1
|
Favila N, Gurney K, Overton PG. Role of the basal ganglia in innate and learned behavioural sequences. Rev Neurosci 2024; 35:35-55. [PMID: 37437141 DOI: 10.1515/revneuro-2023-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/24/2023] [Indexed: 07/14/2023]
Abstract
Integrating individual actions into coherent, organised behavioural units, a process called chunking, is a fundamental, evolutionarily conserved process that renders actions automatic. In vertebrates, evidence points to the basal ganglia - a complex network believed to be involved in action selection - as a key component of action sequence encoding, although the underlying mechanisms are only just beginning to be understood. Central pattern generators control many innate automatic behavioural sequences that form some of the most basic behaviours in an animal's repertoire, and in vertebrates, brainstem and spinal pattern generators are under the control of higher order structures such as the basal ganglia. Evidence suggests that the basal ganglia play a crucial role in the concatenation of simpler behaviours into more complex chunks, in the context of innate behavioural sequences such as chain grooming in rats, as well as sequences in which innate capabilities and learning interact such as birdsong, and sequences that are learned from scratch, such as lever press sequences in operant behaviour. It has been proposed that the role of the striatum, the largest input structure of the basal ganglia, might lie in selecting and allowing the relevant central pattern generators to gain access to the motor system in the correct order, while inhibiting other behaviours. As behaviours become more complex and flexible, the pattern generators seem to become more dependent on descending signals. Indeed, during learning, the striatum itself may adopt the functional characteristics of a higher order pattern generator, facilitated at the microcircuit level by striatal neuropeptides.
Collapse
Affiliation(s)
- Natalia Favila
- German Center for Neurodegenerative Diseases, 53127 Bonn, Germany
| | - Kevin Gurney
- Department of Psychology, The University of Sheffield, Sheffield S1 2LT, UK
| | - Paul G Overton
- Department of Psychology, The University of Sheffield, Sheffield S1 2LT, UK
| |
Collapse
|
2
|
Muddapu VRJ, Vijayakumar K, Ramakrishnan K, Chakravarthy VS. A Multi-Scale Computational Model of Levodopa-Induced Toxicity in Parkinson's Disease. Front Neurosci 2022; 16:797127. [PMID: 35516806 PMCID: PMC9063169 DOI: 10.3389/fnins.2022.797127] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/15/2022] [Indexed: 01/08/2023] Open
Abstract
Parkinson's disease (PD) is caused by the progressive loss of dopaminergic cells in substantia nigra pars compacta (SNc). The root cause of this cell loss in PD is still not decisively elucidated. A recent line of thinking has traced the cause of PD neurodegeneration to metabolic deficiency. Levodopa (L-DOPA), a precursor of dopamine, used as a symptom-relieving treatment for PD, leads to positive and negative outcomes. Several researchers inferred that L-DOPA might be harmful to SNc cells due to oxidative stress. The role of L-DOPA in the course of the PD pathogenesis is still debatable. We hypothesize that energy deficiency can lead to L-DOPA-induced toxicity in two ways: by promoting dopamine-induced oxidative stress and by exacerbating excitotoxicity in SNc. We present a systems-level computational model of SNc-striatum, which will help us understand the mechanism behind neurodegeneration postulated above and provide insights into developing disease-modifying therapeutics. It was observed that SNc terminals are more vulnerable to energy deficiency than SNc somas. During L-DOPA therapy, it was observed that higher L-DOPA dosage results in increased loss of terminals in SNc. It was also observed that co-administration of L-DOPA and glutathione (antioxidant) evades L-DOPA-induced toxicity in SNc neurons. Our proposed model of the SNc-striatum system is the first of its kind, where SNc neurons were modeled at a biophysical level, and striatal neurons were modeled at a spiking level. We show that our proposed model was able to capture L-DOPA-induced toxicity in SNc, caused by energy deficiency.
Collapse
Affiliation(s)
| | - Karthik Vijayakumar
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, India
| | | | - V. Srinivasa Chakravarthy
- Department of Biotechnology, Bhupat and Jyothi Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, India
- *Correspondence: V. Srinivasa Chakravarthy
| |
Collapse
|
3
|
Favila N, Gurney K, Overton PG. Blocking NK1 receptors disrupts the sequential and temporal organization of chain grooming in rats. Neuropharmacology 2021; 196:108716. [PMID: 34273385 DOI: 10.1016/j.neuropharm.2021.108716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/28/2021] [Accepted: 07/11/2021] [Indexed: 11/30/2022]
Abstract
The basal ganglia are a group of sub-cortical structures believed to play a critical role in action selection and sequencing. The striatum is the largest input structure of the basal ganglia and contains the neuropeptide substance P in abundance. Recent computational work has suggested that substance P could play a critical role in action sequence performance and acquisition, but this has not been tested experimentally before. The aim of the present study was to test how blocking substance P's main NK1-type receptors affected the sequential and temporal organization of spontaneous behavioral patterns. We did this in rats by focusing on the grooming chain, an innate and highly stereotyped ordered sequence. We performed an open field experiment in which the NK1 receptor antagonist L-733,060 was injected intraperitoneally in rats at two doses (2 and 4 mg/kg/ml), in a within-subject counterbalanced design. We used first order transition probabilities, Variable Length Markov Models, entropy metrics and T-pattern analysis to evaluate the effects of L-733,060 on sequential and temporal aspects of spontaneously ordered behavioral sequences. Our results suggest that blocking NK1 receptors made the transitions between the grooming chain elements significantly more variable, the transition structure of the grooming bouts simpler, and it increased the probability of transitioning from active to inactive states. Overall, this suggest that blocking substance P receptors led to a general break down in the fluency of spontaneous behavioral sequences, suggesting that substance P could be playing a key role in the implementation of sequential patterns.
Collapse
Affiliation(s)
- Natalia Favila
- Department of Psychology, The University of Sheffield, Sheffield, UK.
| | - Kevin Gurney
- Department of Psychology, The University of Sheffield, Sheffield, UK
| | - Paul G Overton
- Department of Psychology, The University of Sheffield, Sheffield, UK
| |
Collapse
|
4
|
Takacs A, Münchau A, Nemeth D, Roessner V, Beste C. Lower-level associations in Gilles de la Tourette syndrome: Convergence between hyperbinding of stimulus and response features and procedural hyperfunctioning theories. Eur J Neurosci 2021; 54:5143-5160. [PMID: 34155701 DOI: 10.1111/ejn.15366] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/27/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022]
Abstract
Gilles de la Tourette syndrome (GTS) can be characterized by enhanced cognitive functions related to creating, modifying and maintaining connections between stimuli and responses (S-R links). Specifically, two areas, procedural sequence learning and, as a novel finding, also event file binding, show converging evidence of hyperfunctioning in GTS. In this review, we describe how these two enhanced functions can be considered as cognitive mechanisms behind habitual behaviour, such as tics in GTS. Moreover, the presence of both procedural sequence learning and event file binding hyperfunctioning in the same disorder can be treated as evidence for their functional connections, even beyond GTS. Importantly though, we argue that hyperfunctioning of event file binding and procedural learning are not interchangeable: they have different time scales, different sensitivities to potential impairment in action sequencing and distinguishable contributions to the cognitive profile of GTS. An integrated theoretical account of hyperbinding and hyperlearning in GTS allows to formulate predictions for the emergence, activation and long-term persistence of tics in GTS.
Collapse
Affiliation(s)
- Adam Takacs
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Dezso Nemeth
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary.,Lyon Neuroscience Research Center (CRNL), Université de Lyon, Lyon, France
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
5
|
Takacs A, Stock A, Kuntke P, Werner A, Beste C. On the functional role of striatal and anterior cingulate GABA+ in stimulus-response binding. Hum Brain Mapp 2021; 42:1863-1878. [PMID: 33421290 PMCID: PMC7978129 DOI: 10.1002/hbm.25335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 01/13/2023] Open
Abstract
Successful response selection relies on constantly updating stimulus-response associations. The Theory of Event Coding (TEC) proposes that perception and action are conjointly coded in event files, for which fronto-striatal networks seem to play an important role. However, the exact neurobiochemical mechanism behind event file coding has remained unknown. We investigated the functional relevance of the striatal and anterior cingulate (ACC) GABAergic system using magnetic resonance spectroscopy (MRS). Specifically, the striatal and ACC concentrations of GABA+ referenced against N-acetylaspartate (NAA) were assessed in 35 young healthy males, who subsequently performed a standard event file task. As predicted by the TEC, the participants' responses were modulated by pre-established stimulus response bindings in event files. GABA+/NAA concentrations in the striatum and ACC were not correlated with the overall event binding effect. However, higher GABA+/NAA concentrations in the ACC were correlated with stronger event file binding processes in the early phase of the task. This association disappeared by the end of the task. Taken together, our findings show that striatal GABA+ levels does not seem to modulate event file binding, while ACC GABA+ seem to improve event file binding, but only as long as the participants have not yet gathered sufficient task experience. To the best of our knowledge, this is the first study providing direct evidence for the role of striatal and ACC GABA+ in stimulus-response bindings and thus insights into the brain structure-specific neurobiological aspects of the TEC.
Collapse
Affiliation(s)
- Adam Takacs
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTU DresdenDresdenGermany
| | - Ann‐Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTU DresdenDresdenGermany
- Biopsychology, Department of Psychology, School of ScienceTU DresdenDresdenGermany
| | - Paul Kuntke
- Institute of Diagnostic and Interventional NeuroradiologyTU DresdenDresdenGermany
| | - Annett Werner
- Institute of Diagnostic and Interventional NeuroradiologyTU DresdenDresdenGermany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of MedicineTU DresdenDresdenGermany
| |
Collapse
|
6
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
7
|
Chartove JAK, McCarthy MM, Pittman-Polletta BR, Kopell NJ. A biophysical model of striatal microcircuits suggests gamma and beta oscillations interleaved at delta/theta frequencies mediate periodicity in motor control. PLoS Comput Biol 2020; 16:e1007300. [PMID: 32097404 PMCID: PMC7059970 DOI: 10.1371/journal.pcbi.1007300] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 03/06/2020] [Accepted: 12/19/2019] [Indexed: 01/02/2023] Open
Abstract
Striatal oscillatory activity is associated with movement, reward, and decision-making, and observed in several interacting frequency bands. Local field potential recordings in rodent striatum show dopamine- and reward-dependent transitions between two states: a "spontaneous" state involving β (∼15-30 Hz) and low γ (∼40-60 Hz), and a state involving θ (∼4-8 Hz) and high γ (∼60-100 Hz) in response to dopaminergic agonism and reward. The mechanisms underlying these rhythmic dynamics, their interactions, and their functional consequences are not well understood. In this paper, we propose a biophysical model of striatal microcircuits that comprehensively describes the generation and interaction of these rhythms, as well as their modulation by dopamine. Building on previous modeling and experimental work suggesting that striatal projection neurons (SPNs) are capable of generating β oscillations, we show that networks of striatal fast-spiking interneurons (FSIs) are capable of generating δ/θ (ie, 2 to 6 Hz) and γ rhythms. Under simulated low dopaminergic tone our model FSI network produces low γ band oscillations, while under high dopaminergic tone the FSI network produces high γ band activity nested within a δ/θ oscillation. SPN networks produce β rhythms in both conditions, but under high dopaminergic tone, this β oscillation is interrupted by δ/θ-periodic bursts of γ-frequency FSI inhibition. Thus, in the high dopamine state, packets of FSI γ and SPN β alternate at a δ/θ timescale. In addition to a mechanistic explanation for previously observed rhythmic interactions and transitions, our model suggests a hypothesis as to how the relationship between dopamine and rhythmicity impacts motor function. We hypothesize that high dopamine-induced periodic FSI γ-rhythmic inhibition enables switching between β-rhythmic SPN cell assemblies representing the currently active motor program, and thus that dopamine facilitates movement in part by allowing for rapid, periodic shifts in motor program execution.
Collapse
Affiliation(s)
- Julia A. K. Chartove
- Graduate program in Neuroscience, Center for Systems Neuroscience, Boston University, Boston, Massachusetts, United States of America
| | - Michelle M. McCarthy
- Department of Mathematics & Statistics, Boston University, Boston, Massachusetts, United States of America
| | | | - Nancy J. Kopell
- Department of Mathematics & Statistics, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
8
|
Werner FM, Coveñas R. Comparison of Mono-dopaminergic and Multi-target Pharmacotherapies in Primary Parkinson Syndrome and Assessment Tools to Evaluate Motor and Non-motor Symptoms. CURRENT DRUG THERAPY 2019. [DOI: 10.2174/1574885513666181115104137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:Primary Parkinson syndrome is mostly treated by dopaminergic drugs, while the progression of the disease is not altered. Some non-dopaminergic are available, which are administered only after the Parkinsonian symptoms get worse.Objective:The objective of this review is to give basic results in order to compare a dopaminergic and non-dopaminergic pharmacotherapy in Parkinson’s disease and to control whether the add-on pharmacotherapy with non-dopaminergic drugs can inhibit the progression of the disease.Methods:In primary Parkinson syndrome, the altered activity of classical neurotransmitters and neuropeptides in the extrapyramidal system is summarized and up-dated. Anatomical studies on neural networks in the basal ganglia are mentioned. The direct, motor facilitatory pathway (D1 dopaminergic neurons) from the substantia nigra to the thalamus, via the internal globus pallidus, and the indirect, motor inhibitory pathway via D2 dopaminergic neurons have been considered. These established anatomical pathways have been brought in line with the neural interactions derived from neurotransmitter balances or imbalances. Besides, preclinical and clinical studies of effective non-dopaminergic anti-Parkinsonian drugs are reviewed.Results:It can be hypothesized that glutamatergic neurons enhance dopamine deficiency in the substantia nigra and putamen through an increased presynaptic inhibition mediated by NMDA receptors. In the putamen, 5-HT2A serotonergic neurons counteract D2 dopaminergic neurons and A2A adenosine neurons antagonize D2 dopaminergic neurons by activating glutamatergic neurons, which presynaptically inhibit via subtype 5 of metabotropic glutamatergic receptors, D2 dopaminergic neurons. In the extrapyramidal system, an up-dated neural network, which harmonizes established anatomical pathways with derived neural interactions, is presented. In Parkinson’s disease, a question should be answered, whether a combination of dopaminergic and non-dopaminergic drugs can promote an increased motor and non-motor functioning.Conclusion:A mono-target pharmacotherapy (using only dopaminergic drugs) and a multi-target pharmacotherapy (i.e. by combining dopaminergic and non-dopaminergic drugs) are compared. The alternate administration of dopaminergic and non-dopaminergic anti-Parkinsonian drugs, administered at different times during the day, must be tested in order to inhibit the progression of the disease. Assessment tools can be used to evaluate motor and cognitive functions. Moreover, imaging examination techniques can be also applied to control the course of the disease.
Collapse
Affiliation(s)
- Felix-Martin Werner
- Institute of Neurosciences of Castilla y Leon (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems (Lab. 14), University of Salamanca, Salamanca, Spain
| | - Rafael Coveñas
- Institute of Neurosciences of Castilla y Leon (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems (Lab. 14), University of Salamanca, Salamanca, Spain
| |
Collapse
|