mechanism for organizing local networks and play a fundamental role in sensory processing within the brain.
Collapse
Affiliation(s)
- Congcong Hu
- John & Edward Coleman Memorial Laboratory, University of California-San Francisco, San Francisco, California 94158
- Neuroscience Graduate Program, University of California-San Francisco, San Francisco, California 94158
- Department of Otolaryngology-Head and Neck Surgery, University of California-San Francisco, San Francisco, California 94158
| | - Andrea R Hasenstaub
- John & Edward Coleman Memorial Laboratory, University of California-San Francisco, San Francisco, California 94158
- Neuroscience Graduate Program, University of California-San Francisco, San Francisco, California 94158
- Department of Otolaryngology-Head and Neck Surgery, University of California-San Francisco, San Francisco, California 94158
| | - Christoph E Schreiner
- John & Edward Coleman Memorial Laboratory, University of California-San Francisco, San Francisco, California 94158
- Neuroscience Graduate Program, University of California-San Francisco, San Francisco, California 94158
- Department of Otolaryngology-Head and Neck Surgery, University of California-San Francisco, San Francisco, California 94158
| |
Collapse
|
3
|
Kristensen SS, Jörntell H. Differential encoding of temporally evolving color patterns across nearby V1 neurons. Front Cell Neurosci 2023; 17:1249522. [PMID: 37920202 PMCID: PMC10618616 DOI: 10.3389/fncel.2023.1249522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023] Open
Abstract
Whereas studies of the V1 cortex have focused mainly on neural line orientation preference, color inputs are also known to have a strong presence among these neurons. Individual neurons typically respond to multiple colors and nearby neurons have different combinations of preferred color inputs. However, the computations performed by V1 neurons on such color inputs have not been extensively studied. Here we aimed to address this issue by studying how different V1 neurons encode different combinations of inputs composed of four basic colors. We quantified the decoding accuracy of individual neurons from multi-electrode array recordings, comparing multiple individual neurons located within 2 mm along the vertical axis of the V1 cortex of the anesthetized rat. We found essentially all V1 neurons to be good at decoding spatiotemporal patterns of color inputs and they did so by encoding them in different ways. Quantitative analysis showed that even adjacent neurons encoded the specific input patterns differently, suggesting a local cortical circuitry organization which tends to diversify rather than unify the neuronal responses to each given input. Using different pairs of monocolor inputs, we also found that V1 neocortical neurons had a diversified and rich color opponency across the four colors, which was somewhat surprising given the fact that rodent retina express only two different types of opsins. We propose that the processing of color inputs in V1 cortex is extensively composed of multiple independent circuitry components that reflect abstract functionalities resident in the internal cortical processing rather than the raw sensory information per se.
Collapse
Affiliation(s)
| | - Henrik Jörntell
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Etemadi L, Enander JM, Jörntell H. Hippocampal output profoundly impacts the interpretation of tactile input patterns in SI cortical neurons. iScience 2023; 26:106885. [PMID: 37260754 PMCID: PMC10227419 DOI: 10.1016/j.isci.2023.106885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/13/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023] Open
Abstract
Due to continuous state variations in neocortical circuits, individual somatosensory cortex (SI) neurons in vivo display a variety of intracellular responses to the exact same spatiotemporal tactile input pattern. To manipulate the internal cortical state, we here used brief electrical stimulation of the output region of the hippocampus, which preceded the delivery of specific tactile afferent input patterns to digit 2 of the anesthetized rat. We find that hippocampal output had a diversified, remarkably strong impact on the intracellular response types displayed by each neuron in the primary SI to each given tactile input pattern. Qualitatively, this impact was comparable to that previously described for cortical output, which was surprising given the widely assumed specific roles of the hippocampus, such as in cortical memory formation. The findings show that hippocampal output can profoundly impact the state-dependent interpretation of tactile inputs and hence influence perception, potentially with affective and semantic components.
Collapse
Affiliation(s)
- Leila Etemadi
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jonas M.D. Enander
- Center for Social and Affective Neuroscience, Linköping University, Linköping, Sweden
| | - Henrik Jörntell
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Etemadi L, Enander JMD, Jörntell H. Remote cortical perturbation dynamically changes the network solutions to given tactile inputs in neocortical neurons. iScience 2022; 25:103557. [PMID: 34977509 PMCID: PMC8689199 DOI: 10.1016/j.isci.2021.103557] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/18/2021] [Accepted: 12/01/2021] [Indexed: 11/17/2022] Open
Abstract
The neocortex has a globally encompassing network structure, which for each given input constrains the possible combinations of neuronal activations across it. Hence, its network contains solutions. But in addition, the cortex has an ever-changing multidimensional internal state, causing each given input to result in a wide range of specific neuronal activations. Here we use intracellular recordings in somatosensory cortex (SI) neurons of anesthetized rats to show that remote, subthreshold intracortical electrical perturbation can impact such constraints on the responses to a set of spatiotemporal tactile input patterns. Whereas each given input pattern normally induces a wide set of preferred response states, when combined with cortical perturbation response states that did not otherwise occur were induced and consequently made other response states less likely. The findings indicate that the physiological network structure can dynamically change as the state of any given cortical region changes, thereby enabling a rich, multifactorial, perceptual capability. Tactile sensory input patterns evoke multi-structure cortical neuron responses Multi-structure responses are shown to be impacted by remote cortical regions Highly dynamic neuron responses reflects global cortical information integration Perception hence depends on globally distributed activity at the time of input
Collapse
Affiliation(s)
- Leila Etemadi
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, BMC F10 Tornavägen 10, 221 84 Lund, Sweden
| | - Jonas M D Enander
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, BMC F10 Tornavägen 10, 221 84 Lund, Sweden
| | - Henrik Jörntell
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, BMC F10 Tornavägen 10, 221 84 Lund, Sweden
| |
Collapse
|
6
|
Wahlbom A, Mogensen H, Jörntell H. Widely Different Correlation Patterns Between Pairs of Adjacent Thalamic Neurons In vivo. Front Neural Circuits 2021; 15:692923. [PMID: 34276316 PMCID: PMC8278214 DOI: 10.3389/fncir.2021.692923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
We have previously reported different spike firing correlation patterns among pairs of adjacent pyramidal neurons within the same layer of S1 cortex in vivo, which was argued to suggest that acquired synaptic weight modifications would tend to differentiate adjacent cortical neurons despite them having access to near-identical afferent inputs. Here we made simultaneous single-electrode loose patch-clamp recordings from 14 pairs of adjacent neurons in the lateral thalamus of the ketamine-xylazine anesthetized rat in vivo to study the correlation patterns in their spike firing. As the synapses on thalamic neurons are dominated by a high number of low weight cortical inputs, which would be expected to be shared for two adjacent neurons, and as far as thalamic neurons have homogenous membrane physiology and spike generation, they would be expected to have overall similar spike firing and therefore also correlation patterns. However, we find that across a variety of thalamic nuclei the correlation patterns between pairs of adjacent thalamic neurons vary widely. The findings suggest that the connectivity and cellular physiology of the thalamocortical circuitry, in contrast to what would be expected from a straightforward interpretation of corticothalamic maps and uniform intrinsic cellular neurophysiology, has been shaped by learning to the extent that each pair of thalamic neuron has a unique relationship in their spike firing activity.
Collapse
Affiliation(s)
- Anders Wahlbom
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Hannes Mogensen
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Henrik Jörntell
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Norrlid J, Enander JMD, Mogensen H, Jörntell H. Multi-structure Cortical States Deduced From Intracellular Representations of Fixed Tactile Input Patterns. Front Cell Neurosci 2021; 15:677568. [PMID: 34194301 PMCID: PMC8236821 DOI: 10.3389/fncel.2021.677568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/18/2021] [Indexed: 11/13/2022] Open
Abstract
The brain has a never-ending internal activity, whose spatiotemporal evolution interacts with external inputs to constrain their impact on brain activity and thereby how we perceive them. We used reproducible touch-related spatiotemporal sensory inputs and recorded intracellularly from rat (Sprague-Dawley, male) neocortical neurons to characterize this interaction. The synaptic responses, or the summed input of the networks connected to the neuron, varied greatly to repeated presentations of the same tactile input pattern delivered to the tip of digit 2. Surprisingly, however, these responses tended to sort into a set of specific time-evolving response types, unique for each neuron. Further, using a set of eight such tactile input patterns, we found each neuron to exhibit a set of specific response types for each input provided. Response types were not determined by the global cortical state, but instead likely depended on the time-varying state of the specific subnetworks connected to each neuron. The fact that some types of responses recurred indicates that the cortical network had a non-continuous landscape of solutions for these tactile inputs. Therefore, our data suggest that sensory inputs combine with the internal dynamics of the brain networks, thereby causing them to fall into one of the multiple possible perceptual attractor states. The neuron-specific instantiations of response types we observed suggest that the subnetworks connected to each neuron represent different components of those attractor states. Our results indicate that the impact of cortical internal states on external inputs is substantially more richly resolvable than previously shown.
Collapse
Affiliation(s)
- Johanna Norrlid
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Jonas M D Enander
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Hannes Mogensen
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Henrik Jörntell
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|