1
|
Hoisington ZW, Gangal H, Phamluong K, Shukla C, Ehinger Y, Moffat JJ, Homanics GE, Wang J, Ron D. Prosapip1 in the dorsal hippocampus mediates synaptic protein composition, long-term potentiation, and spatial memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.06.13.597459. [PMID: 38915579 PMCID: PMC11195216 DOI: 10.1101/2024.06.13.597459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Prosapip1 is a brain-specific protein localized to the postsynaptic density, where it promotes dendritic spine maturation in primary hippocampal neurons. However, nothing is known about the role of Prosapip1 in vivo. To examine this, we utilized the Cre-loxP system to develop a Prosapip1 neuronal knockout mouse. We found that Prosapip1 controls the synaptic localization of its binding partner SPAR, along with PSD-95 and the GluN2B subunit of the NMDA receptor (NMDAR) in the dorsal hippocampus (dHP). We next sought to identify the potential contribution of Prosapip1 to the activity and function of the NMDAR and found that Prosapip1 plays an important role in NMDAR-mediated transmission and long-term potentiation (LTP) in the CA1 region of the dHP. As LTP is the cellular hallmark of learning and memory, we examined the consequences of neuronal knockout of Prosapip1 on dHP-dependent memory. We found that global or dHP-specific neuronal knockout of Prosapip1 caused a deficit in learning and memory whereas developmental, locomotor, and anxiety phenotypes were normal. Taken together, Prosapip1 in the dHP promotes the proper localization of synaptic proteins which, in turn, facilitates LTP driving recognition, social, and spatial learning and memory.
Collapse
|
2
|
Fauré LMP, Gauzin S, Lejards C, Rampon C, Verret L. Fine social discrimination of siblings in mice: Implications for early detection of Alzheimer's disease. Neurobiol Dis 2025; 206:106799. [PMID: 39814270 DOI: 10.1016/j.nbd.2025.106799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/20/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
The ability to distinguish between individuals is crucial for social species and supports behaviors such as reproduction, hierarchy formation, and cooperation. In rodents, social discrimination relies on memory and the recognition of individual-specific cues, known as "individual signatures". While olfactory signals are central, other sensory cues - such as auditory, visual, and tactile inputs - also play a role. However, little research has explored the fine discrimination of individuals with overlapping cues, such as siblings or cohabitating mice. This study investigates whether mice can discriminate between two closely related individuals: siblings from the same litter and cage. We tested the hypothesis that it would be more challenging for mice to distinguish between siblings than between unrelated mice due to shared cues. Moreover, social cognitive impairments are common in neurodegenerative diseases like Alzheimer's disease (AD), where difficulties in recognizing faces and voices progressively disrupt social interactions in patients. Using a mouse model of AD (Tg2576), known for the progressive onset of cognitive deficits, we assessed whether the ability to discriminate between siblings is preserved in "pre-symptomatic" animals. Thus, we first demonstrated that male and female C57BL6/J mice can discriminate siblings, regardless of sex. Next, we revealed that "pre-symptomatic" 3-month-old Tg2576 mice exhibit impairments in fine social memory, while their general social memory remains unaffected. Thus, we demonstrate that the inability to perform fine social discrimination is an early cognitive impairment that arises before other well-documented memory abnormalities in this AD mouse model.
Collapse
Affiliation(s)
- Lola M P Fauré
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062, France.
| | - Sébastien Gauzin
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062, France
| | - Camille Lejards
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062, France
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062, France
| | - Laure Verret
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, Université de Toulouse, CNRS, UPS, 31062, France.
| |
Collapse
|
3
|
Rava A, Buzzelli V, Feo A, Ascone F, Di Trapano M, Schiavi S, Carbone E, Pasquadibisceglie A, Polticelli F, Manduca A, Trezza V. Role of peroxisome proliferator-activated receptors α and γ in mediating the beneficial effects of β-caryophyllene in a rat model of fragile X syndrome. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111234. [PMID: 39725014 DOI: 10.1016/j.pnpbp.2024.111234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/17/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
β-Caryophyllene (BCP) is a naturally occurring sesquiterpene found in numerous plant species, including Cannabis sativa. BCP has shown a high safety profile and a wide range of biological functions, including beneficial effects in neurodegenerative and inflammatory diseases. Here, we used behavioral, pharmacological, and in-silico docking analyses to investigate the effects and mechanism of action of BCP in Fragile X Syndrome (FXS), the most common inherited cause of Autism Spectrum Disorder (ASD) and intellectual disability. To this aim, we used the recently validated Fmr1-Δexon 8 rat model of FXS, that is also a genetic rat model of ASD. Acute and repeated oral administration of BCP rescued the cognitive deficits displayed by Fmr1-Δexon 8 rats, without inducing tolerance after repeated administration. These beneficial effects were mediated by activation of hippocampal peroxisome proliferator-activated receptors (PPARs) α and γ, and were mimicked by the PPARα agonist Fenofibrate and the PPARγ agonist Pioglitazone. Conversely, CB2 cannabinoid receptors were not involved. Docking analyses further confirmed the ability of BCP to bind rat PPARs. Together, our findings demonstrate that hippocampal PPARs α and γ play a role in the cognitive deficits observed in a rat model of FXS, and provide first preclinical evidence about the efficacy and mechanism of action of BCP in neurodevelopmental disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Antonia Manduca
- Dept. Science, Roma Tre University, Rome, Italy; Dept. Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy; Neuroendocrinology, Metabolism and Neuropharmacology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Viviana Trezza
- Dept. Science, Roma Tre University, Rome, Italy; Neuroendocrinology, Metabolism and Neuropharmacology Unit, IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
4
|
Izaki A, Verbeke WJMI, Vrticka P, Ein-Dor T. A narrative on the neurobiological roots of attachment-system functioning. COMMUNICATIONS PSYCHOLOGY 2024; 2:96. [PMID: 39406946 PMCID: PMC11480372 DOI: 10.1038/s44271-024-00147-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Attachment theory is one of the most comprehensive frameworks in social and developmental psychology. It describes how selective, enduring emotional bonds between infants and their caregivers are formed and maintained throughout life. These attachment bonds exhibit distinct characteristics that are intimately tied to fundamental aspects of mammalian life, including pregnancy, birth, lactation, and infant brain development. However, there is a lack of a cohesive biological narrative that explains the psychological forces shaping attachment behavior and the emergence and consolidation of attachment patterns at a neurobiological level. Here, we propose a theoretical narrative focusing on organized attachment patterns that systematically link the two primary purposes of the attachment behavioral system: the provision of tangible protection or support and the corresponding subjective feeling of safety or security. We aim for this detailed delineation of neurobiological circuits to foster more comprehensive and interdisciplinary future research.
Collapse
|
5
|
Wang X, Li Y, Li R, Yuan L, Hua Y, Cai Y, Liu X. Low-frequency RTMS attenuates social impairment in the VPA-induced mouse model. Behav Brain Res 2024; 472:115156. [PMID: 39032867 DOI: 10.1016/j.bbr.2024.115156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impaired social interactions and repetitive behaviors. Despite its prevalence, effective treatments remain elusive. Recent studies have highlighted the importance of the balance between GABAergic and glutamatergic neuronal synaptic functions in ASD development. Repetitive transcranial magnetic stimulation (RTMS) is a painless and effective treatment allowed for use in depression and obsessive-compulsive disorder. However, its efficacy in treating autism is still under investigation. Low-frequency RTMS (LF-RTMS), which shows promise in reducing autism-like behaviors, is considered to regulate synaptic function. OBJECTIVE We observed and recorded the behaviors of mice to assess the impact of RTMS on their social interactions and repetitive activities. Subsequently, we examined GABAergic and glutamatergic neuronal markers along with synaptic marker proteins to understand the underlying changes associated with these behaviors. METHODS To evaluate behaviors associated with autism spectrum disorder (ASD), several behavioral tests were conducted, focusing on sociability, repetitive behaviors, locomotion, anxiety, and depression. Additionally, Western blot and immunofluorescence staining were employed to investigate the activity of GABAergic and glutamatergic neurons in the hippocampus, aiming to understand the synaptic mechanisms underlying these behaviors. RESULTS LF-RTMS treatment effectively relieved the social disability and normalized synaptic function in the hippocampus of ASD mice model induced by valproate (VPA). Importantly, this treatment did not lead to any adverse effects on repetitive behavior, locomotion, anxiety, or depression. CONCLUSION LF-RTMS attenuated social disability without affecting repetitive behavior, locomotion, anxiety, or depression. Changes in the expression of GABAergic and glutamatergic neuronal synaptic proteins in the hippocampus were also observed.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210000, China
| | - Yanna Li
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210000, China
| | - Rui Li
- Department of Neurology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Linying Yuan
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210000, China
| | - Yanfan Hua
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210000, China
| | - Yulong Cai
- Department of Neurology, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Xinfeng Liu
- Department of Neurology, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, Jiangsu 210000, China.
| |
Collapse
|
6
|
Mack NR, Bouras NN, Gao WJ. Prefrontal Regulation of Social Behavior and Related Deficits: Insights From Rodent Studies. Biol Psychiatry 2024; 96:85-94. [PMID: 38490368 DOI: 10.1016/j.biopsych.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
The prefrontal cortex (PFC) is well known as the executive center of the brain, combining internal states and goals to execute purposeful behavior, including social actions. With the advancement of tools for monitoring and manipulating neural activity in rodents, substantial progress has been made in understanding the specific cell types and neural circuits within the PFC that are essential for processing social cues and influencing social behaviors. Furthermore, combining these tools with translationally relevant behavioral paradigms has also provided novel insights into the PFC neural mechanisms that may contribute to social deficits in various psychiatric disorders. This review highlights findings from the past decade that have shed light on the PFC cell types and neural circuits that support social information processing and distinct aspects of social behavior, including social interactions, social memory, and social dominance. We also explore how the PFC contributes to social deficits in rodents induced by social isolation, social fear conditioning, and social status loss. These studies provide evidence that the PFC uses both overlapping and unique neural mechanisms to support distinct components of social cognition. Furthermore, specific PFC neural mechanisms drive social deficits induced by different contexts.
Collapse
Affiliation(s)
- Nancy R Mack
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania.
| | - Nadia N Bouras
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania.
| |
Collapse
|
7
|
Goss K, Bueno-Junior LS, Stangis K, Ardoin T, Carmon H, Zhou J, Satapathy R, Baker I, Jones-Tinsley CE, Lim MM, Watson BO, Sueur C, Ferrario CR, Murphy GG, Ye B, Hu Y. Quantifying social roles in multi-animal videos using subject-aware deep-learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.07.602350. [PMID: 39026890 PMCID: PMC11257443 DOI: 10.1101/2024.07.07.602350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Analyzing social behaviors is critical for many fields, including neuroscience, psychology, and ecology. While computational tools have been developed to analyze videos containing animals engaging in limited social interactions under specific experimental conditions, automated identification of the social roles of freely moving individuals in a multi-animal group remains unresolved. Here we describe a deep-learning-based system - named LabGym2 - for identifying and quantifying social roles in multi-animal groups. This system uses a subject-aware approach: it evaluates the behavioral state of every individual in a group of two or more animals while factoring in its social and environmental surroundings. We demonstrate the performance of subject-aware deep-learning in different species and assays, from partner preference in freely-moving insects to primate social interactions in the field. Our subject-aware deep learning approach provides a controllable, interpretable, and efficient framework to enable new experimental paradigms and systematic evaluation of interactive behavior in individuals identified within a group.
Collapse
Affiliation(s)
- Kelly Goss
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- These authors contributed equally
| | - Lezio S. Bueno-Junior
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- These authors contributed equally
| | - Katherine Stangis
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Théo Ardoin
- Master Biodiversité Ecologie et Evolution, Université Paris-Saclay, Orsay, France
- Magistère de Biologie, Université Paris-Saclay, Orsay, France
| | - Hanna Carmon
- Department of Pharmacology and Psychology Department (Biopsychology), University of Michigan, Ann Arbor, MI 48109, USA
| | - Jie Zhou
- Department of Computer Science, Northern Illinois University, DeKalb, IL 60115, USA
| | - Rohan Satapathy
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Isabelle Baker
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Carolyn E. Jones-Tinsley
- Veterans Affairs VISN20 Northwest MIRECC, VA Portland Health Care System, Portland, OR 97239, USA
- Oregon Alzheimer’s Disease Research Center, Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Miranda M. Lim
- Veterans Affairs VISN20 Northwest MIRECC, VA Portland Health Care System, Portland, OR 97239, USA
- Oregon Alzheimer’s Disease Research Center, Department of Neurology, Oregon Health and Science University, Portland, OR 97239, USA
| | - Brendon O. Watson
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Cédric Sueur
- Université de Strasbourg, IPHC UMR7178, CNRS, Strasbourg, France
- ANTHROPO-LAB, ETHICS EA 7446, Université Catholique de Lille, Lille, France
| | - Carrie R. Ferrario
- Department of Pharmacology and Psychology Department (Biopsychology), University of Michigan, Ann Arbor, MI 48109, USA
| | - Geoffrey G. Murphy
- Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Bing Ye
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yujia Hu
- Life Sciences Institute and Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Walia V, Wal P, Mishra S, Agrawal A, Kosey S, Dilipkumar Patil A. Potential role of oxytocin in the regulation of memories and treatment of memory disorders. Peptides 2024; 177:171222. [PMID: 38649032 DOI: 10.1016/j.peptides.2024.171222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 04/25/2024]
Abstract
Oxytocin (OXT) is an "affiliative" hormone or neurohormone or neuropeptide consists of nine amino acids, synthesized in magnocellular neurons of paraventricular (PVN) and supraoptic nuclei (SON) of hypothalamus. OXT receptors are widely distributed in various region of brain and OXT has been shown to regulate various social and nonsocial behavior. Hippocampus is the main region which regulates the learning and memory. Hippocampus particularly regulates the acquisition of new memories and retention of acquired memories. OXT has been shown to regulate the synaptic plasticity, neurogenesis, and consolidation of memories. Further, findings from both preclinical and clinical studies have suggested that the OXT treatment improves performance in memory related task. Various trials have suggested the positive impact of intranasal OXT in the dementia patients. However, these studies are limited in number. In the present study authors have highlighted the role of OXT in the formation and retrieval of memories. Further, the study demonstrated the outcome of OXT treatment in various memory and related disorders.
Collapse
Affiliation(s)
- Vaibhav Walia
- SGT College of Pharmacy, SGT University, Gurugram, Haryana, India.
| | - Pranay Wal
- PSIT-Pranveer Singh Institute of Technology (Pharmacy), Kanpur, UP 209305, India
| | - Shweta Mishra
- SGT College of Pharmacy, SGT University, Gurugram, Haryana, India
| | - Ankur Agrawal
- Jai Institute of Pharmaceutical Sciences and Research, Gwalior, MP, India
| | - Sourabh Kosey
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, India
| | - Aditya Dilipkumar Patil
- Founder, Tech Hom Research Solutions (THRS), Plot no. 38, 1st floor, opposite to biroba mandir, near ST stand, Satara, Maharashtra 415110, India
| |
Collapse
|
9
|
Pham XT, Abe Y, Mukai Y, Ono D, Tanaka KF, Ohmura Y, Wake H, Yamanaka A. Glutamatergic signaling from melanin-concentrating hormone-producing neurons: A requirement for memory regulation, but not for metabolism control. PNAS NEXUS 2024; 3:pgae275. [PMID: 39035036 PMCID: PMC11259978 DOI: 10.1093/pnasnexus/pgae275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 06/29/2024] [Indexed: 07/23/2024]
Abstract
Melanin-concentrating hormone-producing neurons (MCH neurons), found mainly in the lateral hypothalamus and surrounding areas, play essential roles in various brain functions, including sleep and wakefulness, reward, metabolism, learning, and memory. These neurons coexpress several neurotransmitters and act as glutamatergic neurons. The contribution of glutamate from MCH neurons to memory- and metabolism-related functions has not been fully investigated. In a mouse model, we conditionally knocked out Slc17a6 gene, which encodes for vesicular glutamate transporter 2 (vGlut2), in the MCH neurons exclusively by using two different methods: the Cre recombinase/loxP system and in vivo genome editing using CRISPR/Cas9. Then, we evaluated several aspects of memory and measured metabolic rates using indirect calorimetry. We found that mice with MCH neuron-exclusive vGlut2 ablation had higher discrimination ratios between novel and familiar stimuli for novel object recognition, object location, and three-chamber tests. In contrast, there was no significant change in body weight, food intake, oxygen consumption, respiratory quotient, or locomotor activity. These findings suggest that glutamatergic signaling from MCH neurons is required to regulate memory, but its role in regulating metabolic rate is negligible.
Collapse
Affiliation(s)
- Xuan Thang Pham
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Department of Psychiatry, Hanoi Medical University, Hanoi 100000, Vietnam
| | - Yoshifumi Abe
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yasutaka Mukai
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Daisuke Ono
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
- Department of Neural Regulation, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yu Ohmura
- Chinese Institute for Brain Research, Beijing (CIBR), Beijing 102206, China
| | - Hiroaki Wake
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Akihiro Yamanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo 160-8582, Japan
- Chinese Institute for Brain Research, Beijing (CIBR), Beijing 102206, China
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi 444-8585, Japan
| |
Collapse
|
10
|
Ünal D, Varol AB, Köse TB, Koçak EE. Morphological Correlates of Behavioral Variation in Autism Spectrum Disorder Groups in A Maternal Immune Activation Model. Noro Psikiyatr Ars 2024; 67:195-201. [PMID: 39258126 PMCID: PMC11382561 DOI: 10.29399/npa.28637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/16/2023] [Indexed: 09/12/2024] Open
Abstract
Introduction Clinical heterogeneity is one of the biggest challenges for researchers studying underlying neurobiological mechanisms in Autism Spectrum Disorder (ASD). We aimed to use polyinosinic-polycytidylic acid [Poly (I:C)] induced maternal immune activation mice model to investigate the behavioral variation and the role of brain circuits related to symptom clusters in ASD. For this purpose, behavioral tests were applied to offsprings and regional thickness was measured from histological brain sections in medial prefrontal cortex, hippocampus and striatum. Methods Pups of intraperitoneal Poly (I:C)-applied mothers (n: 14) and phosphate buffered saline-applied mothers (n: 6) were used for this study. We used three chamber socialization test and social memory test to evaluate social behavior deficit in mice. Marble burying test was used for assessing stereotypic behavior and new object recognition test for learning and cognitive flexibility. Three subgroups (n: 4 for each) were determined according to behavioral test parameters. Regional thickness was measured in medial prefrontal cortex, hippocampus and striatum and compared between subgroups. Results We detected that the behavioral differences were distributed in a spectrum as expected in the clinic and also detected increased hippocampus thickness in the stereotypic behavior dominant Poly (I:C) subgroup. Conclusion Poly (I:C) induced maternal immune activation model creates the behavioral variation and cortical development differences that are seen in relation with symptom groups in ASD.
Collapse
Affiliation(s)
- Dilek Ünal
- Hacettepe University School of Medicine, Department of Child and Adolescent Psychiatry, Ankara, Turkey
| | - Aslıhan Bahadır Varol
- Hacettepe University School of Medicine, Neurological and Psychiatric Sciences Institute, Ankara, Turkey
| | - Tansu Bilge Köse
- Hacettepe University School of Medicine, Neurological and Psychiatric Sciences Institute, Ankara, Turkey
| | - Emine Eren Koçak
- Hacettepe University School of Medicine, Neurological and Psychiatric Sciences Institute, Ankara, Turkey
| |
Collapse
|
11
|
Adedokun MA, Enye LA, Akinluyi ET, Ajibola TA, Edem EE. Black seed oil reverses chronic antibiotic-mediated depression and social behaviour deficits via modulation of hypothalamic mitochondrial-dependent markers and insulin expression. IBRO Neurosci Rep 2024; 16:267-279. [PMID: 38379607 PMCID: PMC10876594 DOI: 10.1016/j.ibneur.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/27/2024] [Indexed: 02/22/2024] Open
Abstract
Chronic antibiotic use has been reported to impair mitochondrial indices, hypothalamus-mediated metabolic function, and amygdala-regulated emotional processes. Natural substances such as black seed (Nigella sativa) oil could be beneficial in mitigating these impairments. This study aimed to assess the impact of black seed oil (NSO) on depression and sociability indices, redox imbalance, mitochondrial-dependent markers, and insulin expression in mice subjected to chronic ampicillin exposure. Forty adult male BALB/c mice (30 ± 2 g) were divided into five groups: the CTRL group received normal saline, the ABT group received ampicillin, the NSO group received black seed oil, the ABT/NSO group concurrently received ampicillin and black seed oil, and the ABT+NSO group experienced pre-exposure to ampicillin followed by subsequent treatment with black seed oil. The ampicillin-exposed group exhibited depressive-like behaviours, impaired social interactive behaviours, and disruptions in mitochondrial-dependent markers in plasma and hypothalamic tissues, accompanied by an imbalance in antioxidant levels. Moreover, chronic antibiotic exposure downregulated insulin expression in the hypothalamus. However, these impairments were significantly ameliorated in the ABT/NSO, and ABT+NSO groups compared to the untreated antibiotic-exposed group. Overall, findings from this study suggest the beneficial role of NSO as an adjuvant therapy in preventing and abrogating mood behavioural and neural-metabolic impairments of chronic antibiotic exposure.
Collapse
Affiliation(s)
- Mujeeb Adekunle Adedokun
- Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Linus Anderson Enye
- Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Elizabeth Toyin Akinluyi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| | - Toheeb Adesumbo Ajibola
- Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
- Department of Anatomy, Faculty of Basic Medical Sciences, Federal University, Oye-Ekiti, Ekiti State, Nigeria
| | - Edem Ekpenyong Edem
- Neuroscience Unit, Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
| |
Collapse
|
12
|
Guarino A, Pignata P, Lovisari F, Asth L, Simonato M, Soukupova M. Cognitive comorbidities in the rat pilocarpine model of epilepsy. Front Neurol 2024; 15:1392977. [PMID: 38872822 PMCID: PMC11171745 DOI: 10.3389/fneur.2024.1392977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/30/2024] [Indexed: 06/15/2024] Open
Abstract
Patients with epilepsy are prone to cognitive decline, depression, anxiety and other behavioral disorders. Cognitive comorbidities are particularly common and well-characterized in people with temporal lobe epilepsy, while inconsistently addressed in epileptic animals. Therefore, the aim of this study was to ascertain whether there is good evidence of cognitive comorbidities in animal models of epilepsy, in particular in the rat pilocarpine model of temporal lobe epilepsy. We searched the literature published between 1990 and 2023. The association of spontaneous recurrent seizures induced by pilocarpine with cognitive alterations has been evaluated by using various tests: contextual fear conditioning (CFC), novel object recognition (NOR), radial and T-maze, Morris water maze (MWM) and their variants. Combination of results was difficult because of differences in methodological standards, in number of animals employed, and in outcome measures. Taken together, however, the analysis confirmed that pilocarpine-induced epilepsy has an effect on cognition in rats, and supports the notion that this is a valid model for assessment of cognitive temporal lobe epilepsy comorbidities in preclinical research.
Collapse
Affiliation(s)
- Annunziata Guarino
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Paola Pignata
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Francesca Lovisari
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Laila Asth
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| | - Michele Simonato
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marie Soukupova
- Department of Neuroscience and Rehabilitation, Section of Pharmacology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
13
|
Thirtamara Rajamani K, Barbier M, Lefevre A, Niblo K, Cordero N, Netser S, Grinevich V, Wagner S, Harony-Nicolas H. Oxytocin activity in the paraventricular and supramammillary nuclei of the hypothalamus is essential for social recognition memory in rats. Mol Psychiatry 2024; 29:412-424. [PMID: 38052983 PMCID: PMC11116117 DOI: 10.1038/s41380-023-02336-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 11/09/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023]
Abstract
Oxytocin plays an important role in modulating social recognition memory. However, the direct implication of oxytocin neurons of the paraventricular nucleus of the hypothalamus (PVH) and their downstream hypothalamic targets in regulating short- and long-term forms of social recognition memory has not been fully investigated. In this study, we employed a chemogenetic approach to target the activity of PVH oxytocin neurons in male rats and found that specific silencing of this neuronal population led to an impairment in short- and long-term social recognition memory. We combined viral-mediated fluorescent labeling of oxytocin neurons with immunohistochemical techniques and identified the supramammillary nucleus (SuM) of the hypothalamus as a target of PVH oxytocinergic axonal projections in rats. We used multiplex fluorescence in situ hybridization to label oxytocin receptors in the SuM and determined that they are predominantly expressed in glutamatergic neurons, including those that project to the CA2 region of the hippocampus. Finally, we used a highly selective oxytocin receptor antagonist in the SuM to examine the involvement of oxytocin signaling in modulating short- and long-term social recognition memory and found that it is necessary for the formation of both. This study discovered a previously undescribed role for the SuM in regulating social recognition memory via oxytocin signaling and reinforced the specific role of PVH oxytocin neurons in regulating this form of memory.
Collapse
Affiliation(s)
- Keerthi Thirtamara Rajamani
- Department of Psychiatry and Seaver Autism Center for Research and Treatment at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Seaver Autism Center for Research and Treatment at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Marie Barbier
- Department of Psychiatry and Seaver Autism Center for Research and Treatment at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Seaver Autism Center for Research and Treatment at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arthur Lefevre
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
- Cortical Systems and Behavior Laboratory, University of California San Diego, San Diego, CA, USA
| | - Kristi Niblo
- Department of Psychiatry and Seaver Autism Center for Research and Treatment at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Seaver Autism Center for Research and Treatment at the Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicholas Cordero
- CUNY School of Medicine, The City College of New York, 160 Convent Avenue, New York, NY, USA
| | - Shai Netser
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Shlomo Wagner
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Hala Harony-Nicolas
- Department of Psychiatry and Seaver Autism Center for Research and Treatment at the Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Seaver Autism Center for Research and Treatment at the Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
14
|
Leithead AB, Godino A, Barbier M, Harony-Nicolas H. Social Interaction Elicits Activity in Glutamatergic Neurons in the Posterior Intralaminar Complex of the Thalamus. Biol Psychiatry 2024; 95:112-122. [PMID: 37245781 PMCID: PMC10676449 DOI: 10.1016/j.biopsych.2023.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND The posterior intralaminar complex of the thalamus (PIL) is a multimodal nucleus that has been implicated in maternal behaviors and conspecific social behaviors in male and female rodents. Glutamatergic neurons are a major component of the PIL; however, their specific activity and role during social interactions has not yet been assessed. METHODS We used immunohistochemistry for the immediate early gene c-fos as a proxy for neuronal activity in the PIL of mice exposed to a novel social stimulus, a novel object stimulus, or no stimulus. We then used fiber photometry to record neural activity of glutamatergic neurons in the PIL in real time during social and nonsocial interactions. Finally, we used inhibitory DREADDs (designer receptors exclusively activated by designer drugs) in glutamatergic PIL neurons and tested social preference and social habituation-dishabituation. RESULTS We observed significantly more c-fos-positive cells in the PIL of mice exposed to a social stimulus versus an object stimulus or no stimulus. Neural activity of PIL glutamatergic neurons was increased when male and female mice were engaged in social interaction with a same-sex juvenile or opposite-sex adult, but not a toy mouse. Neural activity was positively correlated with social investigation bout length and negatively correlated with chronological order of bouts. Social preference was unaffected by inhibition; however, inhibiting activity of glutamatergic neurons in the PIL delayed the time that it took for female mice to form social habituation. CONCLUSIONS Together, these findings suggest that glutamatergic PIL neurons respond to social stimuli in both male and female mice and may regulate perceptual encoding of social information to facilitate recognition of social stimuli.
Collapse
Affiliation(s)
- Amanda Beth Leithead
- Department of Psychiatry, the Icahn School of Medicine, Mount Sinai, New York, New York; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, New York
| | - Arthur Godino
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marie Barbier
- Department of Psychiatry, the Icahn School of Medicine, Mount Sinai, New York, New York; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, New York
| | - Hala Harony-Nicolas
- Department of Psychiatry, the Icahn School of Medicine, Mount Sinai, New York, New York; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, New York; Mindich Child Health and Development Institute, The Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
15
|
Kesner AJ, Mozaffarilegha M, Thirtamara Rajamani K, Arima Y, Harony-Nicolas H, Hashimotodani Y, Ito HT, Song J, Ikemoto S. Hypothalamic Supramammillary Control of Cognition and Motivation. J Neurosci 2023; 43:7538-7546. [PMID: 37940587 PMCID: PMC10634554 DOI: 10.1523/jneurosci.1320-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 11/10/2023] Open
Abstract
The supramammillary nucleus (SuM) is a small region in the ventromedial posterior hypothalamus. The SuM has been relatively understudied with much of the prior focus being on its connection with septo-hippocampal circuitry. Thus, most studies conducted until the 21st century examined its role in hippocampal processes, such as theta rhythm and learning/memory. In recent years, the SuM has been "rediscovered" as a crucial hub for several behavioral and cognitive processes, including reward-seeking, exploration, and social memory. Additionally, it has been shown to play significant roles in hippocampal plasticity and adult neurogenesis. This review highlights findings from recent studies using cutting-edge systems neuroscience tools that have shed light on these fascinating roles for the SuM.
Collapse
Affiliation(s)
- Andrew J Kesner
- Unit on Motivation and Arousal, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Intramural Research Program, National Institutes of Health, Bethesda, Maryland 20892
| | | | - Keerthi Thirtamara Rajamani
- Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10021
| | - Yosuke Arima
- Neurocircuitry of Motivation Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
- Center on Compulsive Behaviors, Intramural Research Program, National Institutes of Health, Bethesda, Maryland 20894
| | - Hala Harony-Nicolas
- Department of Psychiatry, Department of Neuroscience, Seaver Autism Center for Research and Treatment, Friedman Brain Institute, Mindich Child Health and Development Institute at the Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Yuki Hashimotodani
- Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto Japan 610-0394
| | - Hiroshi T Ito
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany 60438
| | - Juan Song
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599
- Neuroscience Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Satoshi Ikemoto
- Neurocircuitry of Motivation Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland 21224
| |
Collapse
|
16
|
A B L, A G, M B, H HN. Social Interaction Elicits Activity in Glutamatergic Neurons in the Posterior Intralaminar Complex of the Thalamus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538114. [PMID: 37163009 PMCID: PMC10168253 DOI: 10.1101/2023.04.24.538114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Background The posterior intralaminar (PIL) complex of the thalamus is a multimodal nucleus that has been implicated in maternal behaviors and conspecific social behaviors in male and female rodents. Glutamatergic neurons are a major component of the PIL; however, their specific activity and role during social interactions has not yet been assessed. Methods We used immunohistochemistry for the immediate early gene c-fos as a proxy for neuronal activity in the PIL of mice exposed to a novel social stimulus, a novel object stimulus, or no stimulus. We then used fiber photometry to record neural activity of glutamatergic neurons in the PIL in real-time during social and non-social interactions. Finally, we used inhibitory DREADDs in glutamatergic PIL neurons and tested social preference and social habituation-dishabituation. Results We observed significantly more c-fos -positive cells in the PIL of mice exposed to social versus object or no stimuli. Neural activity of PIL glutamatergic neurons was increased when male and female mice were engaged in social interaction with a same-sex juvenile or opposite-sex adult, but not a toy mouse. Neural activity positively correlated with social investigation bout length and negatively correlated with chronological order of bouts. Social preference was unaffected by inhibition; however, inhibiting activity of glutamatergic neurons in the PIL delayed the time it took female mice to form social habituation. Conclusions Together these findings suggest that glutamatergic PIL neurons respond to social stimuli in both male and female mice and may regulate perceptual encoding of social information to facilitate recognition of social stimuli.
Collapse
|
17
|
Lenschow C, Mendes ARP, Lima SQ. Hearing, touching, and multisensory integration during mate choice. Front Neural Circuits 2022; 16:943888. [PMID: 36247731 PMCID: PMC9559228 DOI: 10.3389/fncir.2022.943888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/28/2022] [Indexed: 12/27/2022] Open
Abstract
Mate choice is a potent generator of diversity and a fundamental pillar for sexual selection and evolution. Mate choice is a multistage affair, where complex sensory information and elaborate actions are used to identify, scrutinize, and evaluate potential mating partners. While widely accepted that communication during mate assessment relies on multimodal cues, most studies investigating the mechanisms controlling this fundamental behavior have restricted their focus to the dominant sensory modality used by the species under examination, such as vision in humans and smell in rodents. However, despite their undeniable importance for the initial recognition, attraction, and approach towards a potential mate, other modalities gain relevance as the interaction progresses, amongst which are touch and audition. In this review, we will: (1) focus on recent findings of how touch and audition can contribute to the evaluation and choice of mating partners, and (2) outline our current knowledge regarding the neuronal circuits processing touch and audition (amongst others) in the context of mate choice and ask (3) how these neural circuits are connected to areas that have been studied in the light of multisensory integration.
Collapse
Affiliation(s)
- Constanze Lenschow
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| | - Ana Rita P Mendes
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| | - Susana Q Lima
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| |
Collapse
|
18
|
Tsai TC, Fang YS, Hung YC, Hung LC, Hsu KS. A dorsal CA2 to ventral CA1 circuit contributes to oxytocinergic modulation of long-term social recognition memory. J Biomed Sci 2022; 29:50. [PMID: 35811321 PMCID: PMC9272559 DOI: 10.1186/s12929-022-00834-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Social recognition memory (SRM) is the ability to distinguish familiar from novel conspecifics and is crucial for survival and reproductive success across social species. We previously reported that oxytocin (OXT) receptor (OXTR) signaling in the CA2/CA3a of dorsal hippocampus is essential to promote the persistence of long-term SRM, yet how the endogenous OXT system influences CA2 outputs to regulate long-term SRM formation remains unclear. METHODS To achieve a selective deletion of CA2 OXTRs, we crossed Amigo2-Cre mice with Oxtr-floxed mice to generate CA2-specific Oxtr conditional knockout (Oxtr-/-) mice. A three-chamber paradigm test was used for studying SRM in mice. Chemogenetic and optogenetic targeting strategies were employed to manipulate neuronal activity. RESULTS We show that selective ablation of Oxtr in the CA2 suffices to impair the persistence of long-term SRM but has no effect on sociability and social novelty preference in the three-chamber paradigm test. We find that cell-type specific activation of OXT neurons within the hypothalamic paraventricular nucleus enhances long-term SRM and this enhancement is blocked by local application of OXTR antagonist L-368,899 into dorsal hippocampal CA2 (dCA2) region. In addition, chemogenetic neuronal silencing in dCA2 demonstrated that neuronal activity is essential for forming long-term SRM. Moreover, chemogenetic terminal-specific inactivation reveals a crucial role for dCA2 outputs to ventral CA1 (vCA1), but not dorsal lateral septum, in long-term SRM. Finally, targeted activation of the dCA2-to-vCA1 circuit effectively ameliorates long-term SRM deficit observed in Oxtr-/- mice. CONCLUSIONS These findings highlight the importance of hippocampal CA2 OXTR signaling in governing the persistence of long-term SRM and identify a hippocampal circuit linking dCA2 to vCA1 necessary for controlling long-term SRM formation.
Collapse
Affiliation(s)
- Tsung-Chih Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Yi-Syuan Fang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No. 1, University Rd., Tainan, 70101, Taiwan
| | - Yu-Chieh Hung
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Ling-Chien Hung
- Division of Neurology, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, 60002, Taiwan.
| | - Kuei-Sen Hsu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Department of Pharmacology, College of Medicine, National Cheng Kung University, No. 1, University Rd., Tainan, 70101, Taiwan.
| |
Collapse
|