1
|
Lacagnina AF, Dong TN, Iyer RR, Boesch LF, Khan S, Mohamed MK, Clem RL. Ventral hippocampal interneurons govern extinction and relapse of contextual associations. Cell Rep 2024; 43:114880. [PMID: 39425930 DOI: 10.1016/j.celrep.2024.114880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 08/02/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024] Open
Abstract
Contextual memories are critical for survival but must be extinguished when new conditions render them nonproductive. By most accounts, extinction forms a new memory that competes with the original association for control over behavior, but the underlying circuit mechanisms remain largely enigmatic. Here, we demonstrate that extinction of contextual fear conditioning recruits somatostatin interneurons (SST-INs) in the ventral hippocampus. Correspondingly, real-time activity of SST-INs correlates with transitions between immobility and movement, signaling exit from defensive freezing bouts. Optogenetic manipulation of SST-INs but not parvalbumin interneurons (PV-INs) elicits bidirectional changes in freezing that are specific to the context in which extinction was acquired. Finally, similar effects were obtained following extinction of sucrose-based appetitive conditioning, in which SST-IN inhibition triggers relapse to reward seeking. These data suggest that ventral hippocampal SST-INs play a fundamental role in extinction that is independent of affective valence and may be related to their disruption of spontaneous emotional responses.
Collapse
Affiliation(s)
- Anthony F Lacagnina
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tri N Dong
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rasika R Iyer
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leonie F Boesch
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saqib Khan
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mazen K Mohamed
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roger L Clem
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
2
|
Potter CT, Bassi CD, Runyan CA. Simultaneous interneuron labeling reveals cell type-specific, population-level interactions in cortex. iScience 2024; 27:110736. [PMID: 39280622 PMCID: PMC11399611 DOI: 10.1016/j.isci.2024.110736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/28/2024] [Accepted: 08/12/2024] [Indexed: 09/18/2024] Open
Abstract
Cortical interneurons shape network activity in cell type-specific ways, and interact with other cell types. These interactions are understudied, as current methods typically restrict in vivo labeling to one neuron type. Although post-hoc identification of many cell types has been accomplished, the method is not available to many labs. We present a method to distinguish two red fluorophores in vivo, allowing imaging of activity in somatostatin (SOM), parvalbumin (PV), and the rest of the neural population in mouse cortex. We compared population events in PV and SOM neurons and observed that local network states reflected the ratio of SOM to PV neuron activity, demonstrating the importance of simultaneous labeling to explain dynamics. Activity became sparser and less correlated when the ratio between SOM and PV activity was high. Our simple method can be flexibly applied to study interactions among any combination of distinct cell type populations across brain areas.
Collapse
Affiliation(s)
- Christian T. Potter
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Constanza D. Bassi
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Caroline A. Runyan
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
3
|
Machold R, Rudy B. Genetic approaches to elucidating cortical and hippocampal GABAergic interneuron diversity. Front Cell Neurosci 2024; 18:1414955. [PMID: 39113758 PMCID: PMC11303334 DOI: 10.3389/fncel.2024.1414955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
GABAergic interneurons (INs) in the mammalian forebrain represent a diverse population of cells that provide specialized forms of local inhibition to regulate neural circuit activity. Over the last few decades, the development of a palette of genetic tools along with the generation of single-cell transcriptomic data has begun to reveal the molecular basis of IN diversity, thereby providing deep insights into how different IN subtypes function in the forebrain. In this review, we outline the emerging picture of cortical and hippocampal IN speciation as defined by transcriptomics and developmental origin and summarize the genetic strategies that have been utilized to target specific IN subtypes, along with the technical considerations inherent to each approach. Collectively, these methods have greatly facilitated our understanding of how IN subtypes regulate forebrain circuitry via cell type and compartment-specific inhibition and thus have illuminated a path toward potential therapeutic interventions for a variety of neurocognitive disorders.
Collapse
Affiliation(s)
- Robert Machold
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Bernardo Rudy
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
4
|
Palicz R, Pater B, Truschow P, Witte M, Staiger JF. Intersectional strategy to study cortical inhibitory parvalbumin-expressing interneurons. Sci Rep 2024; 14:2829. [PMID: 38310185 PMCID: PMC10838283 DOI: 10.1038/s41598-024-52901-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/24/2024] [Indexed: 02/05/2024] Open
Abstract
Parvalbumin-expressing (PV) interneurons are key neuronal elements to a global excitatory-inhibitory balance in normal cortical functioning. To better understand the circuit functions of PV interneurons, reliable animal models are needed. This study investigated the sensitivity and specificity of the most frequently used PV-Cre/tdTomato mouse line in this regard. The colocalization of the transgene (tdTomato) with the parvalbumin protein, with GAD1 (a conclusive inhibitory cell marker) and Vglut1 (a conclusive excitatory cell marker) as well as with a marker for perineuronal nets (WFA) was assessed and a substantial proportion of layer 5 PV neurons was found to be excitatory and not inhibitory in the PV-Cre/tdTomato mouse. The intersectional transgenic mouse line Vgat-Cre/PV-Flp/tdTomato provided a solution, since no colocalization of tdTomato with the Vglut1 probe was found there. In conclusion, the Vgat-Cre/PV-Flp/tdTomato mouse line seems to be a more reliable animal model for functional studies of GABAergic PV interneurons.
Collapse
Affiliation(s)
- Rebeka Palicz
- Center Anatomy, Institute for Neuroanatomy, University of Göttingen, Göttingen, Germany.
| | - Bettina Pater
- Center Anatomy, Institute for Neuroanatomy, University of Göttingen, Göttingen, Germany
| | - Pavel Truschow
- Center Anatomy, Institute for Neuroanatomy, University of Göttingen, Göttingen, Germany
| | - Mirko Witte
- Center Anatomy, Institute for Neuroanatomy, University of Göttingen, Göttingen, Germany
| | - Jochen F Staiger
- Center Anatomy, Institute for Neuroanatomy, University of Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Banks E, Gutekunst CA, Vargish GA, Eaton A, Pelkey KA, McBain CJ, Zheng JQ, Oláh VJ, Rowan MJM. An enhancer-AAV approach selectively targeting dentate granule cells of the mouse hippocampus. CELL REPORTS METHODS 2024; 4:100684. [PMID: 38211592 PMCID: PMC10831952 DOI: 10.1016/j.crmeth.2023.100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/29/2023] [Accepted: 12/13/2023] [Indexed: 01/13/2024]
Abstract
The mammalian brain contains a diverse array of cell types, including dozens of neuronal subtypes with distinct anatomical and functional characteristics. The brain leverages these neuron-type specializations to perform diverse circuit operations and thus execute different behaviors properly. Through the use of Cre lines, access to specific neuron types has improved over past decades. Despite their extraordinary utility, development and cross-breeding of Cre lines is time consuming and expensive, presenting a significant barrier to entry for investigators. Furthermore, cell-based therapeutics developed in Cre mice are not clinically translatable. Recently, several adeno-associated virus (AAV) vectors utilizing neuron-type-specific regulatory transcriptional sequences (enhancer-AAVs) were developed that overcome these limitations. Using a publicly available RNA sequencing (RNA-seq) dataset, we evaluated the potential of several candidate enhancers for neuron-type-specific targeting in the hippocampus. Here, we demonstrate that a previously identified enhancer-AAV selectively targets dentate granule cells over other excitatory neuron types in the hippocampus of wild-type adult mice.
Collapse
Affiliation(s)
- Emmie Banks
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; GDBBS Graduate Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Claire-Anne Gutekunst
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Geoffrey A Vargish
- Section on Cellular and Synaptic Physiology, NICHD - Eunice Kennedy Shriver National Institute of Child Health, Bethesda, MD, USA
| | - Anna Eaton
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30322, USA; Human Development, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kenneth A Pelkey
- Section on Cellular and Synaptic Physiology, NICHD - Eunice Kennedy Shriver National Institute of Child Health, Bethesda, MD, USA
| | - Chris J McBain
- Section on Cellular and Synaptic Physiology, NICHD - Eunice Kennedy Shriver National Institute of Child Health, Bethesda, MD, USA
| | - James Q Zheng
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Viktor Janos Oláh
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Matthew J M Rowan
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA; Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
6
|
Lacagnina AF, Dong TN, Iyer RR, Khan S, Mohamed MK, Clem RL. Ventral hippocampal interneurons govern extinction and relapse of contextual associations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.568835. [PMID: 38077077 PMCID: PMC10705382 DOI: 10.1101/2023.11.28.568835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Contextual associations are critical for survival but must be extinguished when new conditions render them nonproductive. By most accounts, extinction forms a new memory that competes with the original association for control over behavior, but the mechanisms underlying this competition remain largely enigmatic. Here we find the retrieval of contextual fear conditioning and extinction yield contrasting patterns of activity in prefrontal cortex and ventral hippocampus. Within ventral CA1, activation of somatostatin-expressing interneurons (SST-INs) occurs preferentially during extinction retrieval and correlates with differences in input synaptic transmission. Optogenetic manipulation of these cells but not parvalbumin interneurons (PV-INs) elicits bidirectional changes in fear expression following extinction, and the ability of SST-INs to gate fear is specific to the context in which extinction was acquired. A similar pattern of results was obtained following reward-based extinction. These data show that ventral hippocampal SST-INs are critical for extinguishing prior associations and thereby gate relapse of both aversive and appetitive responses.
Collapse
|
7
|
Hostetler RE, Hu H, Agmon A. Genetically Defined Subtypes of Somatostatin-Containing Cortical Interneurons. eNeuro 2023; 10:ENEURO.0204-23.2023. [PMID: 37463742 PMCID: PMC10414551 DOI: 10.1523/eneuro.0204-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023] Open
Abstract
Inhibitory interneurons play a crucial role in proper development and function of the mammalian cerebral cortex. Of the different inhibitory subclasses, dendritic-targeting, somatostatin-containing (SOM) interneurons may be the most diverse. Earlier studies used GFP-expressing and recombinase-expressing mouse lines to characterize genetically defined subtypes of SOM interneurons by morphologic, electrophysiological, and neurochemical properties. More recently, large-scale studies classified SOM interneurons into 13 morpho-electric transcriptomic (MET) types. It remains unclear, however, how these various classification schemes relate to each other, and experimental access to MET types has been limited by the scarcity of specific mouse driver lines. To address these issues, we crossed Flp and Cre driver lines with a dual-color intersectional reporter, allowing experimental access to several combinatorially defined SOM subsets. Brains from adult mice of both sexes were retrogradely dye labeled from the pial surface to identify layer 1-projecting neurons and immunostained against several marker proteins, revealing correlations between genetic label, axonal target, and marker protein expression in the same neurons. Lastly, using whole-cell recordings ex vivo, we analyzed and compared electrophysiological properties between different intersectional subsets. We identified two layer 1-targeting subtypes with nonoverlapping marker protein expression and electrophysiological properties, which, together with a previously characterized layer 4-targeting subtype, account for >50% of all layer 5 SOM cells and >40% of all SOM cells, and appear to map onto 5 of the 13 MET types. Genetic access to these subtypes will allow researchers to determine their synaptic inputs and outputs and uncover their roles in cortical computations and animal behavior.
Collapse
Affiliation(s)
- Rachel E Hostetler
- Department of Neuroscience, West Virginia University Rockefeller Neuroscience Institute, Morgantown, WV 26506
| | - Hang Hu
- Department of Neuroscience, West Virginia University Rockefeller Neuroscience Institute, Morgantown, WV 26506
| | - Ariel Agmon
- Department of Neuroscience, West Virginia University Rockefeller Neuroscience Institute, Morgantown, WV 26506
| |
Collapse
|
8
|
Banks E, Gutekunst CA, Vargish GA, Eaton A, Pelkey KA, McBain CJ, Zheng JQ, Oláh VJ, Rowan MJ. A novel enhancer-AAV approach selectively targeting dentate granule cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.03.527045. [PMID: 37214904 PMCID: PMC10197561 DOI: 10.1101/2023.02.03.527045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The mammalian brain contains the most diverse array of cell types of any organ, including dozens of neuronal subtypes with distinct anatomical and functional characteristics. The brain leverages these neuron-type-specializations to perform diverse circuit operations and thus execute different behaviors properly. Through the use of Cre lines, access to specific neuron types has steadily improved over past decades. Despite their extraordinary utility, development and cross-breeding of Cre lines is time-consuming and expensive, presenting a significant barrier to entry for many investigators. Furthermore, cell-based therapeutics developed in Cre mice are not clinically translatable. Recently, several AAV vectors utilizing neuron-type-specific regulatory transcriptional sequences (enhancer-AAVs) were developed which overcome these limitations. Using a publicly available RNAseq dataset, we evaluated the potential of several candidate enhancers for neuron-type-specific targeting in the hippocampus. Here we identified a promising enhancer-AAV for targeting dentate granule cells and validated its selectivity in wild-type adult mice.
Collapse
|
9
|
He H, Guan H, McHugh TJ. The expanded circuitry of hippocampal ripples and replay. Neurosci Res 2022; 189:13-19. [PMID: 36572253 DOI: 10.1016/j.neures.2022.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/01/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
The place cells and well-defined oscillatory population rhythms of the rodent hippocampus have served as a powerful model system in linking cells and circuits to memory function. While the initial three decades of place cell research primarily focused on the activity of neurons during exploration, the last twenty-five years have seen growing interest in the physiology of the hippocampus at rest. During slow-wave sleep and quiet wakefulness the hippocampus exhibits sharp-wave ripples (SWRs), short high-frequency, high-amplitude oscillations, that organize the reactivation or 'replay' of sequences of place cells, and interventions that disrupt SWRs impair learning. While the canonical model of SWRs generation have emphasized CA3 input to CA1 as the source of excitatory drive, recent work suggests there are multiple circuits, including the CA2 region, that can both influence, generate and organize SWRs, both from the oscillatory and information content perspectives in a task and state-dependent manner. This extended circuitry and its function must be considered for a true understanding of the role of the hippocampus in off-line processes such as planning and consolidation.
Collapse
Affiliation(s)
- Hongshen He
- Laboratory for Circuit & Behavioral Physiology, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, Japan
| | - Hefei Guan
- Laboratory for Circuit & Behavioral Physiology, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, Japan
| | - Thomas J McHugh
- Laboratory for Circuit & Behavioral Physiology, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-shi, Saitama, Japan.
| |
Collapse
|
10
|
Honoré E, Lacaille JC. Object location learning in mice requires hippocampal somatostatin interneuron activity and is facilitated by mTORC1-mediated long-term potentiation of their excitatory synapses. Mol Brain 2022; 15:101. [PMID: 36544185 PMCID: PMC9769025 DOI: 10.1186/s13041-022-00988-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
Hippocampus-dependent learning and memory originate from long-term synaptic changes in hippocampal networks. The activity of CA1 somatostatin interneurons (SOM-INs) during aversive stimulation is necessary for contextual fear memory formation. In addition, mTORC1-dependent long-term potentiation (LTP) of SOM-IN excitatory input synapses from local pyramidal cells (PC-SOM synapses) contributes to the consolidation of fear motivated spatial and contextual memories. Although, it remains unknown if SOM-IN activity and LTP are necessary and sufficient for novelty motivated spatial episodic memory such as the object location memory, and if so when it is required. Here we use optogenetics to examine whether dorsal CA1 SOM-IN activity and LTP are sufficient to regulate object location memory. First, we found that silencing SOM-INs during object location learning impaired memory. Second, optogenetic induction of PC-SOM synapse LTP (TBSopto) given 30 min before object location training, resulted in facilitation of memory. However, in mice with mTORC1 pathway genetically inactivated in SOM-INs, which blocks PC-SOM synapse LTP, TBSopto failed to facilitate object location memory. Our results indicate that SOM-IN activity is necessary during object location learning and that optogenetic induction of PC-SOM synapse LTP is sufficient to facilitate consolidation of object location memory. Thus, hippocampal somatostatin interneuron activity is required for object location learning, a hippocampus-dependent form of novelty motivated spatial learning that is facilitated by plasticity at PC-SOM synapses.
Collapse
Affiliation(s)
- Eve Honoré
- grid.14848.310000 0001 2292 3357Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning (CIRCA) and Research Group on Neural Signaling and Circuitry (GRSNC), Université de Montréal, P.O. Box 6128, Station Downtown, QC H3C 3J7 Montreal, Canada
| | - Jean-Claude Lacaille
- grid.14848.310000 0001 2292 3357Department of Neurosciences, Center for Interdisciplinary Research on Brain and Learning (CIRCA) and Research Group on Neural Signaling and Circuitry (GRSNC), Université de Montréal, P.O. Box 6128, Station Downtown, QC H3C 3J7 Montreal, Canada
| |
Collapse
|
11
|
Royero P, Quatraccioni A, Früngel R, Silva MH, Bast A, Ulas T, Beyer M, Opitz T, Schultze JL, Graham ME, Oberlaender M, Becker A, Schoch S, Beck H. Circuit-selective cell-autonomous regulation of inhibition in pyramidal neurons by Ste20-like kinase. Cell Rep 2022; 41:111757. [PMID: 36476865 PMCID: PMC9756112 DOI: 10.1016/j.celrep.2022.111757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 10/18/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
Maintaining an appropriate balance between excitation and inhibition is critical for neuronal information processing. Cortical neurons can cell-autonomously adjust the inhibition they receive to individual levels of excitatory input, but the underlying mechanisms are unclear. We describe that Ste20-like kinase (SLK) mediates cell-autonomous regulation of excitation-inhibition balance in the thalamocortical feedforward circuit, but not in the feedback circuit. This effect is due to regulation of inhibition originating from parvalbumin-expressing interneurons, while inhibition via somatostatin-expressing interneurons is unaffected. Computational modeling shows that this mechanism promotes stable excitatory-inhibitory ratios across pyramidal cells and ensures robust and sparse coding. Patch-clamp RNA sequencing yields genes differentially regulated by SLK knockdown, as well as genes associated with excitation-inhibition balance participating in transsynaptic communication and cytoskeletal dynamics. These data identify a mechanism for cell-autonomous regulation of a specific inhibitory circuit that is critical to ensure that a majority of cortical pyramidal cells participate in information coding.
Collapse
Affiliation(s)
- Pedro Royero
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, University of Bonn Medical Center, Venusberg-Campus 1, 53105 Bonn, Germany,International Max Planck Research School for Brain and Behavior, Bonn, Germany
| | - Anne Quatraccioni
- Department of Neuropathology, University Hospital Bonn, Section for Translational Epilepsy Research, 53127 Bonn, Germany,International Max Planck Research School for Brain and Behavior, Bonn, Germany
| | - Rieke Früngel
- In Silico Brain Sciences Group, Max-Planck Institute for Neurobiology of Behavior – Caesar, Bonn, Germany,International Max Planck Research School for Brain and Behavior, Bonn, Germany
| | - Mariella Hurtado Silva
- Synapse Proteomics, Children’s Medical Research Institute, The University of Sydney, Sydney, NSW, Australia
| | - Arco Bast
- In Silico Brain Sciences Group, Max-Planck Institute for Neurobiology of Behavior – Caesar, Bonn, Germany,International Max Planck Research School for Brain and Behavior, Bonn, Germany
| | - Thomas Ulas
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany,PRECISE Platform for Single Cell Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn, Bonn, Germany,Genomics & Immunoregulation, LIMES Institute, University of Bonn, Bonn, Germany
| | - Marc Beyer
- PRECISE Platform for Single Cell Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn, Bonn, Germany,Immunogenomics & Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Bonn, Germany
| | - Thoralf Opitz
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, University of Bonn Medical Center, Venusberg-Campus 1, 53105 Bonn, Germany
| | - Joachim L. Schultze
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V., Bonn, Germany,PRECISE Platform for Single Cell Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) e.V. and University of Bonn, Bonn, Germany,Genomics & Immunoregulation, LIMES Institute, University of Bonn, Bonn, Germany
| | - Mark E. Graham
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, University of Bonn Medical Center, Venusberg-Campus 1, 53105 Bonn, Germany
| | - Marcel Oberlaender
- In Silico Brain Sciences Group, Max-Planck Institute for Neurobiology of Behavior – Caesar, Bonn, Germany
| | - Albert Becker
- Department of Neuropathology, University Hospital Bonn, Section for Translational Epilepsy Research, 53127 Bonn, Germany
| | - Susanne Schoch
- Department of Neuropathology, University Hospital Bonn, Section for Translational Epilepsy Research, 53127 Bonn, Germany
| | - Heinz Beck
- Institute of Experimental Epileptology and Cognition Research, University of Bonn, University of Bonn Medical Center, Venusberg-Campus 1, 53105 Bonn, Germany,Deutsches Zentrum für Neurodegenerative Erkrankungen e.V., Bonn, Germany,Corresponding author
| |
Collapse
|
12
|
Chen MX, Oh YS, Kim Y. S100A10 and its binding partners in depression and antidepressant actions. Front Mol Neurosci 2022; 15:953066. [PMID: 36046712 PMCID: PMC9423026 DOI: 10.3389/fnmol.2022.953066] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
S100A10 (p11) is an emerging player in the neurobiology of depression and antidepressant actions. p11 was initially thought to be a modulator of serotonin receptor (5-HTR) trafficking and serotonergic transmission, though newly identified binding partners of p11 and neurobiological studies of these proteins have shed light on multifunctional roles for p11 in the regulation of glutamatergic transmission, calcium signaling and nuclear events related to chromatin remodeling, histone modification, and gene transcription. This review article focuses on direct binding partners of p11 in the brain including 5-HTRs, mGluR5, annexin A2, Ahnak, Smarca3, and Supt6h, as well as their roles in neuronal function, particularly in the context of depressive-like behavior as well as behavioral effects of antidepressant drug treatments in mice. In addition, we discuss neurobiological insights from recently uncovered p11 pathways in multiple types of neurons and non-neuronal cells and cast major remaining questions for future studies.
Collapse
Affiliation(s)
- Michelle X. Chen
- University of Iowa Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa, IA, United States
| | - Yong-Seok Oh
- Department of Brain Sciences, Daegu-Gyeongbuk Institute of Science and Technology (DGIST), Daegu, South Korea
| | - Yong Kim
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
- Brain Health Institute, Rutgers University, Piscataway, NJ, United States
- *Correspondence: Yong Kim
| |
Collapse
|
13
|
Anstötz M, Lee SK, Maccaferri G. Glutamate released by Cajal-Retzius cells impacts specific hippocampal circuits and behaviors. Cell Rep 2022; 39:110822. [PMID: 35584670 PMCID: PMC9190441 DOI: 10.1016/j.celrep.2022.110822] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/23/2022] [Accepted: 04/23/2022] [Indexed: 12/31/2022] Open
Abstract
The impact of Cajal-Retzius cells on the regulation of hippocampal circuits and related behaviors is unresolved. Here, we directly address this issue by impairing the glutamatergic output of Cajal-Retzius cells with the conditional ablation of vGluT2, which is their main vesicular glutamate transporter. Although two distinct conditional knockout lines do not reveal major alterations in hippocampal-layer organization and dendritic length of principal neurons or GABAergic cells, we find parallel deficits in specific hippocampal-dependent behaviors and in their putative underlying microcircuits. First, conditional knockout animals show increased innate anxiety and decreased feedforward GABAergic inhibition on dentate gyrus granule cells. Second, we observe impaired spatial memory processing, which is associated with decreased spine density and reduced AMPA/NMDA ratio of postsynaptic responses at the perforant- and entorhino-hippocampal pathways. We conclude that glutamate synaptically released by Cajal-Retzius cells is critical for the regulation of hippocampal microcircuits and specific types of behaviors. Anstötz et al. report that postnatal hippocampal Cajal-Retzius cells use vGluT2 as their main glutamate vesicular transporter. Conditional inactivation of vGluT2 in mice reveals both behavioral and network alterations. The observed results indicate the involvement of Cajal-Retzius cells in the regulation of innate anxiety/spatial memory and in potentially related neuronal circuits.
Collapse
Affiliation(s)
- Max Anstötz
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Düsseldorf 40225, Germany.
| | - Sun Kyong Lee
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Gianmaria Maccaferri
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| |
Collapse
|
14
|
Anstötz M, Fiske MP, Maccaferri G. Impaired KCC2 Function Triggers Interictal-Like Activity Driven by Parvalbumin-Expressing Interneurons in the Isolated Subiculum In Vitro. Cereb Cortex 2021; 31:4681-4698. [PMID: 33987649 PMCID: PMC8408463 DOI: 10.1093/cercor/bhab115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 12/30/2022] Open
Abstract
The decreased expression of the KCC2 membrane transporter in subicular neurons has been proposed to be a key epileptogenic event in temporal lobe epilepsy (TLE). Here, we have addressed this question in a reduced model in vitro and have studied the properties and mechanistic involvement of a major class of interneurons, that is, parvalbumin-expressing cells (PVs). When exposed to the KCC2 blocker VU0463271, mouse subicular slices generated hypersynchronous discharges that could be recorded electrophysiologically and visualized as clusters of co-active neurons with calcium imaging. The pharmacological profile of these events resembled interictal-like discharges in human epileptic tissue because of their dependence on GABAA and AMPA receptors. On average, PVs fired before pyramidal cells (PCs) and the area of co-active clusters was comparable to the individual axonal spread of PVs, suggesting their mechanistic involvement. Optogenetic experiments confirmed this hypothesis, as the flash-stimulation of PVs in the presence of VU0463271 initiated interictal-like discharges, whereas their optogenetic silencing suppressed network hyper-excitability. We conclude that reduced KCC2 activity in subicular networks in vitro is sufficient to induce interictal-like activity via altered GABAergic signaling from PVs without other epilepsy-related changes. This conclusion supports an epileptogenic role for impaired subicular KCC2 function during the progression of TLE.
Collapse
Affiliation(s)
- Max Anstötz
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Michael Patrick Fiske
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Gianmaria Maccaferri
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
15
|
Heinrich R, Hussein W, Berlin S. Photo-transformable genetically-encoded optical probes for functional highlighting in vivo. J Neurosci Methods 2021; 355:109129. [PMID: 33711357 DOI: 10.1016/j.jneumeth.2021.109129] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022]
Abstract
Studying the brain requires knowledge about both structure (i.e., connectome) and function of its constituents (neurons and glia alike). This need has prompted the development of novel tools and techniques, in particular optical techniques to examine cells remotely. Early works (1900's) led to the development of novel cell-staining techniques that, when combined with the use of a very simple light microscope, visualized individual neurons and their subcellular compartments in fixed tissues. Today, highlighting of structure and function can be performed on live cells, notably in vivo, owing to discovery of GFP and subsequent development of genetically encoded fluorescent optical tools. In this review, we focus our attention on a subset of optical biosensors, namely probes whose emission can be modified by light. We designate them photo-transformable genetically encoded probes. The family of photo-transformable probes embraces current probes that undergo photoactivation (PA), photoconversion (PC) or photoswitching (PS). We argue that these are particularly suited for studying multiple features of neurons, such as structure, connectivity and function concomitantly, for functional highlighting of neurons in vivo.
Collapse
Affiliation(s)
- Ronit Heinrich
- Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Wessal Hussein
- Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shai Berlin
- Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|