1
|
Bilodeau A, Michaud-Gagnon A, Chabbert J, Turcotte B, Heine J, Durand A, Lavoie-Cardinal F. Development of AI-assisted microscopy frameworks through realistic simulation with pySTED. NAT MACH INTELL 2024; 6:1197-1215. [PMID: 39440349 PMCID: PMC11491398 DOI: 10.1038/s42256-024-00903-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/20/2024] [Indexed: 10/25/2024]
Abstract
The integration of artificial intelligence into microscopy systems significantly enhances performance, optimizing both image acquisition and analysis phases. Development of artificial intelligence-assisted super-resolution microscopy is often limited by access to large biological datasets, as well as by difficulties to benchmark and compare approaches on heterogeneous samples. We demonstrate the benefits of a realistic stimulated emission depletion microscopy simulation platform, pySTED, for the development and deployment of artificial intelligence strategies for super-resolution microscopy. pySTED integrates theoretically and empirically validated models for photobleaching and point spread function generation in stimulated emission depletion microscopy, as well as simulating realistic point-scanning dynamics and using a deep learning model to replicate the underlying structures of real images. This simulation environment can be used for data augmentation to train deep neural networks, for the development of online optimization strategies and to train reinforcement learning models. Using pySTED as a training environment allows the reinforcement learning models to bridge the gap between simulation and reality, as showcased by its successful deployment on a real microscope system without fine tuning.
Collapse
Affiliation(s)
- Anthony Bilodeau
- CERVO Brain Research Center, Québec, Québec Canada
- Institute for Intelligence and Data, Québec, Québec Canada
| | - Albert Michaud-Gagnon
- CERVO Brain Research Center, Québec, Québec Canada
- Institute for Intelligence and Data, Québec, Québec Canada
| | | | - Benoit Turcotte
- CERVO Brain Research Center, Québec, Québec Canada
- Institute for Intelligence and Data, Québec, Québec Canada
| | - Jörn Heine
- Abberior Instruments GmbH, Göttingen, Germany
| | - Audrey Durand
- Institute for Intelligence and Data, Québec, Québec Canada
- Department of Computer Science and Software Engineering, Université Laval, Québec, Québec Canada
- Department of Electrical and Computer Engineering, Université Laval, Québec, Québec Canada
- Canada CIFAR AI Chair, Mila, Québec Canada
| | - Flavie Lavoie-Cardinal
- CERVO Brain Research Center, Québec, Québec Canada
- Institute for Intelligence and Data, Québec, Québec Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec, Québec Canada
| |
Collapse
|
2
|
Bär J, Fanutza T, Reimann CC, Seipold L, Grohe M, Bolter JR, Delfs F, Bucher M, Gee CE, Schweizer M, Saftig P, Mikhaylova M. Non-canonical function of ADAM10 in presynaptic plasticity. Cell Mol Life Sci 2024; 81:342. [PMID: 39123091 PMCID: PMC11335265 DOI: 10.1007/s00018-024-05327-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 08/12/2024]
Abstract
A Disintegrin And Metalloproteinase 10 (ADAM10) plays a pivotal role in shaping neuronal networks by orchestrating the activity of numerous membrane proteins through the shedding of their extracellular domains. Despite its significance in the brain, the specific cellular localization of ADAM10 remains not well understood due to a lack of appropriate tools. Here, using a specific ADAM10 antibody suitable for immunostainings, we observed that ADAM10 is localized to presynapses and especially enriched at presynaptic vesicles of mossy fiber (MF)-CA3 synapses in the hippocampus. These synapses undergo pronounced frequency facilitation of neurotransmitter release, a process that play critical roles in information transfer and neural computation. We demonstrate, that in conditional ADAM10 knockout mice the ability of MF synapses to undergo this type of synaptic plasticity is greatly reduced. The loss of facilitation depends on the cytosolic domain of ADAM10 and association with the calcium sensor synaptotagmin 7 rather than ADAM10's proteolytic activity. Our findings unveil a new role of ADAM10 in the regulation of synaptic vesicle exocytosis.
Collapse
Affiliation(s)
- Julia Bär
- AG Optobiology, Institute of Biology, Humboldt Universität Zu Berlin, 10115, Berlin, Germany
- Guest Group, "Neuronal Protein Transport", Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Tomas Fanutza
- AG Optobiology, Institute of Biology, Humboldt Universität Zu Berlin, 10115, Berlin, Germany
- Guest Group, "Neuronal Protein Transport", Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Christopher C Reimann
- Guest Group, "Neuronal Protein Transport", Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Lisa Seipold
- Biochemisches Institut, Christian Albrechts-Universität Kiel, 24098, Kiel, Germany
| | - Maja Grohe
- Biochemisches Institut, Christian Albrechts-Universität Kiel, 24098, Kiel, Germany
| | - Janike Rabea Bolter
- AG Optobiology, Institute of Biology, Humboldt Universität Zu Berlin, 10115, Berlin, Germany
| | - Flemming Delfs
- Guest Group, "Neuronal Protein Transport", Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Michael Bucher
- Guest Group, "Neuronal Protein Transport", Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Christine E Gee
- Department of Synaptic Physiology, Center for Molecular Neurobiology, ZMNH, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany
| | - Michaela Schweizer
- Morphology and Electron Microscopy, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, ZMNH, 20251, Hamburg, Germany
| | - Paul Saftig
- Biochemisches Institut, Christian Albrechts-Universität Kiel, 24098, Kiel, Germany.
| | - Marina Mikhaylova
- AG Optobiology, Institute of Biology, Humboldt Universität Zu Berlin, 10115, Berlin, Germany.
- Guest Group, "Neuronal Protein Transport", Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251, Hamburg, Germany.
| |
Collapse
|
3
|
Unterauer EM, Shetab Boushehri S, Jevdokimenko K, Masullo LA, Ganji M, Sograte-Idrissi S, Kowalewski R, Strauss S, Reinhardt SCM, Perovic A, Marr C, Opazo F, Fornasiero EF, Jungmann R. Spatial proteomics in neurons at single-protein resolution. Cell 2024; 187:1785-1800.e16. [PMID: 38552614 DOI: 10.1016/j.cell.2024.02.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/28/2023] [Accepted: 02/29/2024] [Indexed: 04/02/2024]
Abstract
To understand biological processes, it is necessary to reveal the molecular heterogeneity of cells by gaining access to the location and interaction of all biomolecules. Significant advances were achieved by super-resolution microscopy, but such methods are still far from reaching the multiplexing capacity of proteomics. Here, we introduce secondary label-based unlimited multiplexed DNA-PAINT (SUM-PAINT), a high-throughput imaging method that is capable of achieving virtually unlimited multiplexing at better than 15 nm resolution. Using SUM-PAINT, we generated 30-plex single-molecule resolved datasets in neurons and adapted omics-inspired analysis for data exploration. This allowed us to reveal the complexity of synaptic heterogeneity, leading to the discovery of a distinct synapse type. We not only provide a resource for researchers, but also an integrated acquisition and analysis workflow for comprehensive spatial proteomics at single-protein resolution.
Collapse
Affiliation(s)
- Eduard M Unterauer
- Max Planck Institute of Biochemistry, Planegg, Germany; Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sayedali Shetab Boushehri
- Institute of AI for Health, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Data & Analytics, Roche Pharma Research and Early Development, Roche Innovation Center Munich, Munich, Germany; Department of Mathematics, Technical University of Munich, Munich, Germany
| | - Kristina Jevdokimenko
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Mahipal Ganji
- Max Planck Institute of Biochemistry, Planegg, Germany; Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | - Shama Sograte-Idrissi
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany; Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Rafal Kowalewski
- Max Planck Institute of Biochemistry, Planegg, Germany; Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sebastian Strauss
- Max Planck Institute of Biochemistry, Planegg, Germany; Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, Munich, Germany
| | - Susanne C M Reinhardt
- Max Planck Institute of Biochemistry, Planegg, Germany; Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, Munich, Germany
| | - Ana Perovic
- Max Planck Institute of Biochemistry, Planegg, Germany
| | - Carsten Marr
- Institute of AI for Health, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Department of Mathematics, Technical University of Munich, Munich, Germany
| | - Felipe Opazo
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany; Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany; NanoTag Biotechnologies GmbH, Göttingen, Germany
| | - Eugenio F Fornasiero
- Institute of Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany; Department of Life Sciences, University of Trieste, Trieste, Italy.
| | - Ralf Jungmann
- Max Planck Institute of Biochemistry, Planegg, Germany; Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität, Munich, Germany.
| |
Collapse
|
4
|
Damstra HGJ, Passmore JB, Serweta AK, Koutlas I, Burute M, Meye FJ, Akhmanova A, Kapitein LC. GelMap: intrinsic calibration and deformation mapping for expansion microscopy. Nat Methods 2023; 20:1573-1580. [PMID: 37723243 PMCID: PMC10555834 DOI: 10.1038/s41592-023-02001-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/04/2023] [Indexed: 09/20/2023]
Abstract
Expansion microscopy (ExM) is a powerful technique to overcome the diffraction limit of light microscopy by physically expanding biological specimen in three dimensions. Nonetheless, using ExM for quantitative or diagnostic applications requires robust quality control methods to precisely determine expansion factors and to map deformations due to anisotropic expansion. Here we present GelMap, a flexible workflow to introduce a fluorescent grid into pre-expanded hydrogels that scales with expansion and reports deformations. We demonstrate that GelMap can be used to precisely determine the local expansion factor and to correct for deformations without the use of cellular reference structures or pre-expansion ground-truth images. Moreover, we show that GelMap aids sample navigation for correlative uses of expansion microscopy. Finally, we show that GelMap is compatible with expansion of tissue and can be readily implemented as a quality control step into existing ExM workflows.
Collapse
Affiliation(s)
- Hugo G J Damstra
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Josiah B Passmore
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Utrecht, The Netherlands
| | - Albert K Serweta
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ioannis Koutlas
- Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Mithila Burute
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Frank J Meye
- Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Lukas C Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
5
|
Doney E, Bernatchez R, Clavet-Fournier V, Dudek KA, Dion-Albert L, Lavoie-Cardinal F, Menard C. Characterizing the blood-brain barrier and gut barrier with super-resolution imaging: opportunities and challenges. NEUROPHOTONICS 2023; 10:044410. [PMID: 37799760 PMCID: PMC10548114 DOI: 10.1117/1.nph.10.4.044410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023]
Abstract
Brain and gut barriers have been receiving increasing attention in health and diseases including in psychiatry. Recent studies have highlighted changes in the blood-brain barrier and gut barrier structural properties, notably a loss of tight junctions, leading to hyperpermeability, passage of inflammatory mediators, stress vulnerability, and the development of depressive behaviors. To decipher the cellular processes actively contributing to brain and gut barrier function in health and disease, scientists can take advantage of neurophotonic tools and recent advances in super-resolution microscopy techniques to complement traditional imaging approaches like confocal and electron microscopy. Here, we summarize the challenges, pros, and cons of these innovative approaches, hoping that a growing number of scientists will integrate them in their study design exploring barrier-related properties and mechanisms.
Collapse
Affiliation(s)
- Ellen Doney
- Université Laval, Department of Psychiatry and Neuroscience, Faculty of Medicine, Quebec City, Québec, Canada
- CERVO Brain Research Center, Québec City, Québec, Canada
| | - Renaud Bernatchez
- CERVO Brain Research Center, Québec City, Québec, Canada
- Institute for Intelligence and Data, Québec City, Québec, Canada
| | | | - Katarzyna A. Dudek
- Université Laval, Department of Psychiatry and Neuroscience, Faculty of Medicine, Quebec City, Québec, Canada
- CERVO Brain Research Center, Québec City, Québec, Canada
| | - Laurence Dion-Albert
- Université Laval, Department of Psychiatry and Neuroscience, Faculty of Medicine, Quebec City, Québec, Canada
- CERVO Brain Research Center, Québec City, Québec, Canada
| | - Flavie Lavoie-Cardinal
- Université Laval, Department of Psychiatry and Neuroscience, Faculty of Medicine, Quebec City, Québec, Canada
- CERVO Brain Research Center, Québec City, Québec, Canada
- Institute for Intelligence and Data, Québec City, Québec, Canada
| | - Caroline Menard
- Université Laval, Department of Psychiatry and Neuroscience, Faculty of Medicine, Quebec City, Québec, Canada
- CERVO Brain Research Center, Québec City, Québec, Canada
| |
Collapse
|
6
|
Bouchard C, Wiesner T, Deschênes A, Bilodeau A, Turcotte B, Gagné C, Lavoie-Cardinal F. Resolution enhancement with a task-assisted GAN to guide optical nanoscopy image analysis and acquisition. NAT MACH INTELL 2023; 5:830-844. [PMID: 37615032 PMCID: PMC10442226 DOI: 10.1038/s42256-023-00689-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 06/12/2023] [Indexed: 08/25/2023]
Abstract
Super-resolution fluorescence microscopy methods enable the characterization of nanostructures in living and fixed biological tissues. However, they require the adjustment of multiple imaging parameters while attempting to satisfy conflicting objectives, such as maximizing spatial and temporal resolution while minimizing light exposure. To overcome the limitations imposed by these trade-offs, post-acquisition algorithmic approaches have been proposed for resolution enhancement and image-quality improvement. Here we introduce the task-assisted generative adversarial network (TA-GAN), which incorporates an auxiliary task (for example, segmentation, localization) closely related to the observed biological nanostructure characterization. We evaluate how the TA-GAN improves generative accuracy over unassisted methods, using images acquired with different modalities such as confocal, bright-field, stimulated emission depletion and structured illumination microscopy. The TA-GAN is incorporated directly into the acquisition pipeline of the microscope to predict the nanometric content of the field of view without requiring the acquisition of a super-resolved image. This information is used to automatically select the imaging modality and regions of interest, optimizing the acquisition sequence by reducing light exposure. Data-driven microscopy methods like the TA-GAN will enable the observation of dynamic molecular processes with spatial and temporal resolutions that surpass the limits currently imposed by the trade-offs constraining super-resolution microscopy.
Collapse
Affiliation(s)
- Catherine Bouchard
- Institute Intelligence and Data (IID), Université Laval, Quebec City, Quebec Canada
- CERVO Brain Research Center, Quebec City, Quebec Canada
| | - Theresa Wiesner
- Institute Intelligence and Data (IID), Université Laval, Quebec City, Quebec Canada
- CERVO Brain Research Center, Quebec City, Quebec Canada
| | | | - Anthony Bilodeau
- Institute Intelligence and Data (IID), Université Laval, Quebec City, Quebec Canada
- CERVO Brain Research Center, Quebec City, Quebec Canada
| | - Benoît Turcotte
- Institute Intelligence and Data (IID), Université Laval, Quebec City, Quebec Canada
- CERVO Brain Research Center, Quebec City, Quebec Canada
| | - Christian Gagné
- Institute Intelligence and Data (IID), Université Laval, Quebec City, Quebec Canada
- Département de génie électrique et de génie informatique, Université Laval, Quebec City, Quebec Canada
| | - Flavie Lavoie-Cardinal
- Institute Intelligence and Data (IID), Université Laval, Quebec City, Quebec Canada
- CERVO Brain Research Center, Quebec City, Quebec Canada
- Département de psychiatrie et de neurosciences, Université Laval, Quebec City, Quebec Canada
| |
Collapse
|
7
|
Gong J, Jin Z, Chen H, He J, Zhang Y, Yang X. Super-resolution fluorescence microscopic imaging in pathogenesis and drug treatment of neurological disease. Adv Drug Deliv Rev 2023; 196:114791. [PMID: 37004939 DOI: 10.1016/j.addr.2023.114791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/16/2023] [Accepted: 03/19/2023] [Indexed: 04/03/2023]
Abstract
Since super-resolution fluorescence microscopic technology breaks the diffraction limit that has existed for a long time in optical imaging, it can observe the process of synapses formed between nerve cells and the protein aggregation related to neurological disease. Thus, super-resolution fluorescence microscopic imaging has significantly impacted several industries, including drug development and pathogenesis research, and it is anticipated that it will significantly alter the future of life science research. Here, we focus on several typical super-resolution fluorescence microscopic technologies, introducing their benefits and drawbacks, as well as applications in several common neurological diseases, in the hope that their services will be expanded and improved in the pathogenesis and drug treatment of neurological diseases.
Collapse
|
8
|
Muscat SM, Deems NP, Butler MJ, Scaria EA, Bettes MN, Cleary SP, Bockbrader RH, Maier SF, Barrientos RM. Selective TLR4 Antagonism Prevents and Reverses Morphine-Induced Persistent Postoperative Cognitive Dysfunction, Dysregulation of Synaptic Elements, and Impaired BDNF Signaling in Aged Male Rats. J Neurosci 2023; 43:155-172. [PMID: 36384680 PMCID: PMC9838714 DOI: 10.1523/jneurosci.1151-22.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 11/07/2022] [Accepted: 11/10/2023] [Indexed: 11/18/2022] Open
Abstract
Perioperative neurocognitive disorders (PNDs) are characterized by confusion, difficulty with executive function, and episodic memory impairment in the hours to months following a surgical procedure. Postoperative cognitive dysfunction (POCD) represents such impairments that last beyond 30 d postsurgery and is associated with increased risk of comorbidities, progression to dementia, and higher mortality. While it is clear that neuroinflammation plays a key role in PND development, what factors underlie shorter self-resolving versus persistent PNDs remains unclear. We have previously shown that postoperative morphine treatment extends POCD from 4 d (without morphine) to at least 8 weeks (with morphine) in aged male rats, and that this effect is likely dependent on the proinflammatory capabilities of morphine via activation of toll-like receptor 4 (TLR4). Here, we extend these findings to show that TLR4 blockade, using the selective TLR4 antagonist lipopolysaccharide from the bacterium Rhodobacter sphaeroides (LPS-RS Ultrapure), ameliorates morphine-induced POCD in aged male rats. Using either a single central preoperative treatment or a 1 week postoperative central treatment regimen, we demonstrate that TLR4 antagonism (1) prevents and reverses the long-term memory impairment associated with surgery and morphine treatment, (2) ameliorates morphine-induced dysregulation of the postsynaptic proteins postsynaptic density 95 and synaptopodin, (3) mitigates reductions in mature BDNF, and (4) prevents decreased activation of the BDNF receptor TrkB (tropomyosin-related kinase B), all at 4 weeks postsurgery. We also reveal that LPS-RS Ultrapure likely exerts its beneficial effects by preventing endogenous danger signal HMGB1 (high-mobility group box 1) from activating TLR4, rather than by blocking continuous activation by morphine or its metabolites. These findings suggest TLR4 as a promising therapeutic target to prevent or treat PNDs.SIGNIFICANCE STATEMENT With humans living longer than ever, it is crucial that we identify mechanisms that contribute to aging-related vulnerability to cognitive impairment. Here, we show that the innate immune receptor toll-like receptor 4 (TLR4) is a key mediator of cognitive dysfunction in aged rodents following surgery and postoperative morphine treatment. Inhibition of TLR4 both prevented and reversed surgery plus morphine-associated memory impairment, dysregulation of synaptic elements, and reduced BDNF signaling. Together, these findings implicate TLR4 in the development of postoperative cognitive dysfunction, providing mechanistic insight and novel therapeutic targets for the treatment of cognitive impairments following immune challenges such as surgery in older individuals.
Collapse
Affiliation(s)
- Stephanie M Muscat
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
- Biomedical Sciences Graduate Program, The Ohio State University, Columbus, Ohio 43210
| | - Nicholas P Deems
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
- Neuroscience Graduate Program, The Ohio State University, Columbus, Ohio 43210
| | - Michael J Butler
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
| | - Emmanuel A Scaria
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
| | - Menaz N Bettes
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
| | - Sean P Cleary
- Campus Chemical Instrumentation Center, The Ohio State University, Columbus, Ohio 43210
| | - Ross H Bockbrader
- Pharmaceutical Sciences Graduate Program, Division of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210
| | - Steven F Maier
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado Boulder, Boulder, Colorado 80309
| | - Ruth M Barrientos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio 43210
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, Ohio 43210
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
- Chronic Brain Injury Program, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
9
|
Damstra HGJ, Mohar B, Eddison M, Akhmanova A, Kapitein LC, Tillberg PW. Visualizing cellular and tissue ultrastructure using Ten-fold Robust Expansion Microscopy (TREx). eLife 2022; 11:73775. [PMID: 35179128 PMCID: PMC8887890 DOI: 10.7554/elife.73775] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/30/2022] [Indexed: 12/18/2022] Open
Abstract
Expansion microscopy (ExM) is a powerful technique to overcome the diffraction limit of light microscopy that can be applied in both tissues and cells. In ExM, samples are embedded in a swellable polymer gel to physically expand the sample and isotropically increase resolution in x, y, and z. The maximum resolution increase is limited by the expansion factor of the gel, which is four-fold for the original ExM protocol. Variations on the original ExM method have been reported that allow for greater expansion factors but at the cost of ease of adoption or versatility. Here, we systematically explore the ExM recipe space and present a novel method termed Ten-fold Robust Expansion Microscopy (TREx) that, like the original ExM method, requires no specialized equipment or procedures. We demonstrate that TREx gels expand 10-fold, can be handled easily, and can be applied to both thick mouse brain tissue sections and cultured human cells enabling high-resolution subcellular imaging with a single expansion step. Furthermore, we show that TREx can provide ultrastructural context to subcellular protein localization by combining antibody-stained samples with off-the-shelf small-molecule stains for both total protein and membranes.
Collapse
Affiliation(s)
- Hugo G J Damstra
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Boaz Mohar
- Janelia Research Campus, HHMI, Ashburn, United States
| | - Mark Eddison
- Janelia Research Campus, HHMI, Ashburn, United States
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Lukas C Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | | |
Collapse
|
10
|
Zieger HL, Choquet D. Nanoscale synapse organization and dysfunction in neurodevelopmental disorders. Neurobiol Dis 2021; 158:105453. [PMID: 34314857 DOI: 10.1016/j.nbd.2021.105453] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 07/18/2021] [Accepted: 07/21/2021] [Indexed: 12/20/2022] Open
Abstract
Neurodevelopmental disorders such as those linked to intellectual disabilities or autism spectrum disorder are thought to originate in part from genetic defects in synaptic proteins. Single gene mutations linked to synapse dysfunction can broadly be separated in three categories: disorders of transcriptional regulation, disorders of synaptic signaling and disorders of synaptic scaffolding and structures. The recent developments in super-resolution imaging technologies and their application to synapses have unraveled a complex nanoscale organization of synaptic components. On the one hand, part of receptors, adhesion proteins, ion channels, scaffold elements and the pre-synaptic release machinery are partitioned in subsynaptic nanodomains, and the respective organization of these nanodomains has tremendous impact on synaptic function. For example, pre-synaptic neurotransmitter release sites are partly aligned with nanometer precision to postsynaptic receptor clusters. On the other hand, a large fraction of synaptic components is extremely dynamic and constantly exchanges between synaptic domains and extrasynaptic or intracellular compartments. It is largely the combination of the exquisitely precise nanoscale synaptic organization of synaptic components and their high dynamic that allows the rapid and profound regulation of synaptic function during synaptic plasticity processes that underlie adaptability of brain function, learning and memory. It is very tempting to speculate that genetic defects that lead to neurodevelopmental disorders and target synaptic scaffolds and structures mediate their deleterious impact on brain function through perturbing synapse nanoscale dynamic organization. We discuss here how applying super-resolution imaging methods in models of neurodevelopmental disorders could help in addressing this question.
Collapse
Affiliation(s)
- Hanna L Zieger
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France
| | - Daniel Choquet
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000 Bordeaux, France; Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UMS 3420, US 4, F-33000 Bordeaux, France.
| |
Collapse
|
11
|
Minehart JA, Speer CM. A Picture Worth a Thousand Molecules-Integrative Technologies for Mapping Subcellular Molecular Organization and Plasticity in Developing Circuits. Front Synaptic Neurosci 2021; 12:615059. [PMID: 33469427 PMCID: PMC7813761 DOI: 10.3389/fnsyn.2020.615059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022] Open
Abstract
A key challenge in developmental neuroscience is identifying the local regulatory mechanisms that control neurite and synaptic refinement over large brain volumes. Innovative molecular techniques and high-resolution imaging tools are beginning to reshape our view of how local protein translation in subcellular compartments drives axonal, dendritic, and synaptic development and plasticity. Here we review recent progress in three areas of neurite and synaptic study in situ-compartment-specific transcriptomics/translatomics, targeted proteomics, and super-resolution imaging analysis of synaptic organization and development. We discuss synergies between sequencing and imaging techniques for the discovery and validation of local molecular signaling mechanisms regulating synaptic development, plasticity, and maintenance in circuits.
Collapse
Affiliation(s)
| | - Colenso M. Speer
- Department of Biology, University of Maryland, College Park, MD, United States
| |
Collapse
|