1
|
Liu W, Zhang L, Liao W, Liu H, Liang W, Yan J, Huang Y, Jiang T, Wang Q, Zhang C. Unveiling the molecular and cellular links between obstructive sleep apnea-hypopnea syndrome and vascular aging. Chin Med J (Engl) 2024:00029330-990000000-01345. [PMID: 39647991 DOI: 10.1097/cm9.0000000000003352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Indexed: 12/10/2024] Open
Abstract
ABSTRACT Vascular aging (VA) is a common etiology of various chronic diseases and represents a major public health concern. Intermittent hypoxia (IH) associated with obstructive sleep apnea-hypopnea syndrome (OSAHS) is a primary pathological and physiological driver of OSAHS-induced systemic complications. A substantial proportion of OSAHS patients, estimated to be between 40% and 80%, have comorbidities such as hypertension, heart failure, coronary artery disease, pulmonary hypertension, atrial fibrillation, aneurysm, and stroke, all of which are closely associated with VA. This review examines the molecular and cellular features common to both OSAHS and VA, highlighting decreased melatonin secretion, impaired autophagy, increased apoptosis, increased inflammation and pyroptosis, increased oxidative stress, accelerated telomere shortening, accelerated stem cell depletion, metabolic disorders, imbalanced protein homeostasis, epigenetic alterations, and dysregulated neurohormonal signaling. The accumulation and combination of these features may underlie the pathophysiological link between OSAHS and VA, but the exact mechanisms by which OSAHS affects VA may require further investigation. Taken together, these findings suggest that OSAHS may serve as a novel risk factor for VA and related vascular disorders, and that targeting these features may offer therapeutic potential to mitigate the vascular risks associated with OSAHS.
Collapse
Affiliation(s)
- Wei Liu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Le Zhang
- Institute of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Wenhui Liao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Wukaiyang Liang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Jinhua Yan
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Yi Huang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Tao Jiang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Qian Wang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, Hubei 430030, China
| |
Collapse
|
2
|
Molecular Mechanisms Responsible for Mesenchymal Stem Cell-Based Modulation of Obstructive Sleep Apnea. Int J Mol Sci 2023; 24:ijms24043708. [PMID: 36835120 PMCID: PMC9958695 DOI: 10.3390/ijms24043708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/16/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are adult stem cells that reside in almost all postnatal tissues where, due to the potent regenerative, pro-angiogenic and immunomodulatory properties, regulate tissue homeostasis. Obstructive sleep apnea (OSA) induces oxidative stress, inflammation and ischemia which recruit MSCs from their niches in inflamed and injured tissues. Through the activity of MSC-sourced anti-inflammatory and pro-angiogenic factors, MSCs reduce hypoxia, suppress inflammation, prevent fibrosis and enhance regeneration of damaged cells in OSA-injured tissues. The results obtained in large number of animal studies demonstrated therapeutic efficacy of MSCs in the attenuation of OSA-induced tissue injury and inflammation. Herewith, in this review article, we emphasized molecular mechanisms which are involved in MSC-based neo-vascularization and immunoregulation and we summarized current knowledge about MSC-dependent modulation of OSA-related pathologies.
Collapse
|
3
|
Daniel S, Cohen-Freud Y, Shelef I, Tarasiuk A. Bone mineral density alteration in obstructive sleep apnea by derived computed tomography screening. Sci Rep 2022; 12:6462. [PMID: 35440678 PMCID: PMC9018731 DOI: 10.1038/s41598-022-10313-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 04/05/2022] [Indexed: 01/07/2023] Open
Abstract
The association between obstructive sleep apnea (OSA) and bone mineral density (BMD) is poorly elucidated and has contradictory findings. Abdominal computed tomography (CT) for other indications can provide a valuable opportunity for osteoporosis screening. Thus, we retrospectively explored the association between OSA and BMD by examining abdominal CT vertebrae images for a multitude of conditions and indications. We included 315 subjects (174 with OSA and 141 without OSA) who performed at least two CT scans (under similar settings). Both groups had a similar duration between the first and second CT scans of 3.6 years. BMD decreased in those with OSA and increased age. A multivariate linear regression indicated that OSA is associated with BMD alterations after controlling for age, gender, and cardiovascular diseases. Here, we report that OSA is associated with BMD alterations. Further studies are required to untangle the complex affect of OSA on BMD and the possible clinical implications of vertebra-depressed or femoral neck fractures.
Collapse
Affiliation(s)
- Sharon Daniel
- Sleep-Wake Disorders Unit, Soroka Medical Center, Beer-Sheva, Israel.,Department of Public Health and Pediatrics, Faculty of Health Sciences, Ben-Gurion University of the Negev and Clalit Health Services, Southern District, Beer-Sheva, Israel
| | - Yafit Cohen-Freud
- Radiology Department, Soroka University Medical Center, Beer-Sheva, Israel
| | - Ilan Shelef
- Radiology Department, Soroka University Medical Center, Beer-Sheva, Israel.,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ariel Tarasiuk
- Sleep-Wake Disorders Unit, Soroka Medical Center, Beer-Sheva, Israel. .,Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer-Sheva, Israel. .,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel. .,Sleep-Wake Disorders Unit & Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O. Box 105, 84105, Beer-Sheva, Israel.
| |
Collapse
|
4
|
Affiliation(s)
- G Dave Singh
- Vivos Therapeutics, Inc., Highlands Ranch, CO, USA
| |
Collapse
|
5
|
Li Y, Wang Y. Obstructive Sleep Apnea-hypopnea Syndrome as a Novel Potential Risk for Aging. Aging Dis 2021; 12:586-596. [PMID: 33815884 PMCID: PMC7990365 DOI: 10.14336/ad.2020.0723] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022] Open
Abstract
Obstructive sleep apnea-hypopnea syndrome (OSAHS) is a common sleep disorder, negatively influencing individuals' quality of life and socioeconomic burden. In recent years, OSAHS has been reported in not only constituting an aging-associated disease, but also in accelerating and/or potentiating aging mechanisms. However, the negative impacts of OSAHS on aging are underestimated because of low level of public awareness about this disease and high rates of undiagnosed cases, which are more critical in developing countries or economically disadvantaged regions. Hence, reviewing previously reported observations may assist scholars to better indicate that OSAHS is likely a novel potential risk for aging. Further understanding of the pathophysiological mechanism of OSAHS and its role in procession of aging may markedly highlight the importance of this common sleep disorder.
Collapse
Affiliation(s)
- Yayong Li
- Department of Emergency, The Third Xiangya Hospital of Central South University, Changsha, China.
| | - Yina Wang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, China.
| |
Collapse
|
6
|
Khalyfa A, Castro-Grattoni AL, Gozal D. Cardiovascular morbidities of obstructive sleep apnea and the role of circulating extracellular vesicles. Ther Adv Respir Dis 2020; 13:1753466619895229. [PMID: 31852426 PMCID: PMC6923690 DOI: 10.1177/1753466619895229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Obstructive sleep apnea (OSA) is characterized by recurrent upper airway collapse
during sleep resulting in impaired blood gas exchange, namely intermittent
hypoxia (IH) and hypercapnia, fragmented sleep (SF), increased oxidative stress
and systemic inflammation. Among a myriad of potential associated morbidities,
OSA has been particularly implicated as mechanistically contributing to the
prevalence and severity of cardiovascular diseases (CVD). However, the benefits
of continuous positive airway pressure (CPAP), which is generally employed in
OSA treatment, to either prevent or improve CVD outcomes remain unconvincing,
suggesting that the pathophysiological mechanisms underlying the incremental CVD
risk associated with OSA are not clearly understood. One of the challenges in
development of non-invasive diagnostic assays is the ability to identify
clinically and mechanistically relevant biomarkers. Circulating extracellular
vesicles (EVs) and their cargos reflect underlying changes in cellular
homeostasis and can provide insights into how cells and systems cope with
physiological perturbations by virtue of the identity and abundance of miRNAs,
mRNAs, proteins, and lipids that are packaged in the EVs under normal as well as
diseased states, such as OSA. EVs can not only provide unique insights into
coordinated cellular responses at the organ or systemic level, but can also
serve as reporters of the effects of OSA in CVD, either by their properties
enabling regeneration and repair of injured vascular cells or by damaging them.
Here, we highlight recent progress in the pathological CVD consequences of OSA,
and explore the putative roles of EVs in OSA-associated CVD, along with emerging
diagnostic and therapeutic opportunities. The reviews of this paper are available via the supplemental material
section.
Collapse
Affiliation(s)
- Abdelnaby Khalyfa
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO, USA
| | - Anabel L Castro-Grattoni
- Department of Child Health and the Child Health Research Institute, University of Missouri School of Medicine, Columbia, MO, USA
| | - David Gozal
- Department of Child Health and MU Women's and Children's Hospital, University of Missouri School of Medicine, 400 N. Keene Street, Suite 010, Columbia, MO 65201, USA
| |
Collapse
|
7
|
Vilovic M, Dogas Z, Ticinovic Kurir T, Borovac JA, Supe-Domic D, Vilovic T, Ivkovic N, Rusic D, Novak A, Bozic J. Bone metabolism parameters and inactive matrix Gla protein in patients with obstructive sleep apnea†. Sleep 2020; 43:zsz243. [PMID: 31631227 DOI: 10.1093/sleep/zsz243] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/15/2019] [Indexed: 12/15/2022] Open
Abstract
STUDY OBJECTIVES The aim of this study was to investigate differences in dual-energy X-ray absorptiometry (DXA) parameters, trabecular bone score (TBS), bone turnover markers and inactive matrix Gla protein (dp-ucMGP) between patients with obstructive sleep apnea (OSA) and healthy controls. METHODS This study enrolled 53 male patients diagnosed with OSA, and 50 age- and body mass index (BMI)-matched control subjects. All participants underwent DXA imaging, TBS assessment and blood sampling for biochemical analysis of bone metabolism markers. RESULTS Mean apnea-hypopnea index (AHI) score of OSA patients was 43.8 ± 18.8 events/h. OSA patients had significantly higher plasma dp-ucMGP levels in comparison to controls (512.7 ± 71.9 vs. 465.8 ± 50.9 pmol/L, p < 0.001). OSA and control group did not significantly differ regarding standard DXA results, while TBS values were significantly lower in the OSA group (1.24 ± 0.17 vs. 1.36 ± 0.15, p < 0.001). AHI score was a significant independent correlate of plasma dp-ucMGP levels (β ± SE, 1.461 ± 0.45, p = 0.002). In addition, TBS retained a significant relationship with dp-ucMGP values (β ± SE, -93.77 ± 38.1, p = 0.001). CONCLUSIONS dp-ucMGP levels are significantly higher in patients with OSA and correlate with disease severity. In addition, TBS values in OSA patients are lower in comparison with the control group and decrease with disease severity.
Collapse
Affiliation(s)
- Marino Vilovic
- Department of Pathophysiology, University of Split School of Medicine, Split, Croatia
| | - Zoran Dogas
- Sleep Medicine Centre, University of Split School of Medicine, and University Hospital of Split, Split, Croatia
- Department of Neuroscience, University of Split School of Medicine, Split, Croatia
| | - Tina Ticinovic Kurir
- Department of Pathophysiology, University of Split School of Medicine, Split, Croatia
- Department of Endocrinology and Diabetology, University Hospital of Split, Split, Croatia
| | - Josip A Borovac
- Department of Pathophysiology, University of Split School of Medicine, Split, Croatia
| | - Daniela Supe-Domic
- Department of Medical Laboratory Diagnostics, University Hospital of Split, Split, Croatia
| | - Tina Vilovic
- Health Centre of Split-Dalmatia County, Split, Croatia
| | - Natalija Ivkovic
- Sleep Medicine Centre, University of Split School of Medicine, and University Hospital of Split, Split, Croatia
| | - Doris Rusic
- Department of Pharmacy, University of Split School of Medicine, Split, Croatia
| | - Anela Novak
- Department of Endocrinology and Diabetology, University Hospital of Split, Split, Croatia
| | - Josko Bozic
- Department of Pathophysiology, University of Split School of Medicine, Split, Croatia
| |
Collapse
|
8
|
Domingues CC, Dore FJ, Cho A, Ahmadi N, Kropotova Y, Kundu N, Younes N, Jain V, Sen S. Reassessing the effects of continuous positive airway pressure (CPAP) on arterial stiffness and peripheral blood derived CD34+ progenitor cells in subjects with sleep apnea. Stem Cell Res Ther 2019; 10:147. [PMID: 31113468 PMCID: PMC6530134 DOI: 10.1186/s13287-019-1251-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/22/2019] [Accepted: 04/30/2019] [Indexed: 12/11/2022] Open
Abstract
Background Obstructive sleep apnea (OSA) is an independent risk factor for cardiovascular diseases (CVD) and vascular health. Peripheral blood-derived CD34+ progenitor cells have been used as biomarker for CVD risk and may play a similar role in OSA and CVD risk assessment. Although there are some controversial results in the literature, OSA patients may have a reduction in the number and function of CD34+ cells. The damages promoted by OSA in CD34+ cells may lead to an increase in endothelial oxidative stress and endothelial inflammation which may lead to a reduced endothelial repair capacity. In this study, we explored the effect of continuous positive airway pressure (CPAP) on peripheral blood-derived CD34+ cells and arterial stiffness (another predictor of endothelial health and CVD risk) in OSA patients. Methods and results Nine overweight and obese subjects without prediabetes or diabetes were recruited. Eight out of nine subjects had moderate to severe degree of OSA. CD34+ cells were isolated from peripheral blood. Number and function of these cells were monitored before and after 3 months of treatment with CPAP. No significant changes were observed in the number of CD34+ cells, CFU-Hill’s colony formation unit (CFU) count or migratory response to the chemotactic factor SDF-1a after CPAP use. However, CXCR4 mRNA expression significantly increased by 2.2-fold indicating that CPAP may have a positive effect on SDF1a receptor (CXCR4), thereby improving migration of CD34+ cells mediated by SDF1a after the 3 month period. Interestingly, in clinical arena our results showed a reduction of pulse wave velocity (an established parameter of arterial stiffness) following CPAP therapy. Conclusions Our findings suggest that 3-month CPAP intervention does not show statistical significant increase in CD34+ cell number and function, in mostly moderate to severe OSA subjects; however, it did demonstrate a positive trend. CPAP therapy, did help improve arterial stiffness parameter. Electronic supplementary material The online version of this article (10.1186/s13287-019-1251-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cleyton C Domingues
- Department of Medicine, School of Medicine and Health Science, The George Washington University, 2300 I Street NW, Washington, DC, 20037, USA
| | - Fiona J Dore
- The GW Medical Faculty Associates, Washington, DC, USA
| | - Alexander Cho
- The GW Medical Faculty Associates, Washington, DC, USA
| | - Neeki Ahmadi
- Department of Medicine, School of Medicine and Health Science, The George Washington University, 2300 I Street NW, Washington, DC, 20037, USA
| | - Yana Kropotova
- Department of Medicine, School of Medicine and Health Science, The George Washington University, 2300 I Street NW, Washington, DC, 20037, USA
| | - Nabanita Kundu
- Department of Medicine, School of Medicine and Health Science, The George Washington University, 2300 I Street NW, Washington, DC, 20037, USA
| | - Naji Younes
- The GW Milken Institute of Public Health, Washington, DC, USA
| | - Vivek Jain
- The GW Medical Faculty Associates, Washington, DC, USA
| | - Sabyasachi Sen
- Department of Medicine, School of Medicine and Health Science, The George Washington University, 2300 I Street NW, Washington, DC, 20037, USA. .,The GW Medical Faculty Associates, Washington, DC, USA.
| |
Collapse
|
9
|
Gaspar LS, Álvaro AR, Moita J, Cavadas C. Obstructive Sleep Apnea and Hallmarks of Aging. Trends Mol Med 2017; 23:675-692. [PMID: 28739207 DOI: 10.1016/j.molmed.2017.06.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/12/2017] [Accepted: 06/16/2017] [Indexed: 12/16/2022]
Abstract
Obstructive sleep apnea (OSA) is one of the most common sleep disorders. Since aging is a risk factor for OSA development, it is expected that its prevalence will increase with the current increase in life span. In recent years, several studies have shown that OSA potentially contributes to functional decline, mainly prompted by chronic intermittent hypoxia and sleep fragmentation. Here, we propose that OSA might anticipate/aggravate aging by inducing cellular and molecular impairments that characterize the aging process, such as stem cell exhaustion, telomere attrition and epigenetic changes. We suggest that further knowledge on the impact of OSA on aging mechanisms might contribute to a better understanding of how OSA might putatively accelerate aging and aging-related diseases.
Collapse
Affiliation(s)
- Laetitia S Gaspar
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Ana Rita Álvaro
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Joaquim Moita
- Sleep Medicine Unit, Coimbra Hospital and University Center (CHUC), Coimbra, Portugal
| | - Cláudia Cavadas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
10
|
Micheu MM, Rosca AM, Deleanu OC. Stem/progenitor cells and obstructive sleep apnea syndrome - new insights for clinical applications. World J Stem Cells 2016; 8:332-341. [PMID: 27822340 PMCID: PMC5080640 DOI: 10.4252/wjsc.v8.i10.332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/25/2016] [Accepted: 08/16/2016] [Indexed: 02/06/2023] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) is a widespread disorder, characterized by recurrent upper airway obstruction during sleep, mostly as a result of complete or partial pharyngeal obstruction. Due to the occurrence of frequent and regular hypoxic events, patients with OSAS are at increased risk of cardiovascular disease, stroke, metabolic disorders, occupational errors, motor vehicle accidents and even death. Thus, OSAS has severe consequences and represents a significant economic burden. However, some of the consequences, as well as their costs can be reduced with appropriate detection and treatment. In this context, the recent advances that were made in stem cell biology knowledge and stem cell - based technologies hold a great promise for various medical conditions, including respiratory diseases. However, the investigation of the role of stem cells in OSAS is still recent and rather limited, requiring further studies, both in animal models and humans. The goal of this review is to summarize the current state of knowledge regarding both lung resident as well as circulating stem/progenitor cells and discuss existing controversies in the field in order to identify future research directions for clinical applications in OSAS. Also, the paper highlights the requisite for inter-institutional, multi-disciplinary research collaborations in order to achieve breakthrough results in the field.
Collapse
|
11
|
Abstract
The aim of this study was to evaluate the differences between patients with obstructive sleep apnea syndrome (OSAS) and phenotypically similar subjects without OSAS in terms of bone mineral density (BMD) and bone turnover markers. The study was conducted on 30 males diagnosed with OSAS and 20 healthy males. All subjects underwent polysomnographic testing. Calcium, phosphorus parathyroid hormone, thyroid stimulating hormone, bone-specific alkaline phosphatase, 25-hydroxyvitamin D3, osteocalcin, and beta-CrossLaps (β-CTx) were measured. BMD in the lumbar spine (L1-L4) and femoral neck was measured by dual energy X-ray absorptiometry. There was no statistically significant difference between the two groups in terms of demographic data with the exception of bone mass index and waist circumference. (p < 0.05). Analyses showed significantly lower BMD measurements in the femoral neck and T-scores in the femoral neck in patients diagnosed with OSAS. Serum β-CTx levels were found to be statistically significantly higher in the OSAS group (p = 0.017). In multivariate assessments performed for apnea/hypopnea index values, mean saturation O2 levels were found to be significantly associated with osteocalcin levels and neck BMD. OSAS patients might represent a risk group with respect to loss of BMD and bone resorption. It is important to evaluate bone loss in these patients. Further studies should be carried out on larger study populations to evaluate the effects of chronic hypoxia on BMD in detail.
Collapse
Affiliation(s)
- Rabia Terzi
- Department of Physical Medicine and Rehabilitation, Derince Training and Research Hospital, Kocaeli, Turkey.
| | - Zahide Yılmaz
- Department of Neurology, Derince Training and Research Hospital, Kocaeli, Turkey
| |
Collapse
|
12
|
Lavie L. Oxidative stress in obstructive sleep apnea and intermittent hypoxia – Revisited – The bad ugly and good: Implications to the heart and brain. Sleep Med Rev 2015; 20:27-45. [DOI: 10.1016/j.smrv.2014.07.003] [Citation(s) in RCA: 289] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 07/13/2014] [Accepted: 07/14/2014] [Indexed: 12/14/2022]
|
13
|
Gileles-Hillel A, Almendros I, Khalyfa A, Zhang SX, Wang Y, Gozal D. Early intermittent hypoxia induces proatherogenic changes in aortic wall macrophages in a murine model of obstructive sleep apnea. Am J Respir Crit Care Med 2014; 190:958-61. [PMID: 25317468 DOI: 10.1164/rccm.201406-1149le] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
14
|
Almendros I, Wang Y, Gozal D. The polymorphic and contradictory aspects of intermittent hypoxia. Am J Physiol Lung Cell Mol Physiol 2014; 307:L129-40. [PMID: 24838748 DOI: 10.1152/ajplung.00089.2014] [Citation(s) in RCA: 129] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Intermittent hypoxia (IH) has been extensively studied during the last decade, primarily as a surrogate model of sleep apnea. However, IH is a much more pervasive phenomenon in human disease, is viewed as a potential therapeutic approach, and has also been used in other disciplines, such as in competitive sports. In this context, adverse outcomes involving cardiovascular, cognitive, metabolic, and cancer problems have emerged in obstructive sleep apnea-based studies, whereas beneficial effects of IH have also been identified. Those a priori contradictory findings may not be as contradictory as initially thought. Indeed, the opposite outcomes triggered by IH can be explained by the specific characteristics of the large diversity of IH patterns applied in each study. The balance between benefits and injury appears to primarily depend on the ability of the organism to respond and activate adaptive mechanisms to IH. In this context, the adaptive or maladaptive responses can be generally predicted by the frequency, severity, and duration of IH. However, the presence of underlying conditions such as hypertension or obesity, as well as age, sex, or genotypic variance, may be important factors tilting the balance between an appropriate homeostatic response and decompensation. Here, the two possible facets of IH as derived from human and experimental animal settings will be reviewed.
Collapse
Affiliation(s)
- Isaac Almendros
- Department of Pediatrics, Comer Children's Hospital, Pritzker School of Medicine, The University of Chicago, Chicago, Illinois
| | - Yang Wang
- Department of Pediatrics, Comer Children's Hospital, Pritzker School of Medicine, The University of Chicago, Chicago, Illinois
| | - David Gozal
- Department of Pediatrics, Comer Children's Hospital, Pritzker School of Medicine, The University of Chicago, Chicago, Illinois
| |
Collapse
|
15
|
Ramos P, Rubies C, Torres M, Batlle M, Farre R, Brugada J, Montserrat JM, Almendros I, Mont L. Atrial fibrosis in a chronic murine model of obstructive sleep apnea: mechanisms and prevention by mesenchymal stem cells. Respir Res 2014; 15:54. [PMID: 24775918 PMCID: PMC4012097 DOI: 10.1186/1465-9921-15-54] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 03/18/2014] [Indexed: 12/31/2022] Open
Abstract
Background OSA increases atrial fibrillation (AF) risk and is associated with poor AF treatment outcomes. However, a causal association is not firmly established and the mechanisms involved are poorly understood. The aims of this work were to determine whether chronic obstructive sleep apnea (OSA) induces an atrial pro-arrhythmogenic substrate and to explore whether mesenchymal stem cells (MSC) are able to prevent it in a rat model of OSA. Methods A custom-made setup was used to mimic recurrent OSA-like airway obstructions in rats. OSA-rats (n = 16) were subjected to 15-second obstructions, 60 apneas/hour, 6 hours/day during 21 consecutive days. Sham rats (n = 14) were placed in the setup but no obstructions were applied. In a second series of rats, MSC were administered to OSA-rats and saline to Sham-rats. Myocardial collagen deposit was evaluated in Picrosirius-red stained samples. mRNA expression of genes involved in collagen turnover, inflammation and oxidative stress were quantified by real time PCR. MMP-2 protein levels were quantified by Western Blot. Results A 43% greater interstitial collagen fraction was observed in the atria, but not in the ventricles, of OSA-rats compared to Sham-rats (Sham 8.32 ± 0.46% vs OSA 11.90 ± 0.59%, P < 0.01). Angiotensin-I Converting Enzyme (ACE) and Interleukin 6 (IL-6) expression were significantly increased in both atria, while Matrix Metalloproteinase-2 (MMP-2) expression was decreased. MSC administration blunted OSA-induced atrial fibrosis (Sham + Saline 8.39 ± 0.56% vs OSA + MSC 9.57 ± 0.31%, P = 0.11), as well as changes in MMP-2 and IL-6 expression. Interleukin 1-β (IL-1β) plasma concentration correlated to atrial but not ventricular fibrosis. Notably, a 2.5-fold increase in IL-1β plasma levels was observed in the OSA group, which was prevented in rats receiving MSC. Conclusions OSA induces selective atrial fibrosis in a chronic murine model, which can be mediated in part by the systemic and local inflammation and by decreased collagen-degradation. MSCs transplantation prevents atrial fibrosis, suggesting that these stem cells could counterbalance inflammation in OSA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Lluís Mont
- Thorax Institute, Unitat de Fibril · lació Auricular, Hospital Clínic, Universitat de Barcelona and Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.
| |
Collapse
|
16
|
Sforza E, Thomas T, Barthélémy JC, Collet P, Roche F. Obstructive sleep apnea is associated with preserved bone mineral density in healthy elderly subjects. Sleep 2013; 36:1509-15. [PMID: 24082310 DOI: 10.5665/sleep.3046] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
STUDY OBJECTIVES Chronic intermittent hypoxia (IH) acts as a stimulator of mesenchymal stem cell (MSC) mobilization, intensifying osteoblast formation in animal models. The recurrence of apnea and oxygen desaturation in obstructive sleep apnea (OSA) may mimic experimental models of IH. We hypothesized that in elderly with OSA, apnea-related IH may mobilize MSCs and thereby prevent the age-related decline in osteogenesis. This study explored the relationship between OSA and bone mineral density (BMD), and the effect of IH on BMD, in a large sample of elderly subjects. PARTICIPANTS There were 833 volunteers age 68.6 ± 0.8 y (59% women). INTERVENTION Each participant underwent evaluation of BMD at lumbar spine and femoral sites by dual-energy x-ray absorptiometry (DEXA) as well as clinical and polygraphic examinations. OSA was diagnosed on the basis of an apnea-hypopnea index (AHI) ≥ 15. MEASUREMENTS AND RESULTS There were 55% of the participants who presented with OSA, and these subjects were predominantly male and overweight. Compared with subjects without OSA, those with OSA had a higher femoral and spinal BMD (P < 0.001). Body mass index (BMI), AHI, and oxygen desaturation index (ODI) (P < 0.01) were significantly related to BMD. After adjustment for sex, BMI, metabolic values, and hypertension, multiple regression analysis showed a significant association between femoral and lumbar T scores and both daily energy expenditure (P < 0.001) and ODI (P = 0.007). CONCLUSIONS In elderly subjects, the presence of obstructive sleep apnea is associated with higher bone mineral density, with oxygen desaturation index being a significant determinant of bone metabolism. These results suggest that apnea-related intermittent hypoxia may stimulate the bone remodeling process in older population. CLINICAL TRIAL REGISTRATION NCT 00759304 and NCT 00766584.
Collapse
Affiliation(s)
- Emilia Sforza
- Service de Physiologie Clinique et de l'Exercice, CHU Nord, Saint-Etienne, Faculté de Médecine Jacques Lisfranc, PRES de Lyon 42023,Université Jean Monnet, Saint-Etienne, France
| | | | | | | | | |
Collapse
|
17
|
Kheirandish-Gozal L, Farré R. The injury theory, endothelial progenitors, and sleep apnea. Am J Respir Crit Care Med 2013; 187:5-7. [PMID: 23281349 DOI: 10.1164/rccm.201210-1950ed] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|