1
|
Choudhury S, Dasmahapatra AK. Destabilisation of Alzheimer's amyloid-β protofibrils by Baicalein: mechanistic insights from all-atom molecular dynamics simulations. Mol Divers 2024:10.1007/s11030-024-11001-9. [PMID: 39379662 DOI: 10.1007/s11030-024-11001-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and the fifth leading cause of death globally. Aggregation and deposition of neurotoxic Aβ fibrils in the neural tissues of the brain is a key hallmark in AD pathogenesis. Destabilisation studies of the amyloid-peptide by various natural molecules are highly relevant due to their neuroprotective and therapeutic potential for AD. We performed molecular dynamics (MD) simulation to investigate the destabilisation mechanism of amyloidogenic protofilament intermediate by Baicalein (BCL), a naturally occurring flavonoid. We found that the BCL molecule formed strong hydrophobic contacts with non-polar residues, specifically F19, A21, V24, and I32 of Chain A and B of the pentameric protofibril. Upon binding, it competed with the native hydrophobic contacts of the Aβ protein. BCL loosened the tight packing of the hydrophobic core by disrupting the hydrogen bonds and the prominent D23-K28 inter-chain salt bridges of the protofibril. The decrease in the structural stability of Aβ protofibrils was confirmed by the increased RMSD, radius of gyration, solvent accessible surface area (SASA), and reduced β-sheet content. PCA indicated that the presence of the BCL molecule intensified protofibril motions, particularly affecting residues in Chain A and B regions. Our findings propose that BCL would be a potent destabiliser of Aβ protofilament, and may be considered as a therapeutic agent in treating AD.
Collapse
Affiliation(s)
- Sadika Choudhury
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Ashok Kumar Dasmahapatra
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
2
|
Cerutti L, Brofiga M. Unraveling brain diseases: The promise of brain-on-a-chip models. J Neurosci Methods 2024; 405:110105. [PMID: 38460796 DOI: 10.1016/j.jneumeth.2024.110105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/23/2024] [Accepted: 03/03/2024] [Indexed: 03/11/2024]
Abstract
Brain disorders, encompassing a wide spectrum of neurological and psychiatric conditions, present a formidable challenge in modern medicine. Despite decades of research, the intricate complexity of the human brain still eludes comprehensive understanding, impeding the development of effective treatments. Recent advancements in microfluidics and tissue engineering have led to the development of innovative platforms known as "Brain-on-a-Chip" (BoC) i.e., advanced in vitro systems that aim to replicate the microenvironment of the brain with the highest possible fidelity. This technology offers a promising test-bed for studying brain disorders at the cellular and network levels, providing insights into disease mechanisms, drug screening, and, in perspective, the development of personalized therapeutic strategies. In this review, we provide an overview of the BoC models developed over the years to model and understand the onset and progression of some of the most severe neurological disorders in terms of incidence and debilitation (stroke, Parkinson's, Alzheimer's, and epilepsy). We also report some of the cutting-edge therapeutic approaches whose effects were evaluated by means of these technologies. Finally, we discuss potential challenges, and future perspectives of the BoC models.
Collapse
Affiliation(s)
- Letizia Cerutti
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBIRS), University of Genova, Genova, Italy
| | - Martina Brofiga
- Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBIRS), University of Genova, Genova, Italy; ScreenNeuroPharm s.r.l, Sanremo, Italy; Neurofacility, Istituto Italiano di Tecnologia, Genova, Italy.
| |
Collapse
|
3
|
Kopel J, Sehar U, Choudhury M, Reddy PH. Alzheimer's Disease and Alzheimer's Disease-Related Dementias in African Americans: Focus on Caregivers. Healthcare (Basel) 2023; 11:868. [PMID: 36981525 PMCID: PMC10048201 DOI: 10.3390/healthcare11060868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Alzheimer's disease (AD) and Alzheimer's Disease-Related Dementias (ADRD) are chronic illnesses that are highly prevalent in African Americans (AA). AD and ADRD are caused by multiple factors, such as genetic mutations, modifiable and non-modifiable risk factors, and lifestyle. Histopathological, morphological, and cellular studies revealed how multiple cellular changes are implicated in AD and ADRD, including synaptic damage, inflammatory responses, hormonal imbalance, mitochondrial abnormalities, and neuronal loss, in addition to the accumulation of amyloid beta and phosphorylated tau in the brain. The contributions of race, ethnicity, location and socioeconomic status all have a significant impact on the care and support services available to dementia patients. Furthermore, disparities in health care are entangled with social, economic, and environmental variables that perpetuate disadvantages among different groups, particularly African Americans. As such, it remains important to understand how various racial and ethnic groups perceive, access, and experience health care. Considering that the mounting data shows AA may be more susceptible to AD than white people, the demographic transition creates significant hurdles in providing adequate care from family caregivers. Furthermore, there is growing recognition that AD and ADRD pose a significant stress on AA caregivers compared to white people. In this review, we examine the current literature on racial disparities in AD and ADRD, particularly concerning AA caregivers.
Collapse
Affiliation(s)
- Jonathan Kopel
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Moumita Choudhury
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Public Health, School of Population and Public Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
4
|
Mitochondrial DNA population variation is not associated with Alzheimer's in the Japanese population: A consistent finding across global populations. PLoS One 2022; 17:e0276169. [PMID: 36264923 PMCID: PMC9584534 DOI: 10.1371/journal.pone.0276169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/02/2022] [Indexed: 11/06/2022] Open
Abstract
Several mitochondrial DNA (mtDNA) haplogroup association studies have suggested that common mtDNA variants are associated with multifactorial diseases, including Alzheimer’s disease (AD). However, such studies have also produced conflicting results. A new mtDNA association model, the ‘variant load model’ (VLM), has been applied to multiple disease phenotypes. Application of the VLM in a 2017 study failed to find different variant loads in AD patients compared to controls, in two cohorts of European origin. The study also suggested a lower variant load in healthy elderly individuals, but could offer no replicate cohort to support this observation. Here, the VLM is applied to Japanese mtDNA sequences; in doing so, we explored the role of mtDNA variation in AD and ageing in a different global population. Consistent with the previous findings using the VLM in two populations of European origin, we found no evidence for an association between rarer, non-haplogroup associated variation and the development of AD. However, the result in the context of ageing that suggested those with fewer mildly deleterious mutations might undergo healthier ageing, was not replicated. In contrast to our previous study, our present results suggest that those living to advanced old age may harbour more mildly deleterious mtDNA variations. Importantly our analysis showed this finding is not primarily being driven by many rare population variants dispersed across the mtDNA, but by a few more frequent variants with high MutPred scores. It is suggested the variants in question do not exert a mildly deleterious effect in their most frequent haplogroup context.
Collapse
|
5
|
Zhai Z, Xie D, Qin T, Zhong Y, Xu Y, Sun T. Effect and Mechanism of Exogenous Melatonin on Cognitive Deficits in Animal Models of Alzheimer's Disease: A Systematic review and Meta-analysis. Neuroscience 2022; 505:91-110. [PMID: 36116555 DOI: 10.1016/j.neuroscience.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 12/09/2022]
Abstract
Melatonin (MT) has been reported to control and prevent Alzheimer's disease (AD) in the clinic; however, the effect and mechanism of MT on AD have not been specifically described. Therefore, the main purpose of this meta-analysis was to explore the effect and mechanism of MT on AD models by studying behavioural indicators and pathological features. Seven databases were searched and 583 articles were retrieved. Finally, nine studies (13 analyses, 294 animals) were included according to pre-set criteria. Three authors independently judged the selected literature and the methodological quality. Meta-analysis showed that MT markedly ameliorated the learning ability by reducing the escape latency (EL), and the memory deficit was significantly corrected by increasing the dwell time in the target quadrant and crossings over the platform location in the Morris Water Maze (MWM). Among the pathological features, subgroup analysis found that MT may ease the symptoms of AD mainly by reducing the deposition of Aβ40 and Aβ42 in the cortex. In addition, MT exerted a superior effect on ameliorating the learning ability of senescence-related and metabolic AD models, and corrected the memory deficit of the toxin-induced AD model. The study was registered at PROSPERO (CRD42021226594).
Collapse
Affiliation(s)
- Zhenwei Zhai
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Danni Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Tao Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Yanmei Zhong
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Ying Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Tao Sun
- School of Medical Information Engineering, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
6
|
García Pretelt FJ, Suárez Relevo JX, Aguillón D, Lopera F, Ochoa JF, Tobón Quintero CA. Automatic Classification of Subjects of the PSEN1-E280A Family at Risk of Developing Alzheimer’s Disease Using Machine Learning and Resting State Electroencephalography. J Alzheimers Dis 2022; 87:817-832. [DOI: 10.3233/jad-210148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: The study of genetic variant carriers provides an opportunity to identify neurophysiological changes in preclinical stages. Electroencephalography (EEG) is a low-cost and minimally invasive technique which, together with machine learning, provide the possibility to construct systems that classify subjects that might develop Alzheimer’s disease (AD). Objective: The aim of this paper is to evaluate the capacity of the machine learning techniques to classify healthy Non-Carriers (NonCr) from Asymptomatic Carriers (ACr) of PSEN1-E280A variant for autosomal dominant Alzheimer’s disease (ADAD), using spectral features from EEG channels and brain-related independent components (ICs) obtained using independent component analysis (ICA). Methods: EEG was recorded in 27 ACr and 33 NonCr. Statistical significance analysis was applied to spectral information from channels and group ICA (gICA), standardized low-resolution tomography (sLORETA) analysis was applied over the IC as well. Strategies for feature selection and classification like Chi-square, mutual informationm and support vector machines (SVM) were evaluated over the dataset. Results: A test accuracy up to 83% was obtained by implementing a SVM with spectral features derived from gICA. The main findings are related to theta and beta rhythms, generated in the parietal and occipital regions, like the precuneus and superior parietal lobule. Conclusion: Promising models for classification of preclinical AD due to PSEN-1-E280A variant can be trained using spectral features, and the importance of the beta band and precuneus region is highlighted in asymptomatic stages, opening up the possibility of its use as a screening methodology.
Collapse
Affiliation(s)
- Francisco J. García Pretelt
- Bioinstrumentation and Clinical Engineering Research Group (GIBIC), Bioengineering Program, Universidad de Antioquia, Medellín, Colombia
- Neuropsychology and Behavior Group (GRUNECO), Medical School, Universidad de Antioquia, Medellín, Colombia
| | - Jazmín X. Suárez Relevo
- Bioinstrumentation and Clinical Engineering Research Group (GIBIC), Bioengineering Program, Universidad de Antioquia, Medellín, Colombia
- Neuropsychology and Behavior Group (GRUNECO), Medical School, Universidad de Antioquia, Medellín, Colombia
| | - David Aguillón
- Neuroscience Group of Antioquia (GNA), Medical School, Universidad de Antioquia, Medellín, Colombia
- Neuropsychology and Behavior Group (GRUNECO), Medical School, Universidad de Antioquia, Medellín, Colombia
| | - Francisco Lopera
- Neuroscience Group of Antioquia (GNA), Medical School, Universidad de Antioquia, Medellín, Colombia
| | - John Fredy Ochoa
- Bioinstrumentation and Clinical Engineering Research Group (GIBIC), Bioengineering Program, Universidad de Antioquia, Medellín, Colombia
- Neuropsychology and Behavior Group (GRUNECO), Medical School, Universidad de Antioquia, Medellín, Colombia
| | - Carlos A. Tobón Quintero
- Neuroscience Group of Antioquia (GNA), Medical School, Universidad de Antioquia, Medellín, Colombia
- Neuropsychology and Behavior Group (GRUNECO), Medical School, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
7
|
Sanati M, Aminyavari S, Afshari AR, Sahebkar A. Mechanistic insight into the role of metformin in Alzheimer's disease. Life Sci 2022; 291:120299. [PMID: 34999113 DOI: 10.1016/j.lfs.2021.120299] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/23/2021] [Accepted: 12/31/2021] [Indexed: 11/28/2022]
Abstract
Alzheimer's disease (AD), a type of dementia, is characterized by progressive memory decline and cognition impairment. Despite the considerable body of evidence regarding AD pathophysiology, current therapies merely slow down the disease progression, and a comprehensive therapeutic approach is unavailable. Accordingly, finding an efficient multifunctional remedy is necessary to blunt the increasing rate of AD incidence in the upcoming years. AD shares pathophysiological similarities (e.g., impairment of cognitive functions, insulin sensitivity, and brain glucose metabolism) with noninsulin-dependent diabetes mellitus (NIDDM), which offers the utilization of metformin, a biguanide hypoglycemic agent, as an alternative therapeutic approach in AD therapy. Emerging evidence has revealed the impact of metformin in patients suffering from AD. It has been described that metformin employs multiple mechanisms to improve cognition and memory impairment in pre-clinical AD models, including reduction of hippocampal amyloid-beta (Aβ) plaque and neurofibrillary tangles (NFTs) load, suppression of inflammation, amelioration of mitochondrial dysfunction and oxidative stress, restriction of apoptotic neuronal death, and induction of neurogenesis. This review discusses the pre-clinical evidence, which may shed light on the role of metformin in AD and provide a more comprehensive mechanistic insight for future studies in this area of research.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
8
|
Gunawardena IPC, Retinasamy T, Shaikh MF. Is Aducanumab for LMICs? Promises and Challenges. Brain Sci 2021; 11:1547. [PMID: 34827546 PMCID: PMC8615623 DOI: 10.3390/brainsci11111547] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 12/02/2022] Open
Abstract
Aducanumab, a human monoclonal antibody, was approved in June of 2021 as the first disease-modifying treatment for Alzheimer's disease by the United States Food and Drug Administration (U.S. FDA). A substantial proportion of patients with Alzheimer's disease live in low- and middle-income countries (LMICs), and the debilitating effects of this disease exerts burdens on patients and caregivers in addition to the significant economic strains many nations bear. While the advantages of a disease-modifying therapy are clear in delaying the progression of disease to improve patient outcomes, aducanumab's approval by the U.S. FDA was met with controversy for a plethora of reasons. This paper will provide precursory insights into aducanumab's role, appropriateness, and cost-effectiveness in low- and middle-income countries. We extend some of the controversies associated with aducanumab, including the contradicting evidence from the two trials (EMERGE and ENGAGE) and the resources required to deliver the treatment safely and effectively to patients, among other key considerations.
Collapse
Affiliation(s)
- Illangage P. C. Gunawardena
- Clinical School Johor Bahru, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Johor Bahru 80100, Johor, Malaysia;
| | - Thaarvena Retinasamy
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia;
| | - Mohd. Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia;
| |
Collapse
|
9
|
Kumar M, Bansal N. A Revisit to Etiopathogenesis and Therapeutic Strategies in Alzheimer's Disease. Curr Drug Targets 2021; 23:486-512. [PMID: 34792002 DOI: 10.2174/1389450122666211118125233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 09/05/2021] [Accepted: 09/13/2021] [Indexed: 11/22/2022]
Abstract
Dementia is a cluster of brain abnormalities that trigger progressive memory deficits and other cognitive abilities such as skills, language, or executive function. Alzheimer's disease (AD) is the foremost type of age-associated dementia that involves progressive neurodegeneration accompanied by profound cognitive deficits in advanced stages that severely hamper social or occupational abilities with or without the involvement of any other psychiatric condition. The last two decades witnessed a sharp increase (~123%) in mortality due to AD type dementia, typically owing to a very low disclosure rate (~45%) and hence, the prophylactic, as well as the therapeutic cure of AD, has been a huge challenge. Although understanding of AD pathogenesis has witnessed a remarkable growth (e.g., tauopathy, oxidative stress, lipid transport, glucose uptake, apoptosis, synaptic dysfunction, inflammation, and immune system), still a dearth of an effective therapeutic agent in the management of AD prompts the quest for newer pharmacological targets in the purview of its growing epidemiological status. Most of the current therapeutic strategies focus on modulation of a single target, e.g., inhibition of acetylcholinesterase, glutamate excitotoxicity (memantine), or nootropics (piracetam), even though AD is a multifaceted neurological disorder. There is an impedance urgency to find not only symptomatic but effective disease-modifying therapies. The present review focuses on the risk / protective factors and pathogenic mechanisms involved in AD. In addition to the existing symptomatic therapeutic approach, a diverse array of possible targets linked to pathogenic cascades have been re-investigated to envisage the pharmacotherapeutic strategies in AD.
Collapse
Affiliation(s)
- Manish Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab. India
| | - Nitin Bansal
- Department of Pharmaceutical Sciences, Chaudhary Bansi Lal University (CBLU), Bhiwani, Haryana 127021. India
| |
Collapse
|
10
|
Raji CA, Torosyan N, Silverman DHS. Optimizing Use of Neuroimaging Tools in Evaluation of Prodromal Alzheimer's Disease and Related Disorders. J Alzheimers Dis 2021; 77:935-947. [PMID: 32804147 DOI: 10.3233/jad-200487] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and is characterized by preclinical, pre-dementia, and dementia phases. Progression of the disease leads to cognitive decline and is associated with loss of functional independence, personality changes, and behavioral disturbances. Current guidelines for AD diagnosis include the use of neuroimaging tools as biomarkers for identifying and monitoring pathological changes. Various imaging modalities, namely magnetic resonance imaging (MRI), fluorodeoxyglucose-positron emission tomography (FDG-PET) and PET with amyloid-beta tracers are available to facilitate early accurate diagnoses. Enhancing diagnosis in the early stages of the disease can allow for timely interventions that can delay progression of the disease. This paper will discuss the characteristic findings associated with each of the imaging tools for patients with AD, with a focus on FDG-PET due to its established accuracy in assisting with the differential diagnosis of dementia and discussion of other methods including MRI. Diagnostically-relevant features to aid clinicians in making a differential diagnosis will also be pointed out and multimodal imaging will be reviewed. We also discuss the role of quantification software in interpretation of brain imaging. Lastly, to guide evaluation of patients presenting with cognitive deficits, an algorithm for optimal integration of these imaging tools will be shared. Molecular imaging modalities used in dementia evaluations hold promise toward identifying AD-related pathology before symptoms are fully in evidence. The work describes state of the art functional and molecular imaging methods for AD. It will also overview a clinically applicable quantitative method for reproducible assessments of such scans in the early identification of AD.
Collapse
Affiliation(s)
- Cyrus A Raji
- Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA.,Mallinckrodt Institute of Radiology, Division of Neuroradiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Nare Torosyan
- Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| | - Daniel H S Silverman
- Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at the University of California, Los Angeles, CA, USA
| |
Collapse
|
11
|
Khan MSH, Hegde V. Obesity and Diabetes Mediated Chronic Inflammation: A Potential Biomarker in Alzheimer's Disease. J Pers Med 2020; 10:jpm10020042. [PMID: 32455946 PMCID: PMC7354630 DOI: 10.3390/jpm10020042] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/15/2022] Open
Abstract
Alzheimer’s disease (AD) is the sixth leading cause of death and is correlated with obesity, which is the second leading cause of preventable diseases in the United States. Obesity, diabetes, and AD share several common features, and inflammation emerges as the central link. High-calorie intake, elevated free fatty acids, and impaired endocrine function leads to insulin resistance and systemic inflammation. Systemic inflammation triggers neuro-inflammation, which eventually hinders the metabolic and regulatory function of the brain mitochondria leading to neuronal damage and subsequent AD-related cognitive decline. As an early event in the pathogenesis of AD, chronic inflammation could be considered as a potential biomarker in the treatment strategies for AD.
Collapse
|
12
|
Wilhelm EA, Torres MLCP, Pereira CF, Vogt AG, Cervo R, Dos Santos BGT, Cargnelutti R, Luchese C. Therapeutic potential of selanyl amide derivatives in the in vitro anticholinesterase activity and in in vivo antiamnesic action. Can J Physiol Pharmacol 2020; 98:304-313. [PMID: 31821013 DOI: 10.1139/cjpp-2019-0291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The present study evaluated the in vitro acetylcholinesterase (AChE) inhibitor activity of two new selanyl amide derivatives in cerebral structures of mice. Our results demonstrated that N-(2-(3-(phenylselanyl)propoxy)phenyl)furan-2-carboxamide (1) and N-(2-(3-(phenylselanyl)propoxy)phenyl)thiophene-2-carboxamide (2) inhibited the in vitro AChE activity in mice. Another objective was to assess the effect of the best AChE inhibitor in an amnesic model induced by scopolamine (SCO) in male Swiss mice. The involvement of AChE activity and lipid peroxidation in the cerebral structures was investigated. Our results showed that compound 1 (10 mg/kg, intragastrically) attenuated the latency to find the escape box and the number of holes visited in the Barnes maze task, without altering the locomotor and exploratory activities in an open-field test. Compound 1 protected against increasing in lipid peroxidation levels and AChE activity caused by SCO in the cerebral cortex and hippocampus of mice. In conclusion, the present study evidenced the in vitro anticholinesterase effect of two new selanyl amide derivatives in the cerebral structures of mice. Moreover, compound 1, a selanyl amide derivative containing a furan ring, demonstrated antiamnesic action due to its antioxidant and anticholinesterase activities in cerebral structures.
Collapse
Affiliation(s)
- Ethel A Wilhelm
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, RS, Brazil
| | - Marina Laura C P Torres
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, RS, Brazil
| | - Caroline F Pereira
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, RS, Brazil
| | - Ane G Vogt
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, RS, Brazil
| | - Rodrigo Cervo
- Department of Chemistry, Universidade Federal de Santa Maria, LMI - Laboratório de Materiais Inorgânicos, 97105-900, Santa Maria, RS, Brazil
| | - Brenda G T Dos Santos
- Department of Chemistry, Universidade Federal de Santa Maria, LMI - Laboratório de Materiais Inorgânicos, 97105-900, Santa Maria, RS, Brazil
| | - Roberta Cargnelutti
- Department of Chemistry, Universidade Federal de Santa Maria, LMI - Laboratório de Materiais Inorgânicos, 97105-900, Santa Maria, RS, Brazil
| | - Cristiane Luchese
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, RS, Brazil
| |
Collapse
|
13
|
Roldán-Peña JM, Romero-Real V, Hicke J, Maya I, Franconetti A, Lagunes I, Padrón JM, Petralla S, Poeta E, Naldi M, Bartolini M, Monti B, Bolognesi ML, López Ó, Fernández-Bolaños JG. Tacrine-O-protected phenolics heterodimers as multitarget-directed ligands against Alzheimer's disease: Selective subnanomolar BuChE inhibitors. Eur J Med Chem 2019; 181:111550. [DOI: 10.1016/j.ejmech.2019.07.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 07/15/2019] [Accepted: 07/19/2019] [Indexed: 12/12/2022]
|
14
|
Weisenbach SL, Kim J, Hammers D, Konopacki K, Koppelmans V. Linking late life depression and Alzheimer's disease: mechanisms and resilience. Curr Behav Neurosci Rep 2019; 6:103-112. [PMID: 33134032 PMCID: PMC7597973 DOI: 10.1007/s40473-019-00180-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW This review summarizes recent literature linking Alzheimer's disease (AD) and late life depression (LLD). It describes shared neurobiological features associated with both conditions, as well as factors that may increase resilience to onset and severity of cognitive decline and AD. Finally, we pose a number of future research directions toward improving detection, management, and treatment of both conditions. RECENT FINDINGS Epidemiological studies have consistently shown a significant relationship between LLD and AD, with support for depression as a prodromal feature of AD, a risk factor for AD, and observation of some shared risk factors underlying both disease processes. Three major neurobiological features shared by LLD and AD include neurodegeneration, disruption to cerebrovascular functioning, and increased levels of neuroinflammation. There are also potentially modifiable factors that can increase resilience to AD and LLD, including social support, physical and cognitive engagement, and cognitive reserve. SUMMARY We propose that, in the context of depression, neurobiological events, such as neurodegeneration, cerebrovascular disease, and neuroinflammation result in a brain that is more vulnerable to the consequences of the pathophysiological features of AD, lowering the threshold for the onset of the behavioral presentation of AD (i.e., cognitive decline and dementia). We discuss factors that can increase resilience to AD and LLD, including social support, physical and cognitive engagement, and cognitive reserve. We conclude with a discussion of future research directions.
Collapse
|
15
|
Angelopoulou E, Piperi C. Beneficial Effects of Fingolimod in Alzheimer's Disease: Molecular Mechanisms and Therapeutic Potential. Neuromolecular Med 2019; 21:227-238. [PMID: 31313064 DOI: 10.1007/s12017-019-08558-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/12/2019] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD), the most common cause of dementia remains of unclear etiology with current pharmacological therapies failing to halt disease progression. Several pathophysiological mechanisms have been implicated in AD pathogenesis including amyloid-β protein (Aβ) accumulation, tau hyperphosphorylation, neuroinflammation and alterations in bioactive lipid metabolism. Sphingolipids, such as sphingosine-1-phosphate (S1P) and intracellular ceramide/S1P balance are highly implicated in central nervous system physiology as well as in AD pathogenesis. FTY720/Fingolimod, a structural sphingosine analog and S1P receptor (S1PR) modulator that is currently used in the treatment of relapsing-remitting multiple sclerosis (RRMS) has been shown to exert beneficial effects on AD progression. Recent in vitro and in vivo evidence indicate that fingolimod may suppress Aβ secretion and deposition, inhibit apoptosis and enhance brain-derived neurotrophic factor (BDNF) production. Furthermore, it regulates neuroinflammation, protects against N-methyl-D-aspartate (NMDA)-excitotoxicity and modulates receptor for advanced glycation end products signaling axis that is highly implicated in AD pathogenesis. This review discusses the underlying molecular mechanisms of the emerging neuroprotective role of fingolimod in AD and its therapeutic potential, aiming to shed more light on AD pathogenesis as well as direct future treatment strategies.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street - Bldg 16, 11527, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street - Bldg 16, 11527, Athens, Greece.
| |
Collapse
|
16
|
Li Y, Meng F, Shi J. Learning using privileged information improves neuroimaging-based CAD of Alzheimer's disease: a comparative study. Med Biol Eng Comput 2019; 57:1605-1616. [PMID: 31028606 DOI: 10.1007/s11517-019-01974-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 03/19/2019] [Indexed: 12/26/2022]
Abstract
The neuroimaging-based computer-aided diagnosis (CAD) for Alzheimer's disease (AD) has shown its effectiveness in recent years. In general, the multimodal neuroimaging-based CAD always outperforms the approaches based on a single modality. However, single-modal neuroimaging is more favored in clinical practice for diagnosis due to the limitations of imaging devices, especially in rural hospitals. Learning using privileged information (LUPI) is a new learning paradigm that adopts additional privileged information (PI) modality to help to train a more effective learning model during the training stage, but PI itself is not available in the testing stage. Since PI is generally related to the training samples, it is then transferred to the learned model. In this work, a LUPI-based CAD framework for AD is proposed. It can flexibly perform a classifier- or feature-level LUPI, in which the information is transferred from the additional PI modality to the diagnosis modality. A thorough comparison has been made among three classifier-level algorithms and five feature-level LUPI algorithms. The experimental results on the ADNI dataset show that all classifier-level and deep learning based feature-level LUPI algorithms can improve the performance of a single-modal neuroimaging-based CAD for AD by transferring PI. Graphical abstract Graphical abstract for the framework of the LUPI-based CAD for AD.
Collapse
Affiliation(s)
- Yan Li
- Shenzhen City Key Laboratory of Embedded System Design, College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Fanqing Meng
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai Institute for Advanced Communication and Data Science, School of Communication and Information Engineering, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, People's Republic of China
| | - Jun Shi
- Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai Institute for Advanced Communication and Data Science, School of Communication and Information Engineering, Shanghai University, No. 99 Shangda Road, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
17
|
Andrade S, Ramalho MJ, Loureiro JA, Pereira MC. Interaction of natural compounds with biomembrane models: A biophysical approach for the Alzheimer's disease therapy. Colloids Surf B Biointerfaces 2019; 180:83-92. [PMID: 31030024 DOI: 10.1016/j.colsurfb.2019.04.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 11/29/2022]
Abstract
Natural compounds such as caffeine (CA), gallic acid (GA) and tannic acid (TA) have been reported to be useful for Alzheimer's disease (AD) therapy. It was proved that some natural compounds inhibit the formation of senil plaques composed by beta-amyloid peptide (Aβ), a hallmark of AD. Evidences suggest that the therapeutic activity of compounds depends of their interaction with biological membranes. To understand why these compounds fail in vivo and in clinical trials, it is important to evaluate their pharmacokinetics properties. Thus, a biophysical approach to study drug-membrane interactions is essential to understand the mechanisms by which the drugs interact with the cellular membranes and affect the Aβ production, aggregation and clearance pathways. 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and cholesterol (chol) were used to mimic the biophysical properties of cell membranes and study their interactions with these compounds. The partition coefficient, influence on membrane fluidity and location within the bilayer of the drugs were studied by derivative spectrophotometry, dynamic light scattering and fluorescence quenching, respectively. The results suggest that TA exhibited a significant higher partition than CA and GA and a preferential location near to the polar head of bilayer. The obtained results may explain the therapeutic mechanisms reported for these natural compounds.
Collapse
Affiliation(s)
- Stephanie Andrade
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Maria J Ramalho
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Joana A Loureiro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Maria Carmo Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
18
|
Cowan K, Anichtchik O, Luo S. Mitochondrial integrity in neurodegeneration. CNS Neurosci Ther 2019; 25:825-836. [PMID: 30746905 PMCID: PMC6566061 DOI: 10.1111/cns.13105] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/22/2018] [Accepted: 12/25/2018] [Indexed: 12/15/2022] Open
Abstract
The mitochondrion is a unique organelle with a diverse range of functions. Mitochondrial dysfunction is a key pathological process in several neurodegenerative diseases. Mitochondria are mostly important for energy production; however, they also have roles in Ca2+ homeostasis, ROS production, and apoptosis. There are two major systems in place, which regulate mitochondrial integrity, mitochondrial dynamics, and mitophagy. These two processes remove damaged mitochondria from cells and protect the functional mitochondrial population. These quality control systems often become dysfunctional during neurodegenerative diseases, such as Parkinson's and Alzheimer's disease, causing mitochondrial dysfunction and severe neurological symptoms.
Collapse
Affiliation(s)
- Katrina Cowan
- Peninsula Schools of Medicine and Dentistry, Institute of Translational and Stratified Medicine, University of Plymouth, Plymouth, UK
| | - Oleg Anichtchik
- Peninsula Schools of Medicine and Dentistry, Institute of Translational and Stratified Medicine, University of Plymouth, Plymouth, UK
| | - Shouqing Luo
- Peninsula Schools of Medicine and Dentistry, Institute of Translational and Stratified Medicine, University of Plymouth, Plymouth, UK
| |
Collapse
|
19
|
Heckman GA, Franco BB, Lee L, Hillier L, Boscart V, Stolee P, Crutchlow L, Dubin JA, Molnar F, Seitz D. Towards Consensus on Essential Components of Physical Examination in Primary Care-based Memory Clinics. Can Geriatr J 2018; 21:143-151. [PMID: 29977429 PMCID: PMC6028174 DOI: 10.5770/cgj.21.296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Background Primary care-based memory clinics were established to meet the needs of persons with memory concerns. We aimed to identify: 1) physical examination maneuvers required to assess persons with possible dementia in specialist-supported primary care-based memory clinics, and 2) the best-suited clinicians to perform these maneuvers in this setting. Methods We distributed in-person and online surveys of clinicians in a network of 67 primary care-based memory clinics in Ontario, Canada. Results 90 surveys were completed for an overall response rate of 66.7%. Assessments of vital signs, gait, and for features of Parkinsonism were identified as essential by most respondents. There was little consensus on which clinician should be responsible for specific physical examination maneuvers. Conclusions While we identified specific physical examination maneuvers deemed by providers to be both necessary and feasible to perform in the context of primary care-based memory clinics, further research is needed to clarify interprofessional roles related to the examination.
Collapse
Affiliation(s)
- George A Heckman
- Schlegel-University of Waterloo Research Institute for Aging, University of Waterloo, Waterloo
| | - Bryan B Franco
- School of Public Health and Health Systems, University of Waterloo, Waterloo
| | - Linda Lee
- Department of Family Medicine, McMaster University, Hamilton
| | - Loretta Hillier
- Specialized Geriatric Services, St. Joseph's Health Care London and Parkwood Institute, London
| | - Veronique Boscart
- Schlegel-University of Waterloo Research Institute for Aging, University of Waterloo, Waterloo.,School of Health & Life Sciences and Community Services, Conestoga College, Kitchener
| | - Paul Stolee
- School of Public Health and Health Systems, University of Waterloo, Waterloo
| | | | - Joel A Dubin
- Department of Statistics and Actuarial Science, School of Public Health and Health Systems, University of Waterloo, Waterloo
| | - Frank Molnar
- Department of Medicine, University of Ottawa.,Division of Geriatric Medicine, The Ottawa Hospital, Ottawa, Canada.,Ottawa Hospital Research Institute, Ottawa, Canada.,Bruyere Research Institute, Ottawa, Canada
| | - Dallas Seitz
- Department of Psychiatry, Queen's University, Kingston, ON, Canada
| |
Collapse
|
20
|
Pinz MP, Dos Reis AS, Vogt AG, Krüger R, Alves D, Jesse CR, Roman SS, Soares MP, Wilhelm EA, Luchese C. Current advances of pharmacological properties of 7-chloro-4-(phenylselanyl) quinoline: Prevention of cognitive deficit and anxiety in Alzheimer's disease model. Biomed Pharmacother 2018; 105:1006-1014. [PMID: 30021335 DOI: 10.1016/j.biopha.2018.06.049] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022] Open
Abstract
This study investigated the effect of 7-chloro-4-(phenylselanyl) quinoline (4-PSQ) at a dose of 1 mg/kg in memory impairment and anxiety in an Alzheimer's disease (AD) model induced by amyloid β-peptide (Aβ) (fragment 25-35) in mice. The involvement of acetylcholinesterase (AChE) activity and lipid peroxidation in hippocampus and cerebral cortex was evaluated. Male Swiss mice were pretreated with 4-PSQ (1 mg/kg, intragastrically (i.g.), daily) for fourteen days. Thirty minutes after the first treatment with 4-PSQ, the animals received a single injection of Aβ (3 nmol/3 μl/per site, intracerebroventricular (i.c.v.)). Mice were submitted to the behavioral tasks (open-field, elevated plus maze, Barnes maze, object recognition and location, and step-down inhibitory avoidance tests) from the fifth day onwards. On the fifteenth day, blood was removed for analysis of biochemical markers (glucose, triglycerides, urea, aspartate (AST) and alanine (ALT) aminotrasferases), and cerebral cortex and hippocampus for determination of AChE activity and thiobarbituric acid reactive species (TBARS) levels. Aβ caused memory impairment, anxiogenic behavior, increased AChE activity in the cerebral structures and TBARS levels in the cerebral cortex. 4-PSQ was effective to protect against behavioral changes, AChE activity and TBARS levels. In conclusion, 4-PSQ protected against learning and memory impairment and anxiety in a mouse model of AD induced by Aβ, and anticholinesterase and antioxidant actions are involved in the pharmacological effect of the compound.
Collapse
Affiliation(s)
- Mikaela P Pinz
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brazil
| | - Angélica S Dos Reis
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brazil
| | - Ane G Vogt
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brazil
| | - Roberta Krüger
- Programa de Pós-Graduação em Química, Laboratório de Síntese Orgânica Limpa - LASOL, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Diego Alves
- Programa de Pós-Graduação em Química, Laboratório de Síntese Orgânica Limpa - LASOL, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), P.O. Box 354, 96010-900, Pelotas, RS, Brazil
| | - Cristiano R Jesse
- Laboratório de Avaliações Farmacológicas e Toxicológicas Aplicadas às Moléculas Bioativas, LaftamBio Pampa, Universidade Federal do Pampa, CEP 97650-000, Itaqui, RS, Brazil
| | - Silvane S Roman
- Universidade Regional Integrada, Campus Erechim, CEP 99700-000, RS, Brazil
| | - Mauro P Soares
- Laboratório Regional de Diagnóstico Faculdade de Veterinária, Universidade Federal de Pelotas, Capão do Leão, CEP: 96010-900, RS, Brazil
| | - Ethel A Wilhelm
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brazil.
| | - Cristiane Luchese
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica (LaFarBio), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas (UFPel), CEP 96010-900, Pelotas, RS, Brazil.
| |
Collapse
|
21
|
van der Ven AT, Pape JC, Hermann D, Schloesser R, Genius J, Fischer N, Mößner R, Scherbaum N, Wiltfang J, Rujescu D, Benninghoff J. Methylene Blue (Tetramethylthionine Chloride) Influences the Mobility of Adult Neural Stem Cells: A Potentially Novel Therapeutic Mechanism of a Therapeutic Approach in the Treatment of Alzheimer's Disease. J Alzheimers Dis 2018; 57:531-540. [PMID: 28269766 DOI: 10.3233/jad-160755] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An interest in neurogenesis in the adult human brain as a relevant and targetable process has emerged as a potential treatment option for Alzheimer's disease and other neurodegenerative conditions. The aim of this study was to investigate the effects of tetramethylthionine chloride (methylene blue, MB) on properties of adult murine neural stem cells. Based on recent clinical studies, MB has increasingly been discussed as a potential treatment for Alzheimer's disease. While no differences in the proliferative capacity were identified, a general potential of MB in modulating the migratory capacity of adult neural stem cells was indicated in a cell mobility assay. To our knowledge, this is the first time that MB could be associated with neural mobility. The results of this study add insight to the spectrum of features of MB within the central nervous system and may be helpful for understanding the molecular mechanisms underlying a potential therapeutic effect of MB.
Collapse
Affiliation(s)
- Amelie T van der Ven
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, LVR Hospital, Essen, Germany.,Department of Medicine, Division of Nephrology, Boston Children's Hospital, Harvard Medical School, MA, USA
| | | | - Dirk Hermann
- Department of Neurology, Chair of Vascular Neurology and Dementia, University Hospital of Essen, Germany
| | | | - Just Genius
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, LVR Hospital, Essen, Germany
| | - Nadine Fischer
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, LVR Hospital, Essen, Germany
| | - Rainald Mößner
- Department of Psychiatry, University of Tübingen, Germany
| | - Norbert Scherbaum
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, LVR Hospital, Essen, Germany
| | - Jens Wiltfang
- Department of Psychiatry, University of Göttingen, Germany
| | - Dan Rujescu
- Department of Psychiatry and Psychotherapy, University of Halle (Saale), Germany
| | - Jens Benninghoff
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, University of Duisburg-Essen, LVR Hospital, Essen, Germany
| |
Collapse
|
22
|
Ochoa JF, Alonso JF, Duque JE, Tobón CA, Mañanas MA, Lopera F, Hernández AM. Successful Object Encoding Induces Increased Directed Connectivity in Presymptomatic Early-Onset Alzheimer's Disease. J Alzheimers Dis 2018; 55:1195-1205. [PMID: 27792014 PMCID: PMC5147495 DOI: 10.3233/jad-160803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Recent studies report increases in neural activity in brain regions critical to episodic memory at preclinical stages of Alzheimer's disease (AD). Although electroencephalography (EEG) is widely used in AD studies, given its non-invasiveness and low cost, there is a need to translate the findings in other neuroimaging methods to EEG. OBJECTIVE To examine how the previous findings using functional magnetic resonance imaging (fMRI) at preclinical stage in presenilin-1 E280A mutation carriers could be assessed and extended, using EEG and a connectivity approach. METHODS EEG signals were acquired during resting and encoding in 30 normal cognitive young subjects, from an autosomal dominant early-onset AD kindred from Antioquia, Colombia. Regions of the brain previously reported as hyperactive were used for connectivity analysis. RESULTS Mutation carriers exhibited increasing connectivity at analyzed regions. Among them, the right precuneus exhibited the highest changes in connectivity. CONCLUSION Increased connectivity in hyperactive cerebral regions is seen in individuals, genetically-determined to develop AD, at preclinical stage. The use of a connectivity approach and a widely available neuroimaging technique opens the possibility to increase the use of EEG in early detection of preclinical AD.
Collapse
Affiliation(s)
- John Fredy Ochoa
- Bioinstrumentation and Clinical Engineering Research Group, Bioengineering Program, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Joan Francesc Alonso
- Department of Automatic Control (ESAII), Biomedical Engineering Research Center (CREB), Universitat Politènica de Catalunya (UPC), Barcelona, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Jon Edinson Duque
- Bioinstrumentation and Clinical Engineering Research Group, Bioengineering Program, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Carlos Andrés Tobón
- Neuroscience Group of Antioquia, Medical School, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.,Neuropsychology and Behavior group, Medical School, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Miguel Angel Mañanas
- Department of Automatic Control (ESAII), Biomedical Engineering Research Center (CREB), Universitat Politènica de Catalunya (UPC), Barcelona, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Francisco Lopera
- Neuroscience Group of Antioquia, Medical School, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| | - Alher Mauricio Hernández
- Bioinstrumentation and Clinical Engineering Research Group, Bioengineering Program, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia
| |
Collapse
|
23
|
Shi J, Zheng X, Li Y, Zhang Q, Ying S. Multimodal Neuroimaging Feature Learning With Multimodal Stacked Deep Polynomial Networks for Diagnosis of Alzheimer's Disease. IEEE J Biomed Health Inform 2018; 22:173-183. [DOI: 10.1109/jbhi.2017.2655720] [Citation(s) in RCA: 222] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Bhat ZF, Morton JD, Mason S, Bekhit AEDA, Bhat HF. Obesity and neurological disorders: Dietary perspective of a global menace. Crit Rev Food Sci Nutr 2017; 59:1294-1310. [PMID: 29257910 DOI: 10.1080/10408398.2017.1404442] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Obesity is considered a major public health concern throughout the world among children, adolescents, as well as adults and several therapeutic, preventive and dietary interventions are available. In addition to life style changes and medical interventions, significant milestones have been achieved in the past decades in the development of several functional foods and dietary regimens to reduce this menace. Being a multifactorial phenomenon and related to increased fat mass that adversely affects health, obesity has been associated with the development of several other co-morbidities. A great body of research and strong scientific evidence identifies obesity as an important risk factor for onset and progression of several neurological disorders. Obesity induced dyslipidaemia, metabolic dysfunction, and inflammation are attributable to the development of a variety of effects on central nervous system (CNS). Evidence suggests that neurological diseases such as Parkinson's disease and Alzheimer's disease could be initiated by various metabolic changes, related to CNS damage, caused by obesity. These metabolic changes could alter the synaptic plasticity of the neurons and lead to neural death, affecting the normal physiology of CNS. Dietary intervention in combination with exercise can affect the molecular events involved in energy metabolism and synaptic plasticity and are considered effective non-invasive strategy to counteract cognitive and neurological disorders. The present review gives an overview of the obesity and related neurological disorders and the possible dietary interventions.
Collapse
Affiliation(s)
- Zuhaib F Bhat
- a Lincoln University Faculty of Agriculture and Life Sciences, Wine Food and Molecular Biosciences , Lincoln , Canterbury , New Zealand
| | - James D Morton
- a Lincoln University Faculty of Agriculture and Life Sciences, Wine Food and Molecular Biosciences , Lincoln , Canterbury , New Zealand
| | - Sue Mason
- a Lincoln University Faculty of Agriculture and Life Sciences, Wine Food and Molecular Biosciences , Lincoln , Canterbury , New Zealand
| | | | - Hina Fayaz Bhat
- c Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir , Srinagar , India
| |
Collapse
|
25
|
Lopes J, Correia M, Martins I, Henriques AG, Delgadillo I, da Cruz E Silva O, Nunes A. FTIR and Raman Spectroscopy Applied to Dementia Diagnosis Through Analysis of Biological Fluids. J Alzheimers Dis 2017; 52:801-12. [PMID: 27079713 DOI: 10.3233/jad-151163] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
To date, it is still difficult to perform an early and accurate diagnosis of dementia, therefore significant research has focused on finding new dementia biomarkers that can aid in this respect. There is an urgent need for non-invasive, rapid, and relatively inexpensive procedures for early diagnostics. Studies have demonstrated that of spectroscopic techniques, such as Fourier Transform Infrared Spectroscopy (FTIR) and Raman Spectroscopy could be a useful and accurate procedure to diagnose dementia. Given that several biochemical mechanisms related to neurodegeneration and dementia can lead to changes in plasma components and others peripheral body fluids; blood-based samples coupled to spectroscopic analyses can be used as a simple and less invasive approach.
Collapse
Affiliation(s)
- Jéssica Lopes
- iBiMED, Departamento de Ciências Médicas, Universidade de Aveiro, Aveiro, Portugal
| | - Marta Correia
- iBiMED, Departamento de Ciências Médicas, Universidade de Aveiro, Aveiro, Portugal
| | - Ilka Martins
- Grupo de Neurociências e Sinalização, iBiMED, Departamento de Ciências Médicas, Universidade de Aveiro, Aveiro, Portugal
| | - Ana Gabriela Henriques
- Grupo de Neurociências e Sinalização, iBiMED, Departamento de Ciências Médicas, Universidade de Aveiro, Aveiro, Portugal
| | - Ivonne Delgadillo
- QOPNA, Departamento de Química, Universidade de Aveiro, Aveiro, Portugal
| | - Odete da Cruz E Silva
- Grupo de Neurociências e Sinalização, iBiMED, Departamento de Ciências Médicas, Universidade de Aveiro, Aveiro, Portugal
| | - Alexandra Nunes
- iBiMED, Departamento de Ciências Médicas, Universidade de Aveiro, Aveiro, Portugal
| |
Collapse
|
26
|
Mazon JN, de Mello AH, Ferreira GK, Rezin GT. The impact of obesity on neurodegenerative diseases. Life Sci 2017; 182:22-28. [PMID: 28583368 DOI: 10.1016/j.lfs.2017.06.002] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 12/12/2022]
Abstract
Neurodegenerative diseases are a growing health concern. The increasing incidences of these disorders have a great impact on the patients' quality of life. Although the mechanisms of neurodegenerative diseases are still far from being clarified, several studies look for new discoveries about their pathophysiology and prevention. Furthermore, evidence has shown a strong correlation between obesity and the development of Alzheimer's disease (AD) and Parkinson's disease (PD). Metabolic changes caused by overweight are related to damage to the central nervous system (CNS), which can lead to neural death, either by apoptosis or cell necrosis, as well as alter the synaptic plasticity of the neuron. This review aims to show the association between neurodegenerative diseases, focusing on AD and PD, and metabolic alterations.
Collapse
Affiliation(s)
- Janaína Niero Mazon
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Av. José Acácio Moreira, 787, 88704-900 Tubarão, SC, Brazil
| | - Aline Haas de Mello
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Av. José Acácio Moreira, 787, 88704-900 Tubarão, SC, Brazil
| | - Gabriela Kozuchovski Ferreira
- Laboratory Pharmacology and Pathophysiology of Skin, Department of Pharmacology, Federal University of Paraná, Av. Coronel Franscisco Heráclito dos Santos, 210, 81531-970 Curitiba, PR, Brazil.
| | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Av. José Acácio Moreira, 787, 88704-900 Tubarão, SC, Brazil
| |
Collapse
|
27
|
Ochoa JF, Alonso JF, Duque JE, Tobón CA, Baena A, Lopera F, Mañanas MA, Hernández AM. Precuneus Failures in Subjects of the PSEN1 E280A Family at Risk of Developing Alzheimer's Disease Detected Using Quantitative Electroencephalography. J Alzheimers Dis 2017; 58:1229-1244. [PMID: 28550254 DOI: 10.3233/jad-161291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Presenilin-1 (PSEN1) mutations are the most common cause of familial early onset Alzheimer's disease (AD). The PSEN1 E280A (E280A) mutation has an autosomal dominant inheritance and is involved in the production of amyloid-β. The largest family group of carriers with E280A mutation is found in Antioquia, Colombia. The study of mutation carriers provides a unique opportunity to identify brain changes in stages previous to AD. Electroencephalography (EEG) is a low cost and minimally invasiveness technique that enables the following of brain changes in AD. OBJECTIVE To examine how previous reported differences in EEG for Theta and Alpha-2 rhythms in E280A subjects are related to specific regions in cortex and could be tracked across different ages. METHODS EEG signals were acquired during resting state from non-carriers and carriers, asymptomatic and symptomatic subjects from E280A kindred from Antioquia, Colombia. Independent component analysis (ICA) and inverse solution methods were used to locate brain regions related to differences in Theta and Alpha-2 bands. RESULTS ICA identified two components, mainly related to the Precuneus, where the differences in Theta and Alpha-2 exist simultaneously at asymptomatic and symptomatic stages. When the ratio between Theta and Alpha-2 is used, significant correlations exist with age and a composite cognitive scale. CONCLUSION Theta and Alpha-2 rhythms are altered in E280A subjects. The alterations are possible to track at Precuneus regions using EEG, ICA, and inverse solution methods.
Collapse
Affiliation(s)
- John Fredy Ochoa
- Bioinstrumentation and Clinical Engineering Research Group, Bioengineering Program, Universidad de Antioquia, Medellín, Colombia
| | - Joan Francesc Alonso
- Department of Automatic Control (ESAII), Biomedical Engineering Research Center (CREB), Universitat Politènica de Catalunya (UPC), Barcelona, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Jon Edinson Duque
- Bioinstrumentation and Clinical Engineering Research Group, Bioengineering Program, Universidad de Antioquia, Medellín, Colombia
| | - Carlos Andrés Tobón
- Neuroscience Group of Antioquia, Medical School, Universidad de Antioquia, Medellín, Colombia.,Neuropsychology and Behavior Group, Medical School, Universidad de Antioquia, Medellín, Colombia
| | - Ana Baena
- Neuroscience Group of Antioquia, Medical School, Universidad de Antioquia, Medellín, Colombia
| | - Francisco Lopera
- Neuroscience Group of Antioquia, Medical School, Universidad de Antioquia, Medellín, Colombia
| | - Miguel Angel Mañanas
- Department of Automatic Control (ESAII), Biomedical Engineering Research Center (CREB), Universitat Politènica de Catalunya (UPC), Barcelona, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Spain
| | - Alher Mauricio Hernández
- Bioinstrumentation and Clinical Engineering Research Group, Bioengineering Program, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
28
|
Kocahan S, Doğan Z. Mechanisms of Alzheimer's Disease Pathogenesis and Prevention: The Brain, Neural Pathology, N-methyl-D-aspartate Receptors, Tau Protein and Other Risk Factors. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2017; 15:1-8. [PMID: 28138104 PMCID: PMC5290713 DOI: 10.9758/cpn.2017.15.1.1] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/28/2016] [Accepted: 07/07/2016] [Indexed: 12/31/2022]
Abstract
The characteristic features of Alzheimer’s disease (AD) are the appearance of extracellular amyloid-beta (Aβ) plaques and neurofibrillary tangles in the intracellular environment, neuronal death and the loss of synapses, all of which contribute to cognitive decline in a progressive manner. A number of hypotheses have been advanced to explain AD. Abnormal tau phosphorylation may contribute to the formation of abnormal neurofibrillary structures. Many different structures are susceptible to AD, including the reticular formation, the nuclei in the brain stem (e.g., raphe nucleus), thalamus, hypothalamus, locus ceruleus, amygdala, substantia nigra, striatum, and claustrum. Excitotoxicity results from continuous, low-level activation of N-methyl-D-aspartate (NMDA) receptors. Premature synaptotoxicity, changes in neurotransmitter expression, neurophils loss, accumulation of amyloid β-protein deposits (amyloid/senile plaques), and neuronal loss and brain atrophy are all associated with stages of AD progression. Several recent studies have examined the relationship between Aβ and NMDA receptors. Aβ-induced spine loss is associated with a decrease in glutamate receptors and is dependent upon the calcium-dependent phosphatase calcineurin, which has also been linked to long-term depression.
Collapse
Affiliation(s)
- Sayad Kocahan
- Department of Physiology, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey.,International Scientific Center, Baku State University, Baku, Azerbaijan
| | - Zumrut Doğan
- Department of Anatomy, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey
| |
Collapse
|
29
|
Tuk B. Overstimulation of the inhibitory nervous system plays a role in the pathogenesis of neuromuscular and neurological diseases: a novel hypothesis. F1000Res 2016; 5:1435. [PMID: 27547379 PMCID: PMC4984481 DOI: 10.12688/f1000research.8774.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2016] [Indexed: 11/20/2022] Open
Abstract
Based upon a thorough review of published clinical observations regarding the inhibitory system, I hypothesize that this system may play a key role in the pathogenesis of a variety of neuromuscular and neurological diseases. Specifically, excitatory overstimulation, which is commonly reported in neuromuscular and neurological diseases, may be a homeostatic response to inhibitory overstimulation. Involvement of the inhibitory system in disease pathogenesis is highly relevant, given that most approaches currently being developed for treating neuromuscular and neurological diseases focus on reducing excitatory activity rather than reducing inhibitory activity.
Collapse
Affiliation(s)
- Bert Tuk
- Leiden Academic Center for Drug Research (LACDR), Leiden University, Leiden, 2333 CC, Netherlands; Ry Pharma, Hofstraat 1, Willemstad, 4797 AC, Netherlands
| |
Collapse
|
30
|
Jia LH, Liu YN. Downregulated serum miR-223 servers as biomarker in Alzheimer's disease. Cell Biochem Funct 2016; 34:233-7. [PMID: 27027823 DOI: 10.1002/cbf.3184] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 02/15/2016] [Accepted: 03/01/2016] [Indexed: 12/20/2022]
Affiliation(s)
- Li-Hua Jia
- Department of Neurology, Liaocheng People's Hospital, Medical School of Liaocheng; Taishan Medical University; Liaocheng Shandong China
| | - Yi-Ning Liu
- Department of Neurology, Liaocheng People's Hospital, Medical School of Liaocheng; Taishan Medical University; Liaocheng Shandong China
| |
Collapse
|
31
|
Kuvacheva NV, Morgun AV, Komleva YK, Khilazheva ED, Gorina YV, Lopatina OL, Arutyunyan SA, Salmina AB. In Vitro Modeling of Brain Progenitor Cell Development under the Effect of Environmental Factors. Bull Exp Biol Med 2015; 159:546-9. [PMID: 26395632 DOI: 10.1007/s10517-015-3012-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Indexed: 01/14/2023]
Abstract
We studied in vitro development of brain progenitor cells isolated from healthy 7-9-month-old Wistar rats and rats with experimental Alzheimer's disease kept under standard conditions and in enriched (multistimulus) environment in vivo. Progenitor cells from healthy animals more rapidly formed neurospheres. Considerable changes at the early stages of in vitro development of brain progenitor cells were observed in both groups kept in enriched environment.
Collapse
Affiliation(s)
- N V Kuvacheva
- V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Ministry of Health of the Russian Federation, Krasnoyarsk, Russia.
| | - A V Morgun
- V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Ministry of Health of the Russian Federation, Krasnoyarsk, Russia
| | - Yu K Komleva
- V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Ministry of Health of the Russian Federation, Krasnoyarsk, Russia
| | - E D Khilazheva
- V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Ministry of Health of the Russian Federation, Krasnoyarsk, Russia
| | - Ya V Gorina
- V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Ministry of Health of the Russian Federation, Krasnoyarsk, Russia
| | - O L Lopatina
- V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Ministry of Health of the Russian Federation, Krasnoyarsk, Russia
| | - S A Arutyunyan
- Siberian State Technological University, Krasnoyarsk, Russia
| | - A B Salmina
- V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, Ministry of Health of the Russian Federation, Krasnoyarsk, Russia
| |
Collapse
|
32
|
Van Giau V, An SSA, Bagyinszky E, Kim S. Gene panels and primers for next generation sequencing studies on neurodegenerative disorders. Mol Cell Toxicol 2015. [DOI: 10.1007/s13273-015-0011-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Williams MA, McGowan AJ, Cardwell CR, Cheung CY, Craig D, Passmore P, Silvestri G, Maxwell AP, McKay GJ. Retinal microvascular network attenuation in Alzheimer's disease. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2015; 1:229-235. [PMID: 26634224 PMCID: PMC4629099 DOI: 10.1016/j.dadm.2015.04.001] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Cerebral small-vessel disease has been implicated in the development of Alzheimer's disease (AD). The retinal microvasculature enables the noninvasive visualization and evaluation of the systemic microcirculation. We evaluated retinal microvascular parameters in a case-control study of AD patients and cognitively normal controls. METHODS Retinal images were computationally analyzed and quantitative retinal parameters (caliber, fractal dimension, tortuosity, and bifurcation) measured. Regression models were used to compute odds ratios (OR) and confidence intervals (CI) for AD with adjustment for confounders. RESULTS Retinal images were available in 213 AD participants and 294 cognitively normal controls. Persons with lower venular fractal dimension (OR per standard deviation [SD] increase, 0.77 [CI: 0.62-0.97]) and lower arteriolar tortuosity (OR per SD increase, 0.78 [CI: 0.63-0.97]) were more likely to have AD after appropriate adjustment. DISCUSSION Patients with AD have a sparser retinal microvascular network and retinal microvascular variation may represent similar pathophysiological events within the cerebral microvasculature of patients with AD.
Collapse
Affiliation(s)
| | - Amy J McGowan
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Chris R Cardwell
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Carol Y Cheung
- Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore ; Ophthalmology and Visual Sciences Academic Clinical Programme, Duke-NUS Graduate Medical School, National University of Singapore, Singapore, Singapore
| | - David Craig
- Southern Health and Social Care Trust, Craigavon Hospital, Craigavon, UK
| | - Peter Passmore
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| | - Giuliana Silvestri
- Centre for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | | | - Gareth J McKay
- Centre for Public Health, Queen's University Belfast, Belfast, UK
| |
Collapse
|
34
|
Harrington KD, Lim YY, Gould E, Maruff P. Amyloid-beta and depression in healthy older adults: a systematic review. Aust N Z J Psychiatry 2015; 49:36-46. [PMID: 25414381 DOI: 10.1177/0004867414557161] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Depression has been shown to be a risk factor for Alzheimer's disease (AD), and in older adults may provide a marker for the beginning of the prodromal phase of AD. The purpose of this systematic review is to examine the relationship between amyloid-β (Aβ), a key biomarker of AD, and depression in older adults. METHOD The literature search was limited to studies conducted from 2006 to 2014 that were published in English in peer-reviewed journals. Studies were selected if they included a group of older adults who either met established criteria for Major Depressive Disorder or Dysthymia; or were assessed for depressive symptoms on a standardised measure. Studies were also required to include an outcome variable that was a direct measure of Aβ levels in either blood or cerebrospinal fluid (CSF) samples, or via neuroimaging techniques such as positron emission tomography (PET). RESULTS Nineteen studies were identified, 15 of which found significant differences in Aβ levels between depressed and non-depressed older adults. However, studies were limited by their cross-sectional design, reliance on blood-based measures of Aβ, and potential sample bias. CONCLUSIONS Future investigations should consider prospective longitudinal design using neuroimaging and CSF measures of Aβ.
Collapse
Affiliation(s)
- Karra D Harrington
- School of Psychology, Deakin University, Geelong, Victoria, Australia Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Yen Ying Lim
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia Department of Neurology, Warren Alpert School of Medicine, Brown University, Providence, RI, USA
| | - Emma Gould
- School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Paul Maruff
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia CogState Ltd., Melbourne, Victoria, Australia
| |
Collapse
|
35
|
|
36
|
Baldassarro VA, Lizzo G, Paradisi M, Fernández M, Giardino L, Calzà L. Neural stem cells isolated from amyloid precursor protein-mutated mice for drug discovery. World J Stem Cells 2013; 5:229-237. [PMID: 24179610 PMCID: PMC3812526 DOI: 10.4252/wjsc.v5.i4.229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/07/2013] [Accepted: 10/18/2013] [Indexed: 02/06/2023] Open
Abstract
AIM: To develop an in vitro model based on neural stem cells derived from transgenic animals, to be used in the study of pathological mechanisms of Alzheimer’s disease and for testing new molecules.
METHODS: Neural stem cells (NSCs) were isolated from the subventricular zone of Wild type (Wt) and Tg2576 mice. Primary and secondary neurosphere generation was studied, analysing population doubling and the cell yield per animal. Secondary neurospheres were dissociated and plated on MCM Gel Cultrex 2D and after 6 d in vitro (DIVs) in mitogen withdrawal conditions, spontaneous differentiation was studied using specific neural markers (MAP2 and TuJ-1 for neurons, GFAP for astroglial cells and CNPase for oligodendrocytes). Gene expression pathways were analysed in secondary neurospheres, using the QIAGEN PCR array for neurogenesis, comparing the Tg2576 derived cell expression with the Wt cells. Proteins encoded by the altered genes were clustered using STRING web software.
RESULTS: As revealed by 6E10 positive staining, all Tg2576 derived cells retain the expression of the human transgenic Amyloid Precursor Protein. Tg2576 derived primary neurospheres show a decrease in population doubling. Morphological analysis of differentiated NSCs reveals a decrease in MAP2- and an increase in GFAP-positive cells in Tg2576 derived cells. Analysing the branching of TuJ-1 positive cells, a clear decrease in neurite number and length is observed in Tg2576 cells. The gene expression neurogenesis pathway revealed 11 altered genes in Tg2576 NSCs compared to Wt.
CONCLUSION: Tg2576 NSCs represent an appropriate AD in vitro model resembling some cellular alterations observed in vivo, both as stem and differentiated cells.
Collapse
|
37
|
Jin XF, Wu N, Wang L, Li J. Circulating microRNAs: a novel class of potential biomarkers for diagnosing and prognosing central nervous system diseases. Cell Mol Neurobiol 2013; 33:601-13. [PMID: 23633081 DOI: 10.1007/s10571-013-9940-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/13/2013] [Indexed: 10/26/2022]
Abstract
As a class of important endogenous small noncoding RNAs that regulate gene expression at the posttranscriptional level, microRNAs (miRNAs) play a critical role in many physiological and pathological processes. It is believed that miRNAs contribute to the development, differentiation, and synaptic plasticity of the neurons, and their dysregulation has been linked to a series of diseases. MiRNAs exist in the tissues and as circulating miRNAs in several body fluids, including plasma or serum, cerebrospinal fluid, urine, and saliva. There are significant differences between the circulating miRNA expression profiles of healthy individuals and those of patients. Consequently, circulating miRNAs are likely to become a novel class of noninvasive and sensitive biomarkers. Although little is known about the origin and functions of circulating miRNAs at present, their roles in the clinical diagnosis and prognosis of diseases make them attractive markers, particularly for tumors and cardiovascular diseases. Until now, however, there have been limited data regarding the roles of circulating miRNAs in central nervous system (CNS) diseases. This review focuses on the characteristics of circulating miRNAs and their values as potential biomarkers in CNS diseases, particularly in Alzheimer's disease, Huntington's disease, multiple sclerosis, schizophrenia, and bipolar disorder.
Collapse
Affiliation(s)
- Xue-Feng Jin
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | | | | | | |
Collapse
|
38
|
Rohn TT. The triggering receptor expressed on myeloid cells 2: "TREM-ming" the inflammatory component associated with Alzheimer's disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:860959. [PMID: 23533697 PMCID: PMC3606781 DOI: 10.1155/2013/860959] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/07/2013] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by a progressive loss of memory and cognitive skills. Although much attention has been devoted concerning the contribution of the microscopic lesions, senile plaques, and neurofibrillary tangles to the disease process, inflammation has long been suspected to play a major role in the etiology of AD. Recently, a novel variant in the gene encoding the triggering receptor expressed on myeloid cells 2 (TREM2) has been identified that has refocused the spotlight back onto inflammation as a major contributing factor in AD. Variants in TREM2 triple one's risk of developing late-onset AD. TREM2 is expressed on microglial cells, the resident macrophages in the CNS, and functions to stimulate phagocytosis on one hand and to suppress cytokine production and inflammation on the other hand. The purpose of this paper is to discuss these recent developments including the potential role that TREM2 normally plays and how loss of function may contribute to AD pathogenesis by enhancing oxidative stress and inflammation within the CNS. In this context, an overview of the pathways linking beta-amyloid, neurofibrillary tangles (NFTs), oxidative stress, and inflammation will be discussed.
Collapse
Affiliation(s)
- Troy T Rohn
- Department of Biological Sciences, Boise State University, Boise, ID 83725, USA.
| |
Collapse
|
39
|
Massano J. Cognitive impairment and dementia-an update. Front Neurol 2012; 3:153. [PMID: 23112790 PMCID: PMC3480820 DOI: 10.3389/fneur.2012.00153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Accepted: 10/08/2012] [Indexed: 12/03/2022] Open
Affiliation(s)
- João Massano
- Department of Neurology, Centro Hospitalar de São João Porto, Portugal ; Faculty of Medicine, Department of Clinical Neuroscience and Mental Health, University of Porto Porto, Portugal
| |
Collapse
|
40
|
Meireles J, Massano J. Cognitive impairment and dementia in Parkinson's disease: clinical features, diagnosis, and management. Front Neurol 2012; 3:88. [PMID: 22654785 PMCID: PMC3360424 DOI: 10.3389/fneur.2012.00088] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 05/07/2012] [Indexed: 12/15/2022] Open
Abstract
Parkinson’s disease (PD) is a common, disabling, neurodegenerative disorder. In addition to classical motor symptoms, non-motor features are now widely accepted as part of the clinical picture, and cognitive decline is a very important aspect of the disease, as it brings an additional significant burden for the patient and caregivers. The diagnosis of cognitive decline in PD, namely mild cognitive impairment (MCI) and dementia, can be extremely challenging, remaining largely based on clinical and cognitive assessments. Diagnostic criteria and methods for PD dementia and MCI have been recently issued by expert work groups. This manuscript has synthesized relevant data in order to obtain a pragmatic and updated review regarding cognitive decline in PD, from milder stages to dementia. This text will summarize clinical features, diagnostic methodology, and therapeutic issues of clinical decline in PD. Relevant clinical genetic issues, including recent advances, will also be approached.
Collapse
Affiliation(s)
- Joana Meireles
- Department of Neurology, Centro Hospitalar de São João Porto, Portugal
| | | |
Collapse
|
41
|
Mann NM. Am I losing it? J Community Hosp Intern Med Perspect 2012; 2:19167. [PMID: 23882377 PMCID: PMC3714069 DOI: 10.3402/jchimp.v2i3.19167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 08/31/2012] [Accepted: 09/05/2012] [Indexed: 12/02/2022] Open
Abstract
Complaints of memory loss are frequent as one ages. Individuals worry about the presence of Alzheimer’s disease, but the presence of other intact intellectual abilities is reassuring to these people. We do not know the cause of Alzheimer’s disease. There are now 5.4 million confirmed cases in the United States. We know that the disease is an age-related, non-reversible brain disorder that develops over many years. Investigation is helped with the use of structural imaging (magnetic resonance imaging or computed tomography). Functional imaging is also valuable. Therapy for the problem involves various drugs; these help but do not cure the difficulty.
Collapse
Affiliation(s)
- Norman M Mann
- Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|