1
|
Wijeweera G, Wijekoon N, Gonawala L, Imran Y, Mohan C, De Silva KRD. Therapeutic Implications of Some Natural Products for Neuroimmune Diseases: A Narrative of Clinical Studies Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:5583996. [PMID: 37089709 PMCID: PMC10118888 DOI: 10.1155/2023/5583996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 01/24/2023] [Accepted: 02/11/2023] [Indexed: 04/25/2023]
Abstract
Neuroimmune diseases are a group of disorders that occur due to the dysregulation of both the nervous and immune systems, and these illnesses impact tens of millions of people worldwide. However, patients who suffer from these debilitating conditions have very few FDA-approved treatment options. Neuroimmune crosstalk is important for controlling the immune system both centrally and peripherally to maintain tissue homeostasis. This review aims to provide readers with information on how natural products modulate neuroimmune crosstalk and the therapeutic implications of natural products, including curcumin, epigallocatechin-3-gallate (EGCG), ginkgo special extract, ashwagandha, Centella asiatica, Bacopa monnieri, ginseng, and cannabis to mitigate the progression of neuroimmune diseases, such as Alzheimer's disease, multiple sclerosis, amyotrophic lateral sclerosis, Parkinson's disease, depression, and anxiety disorders. The majority of the natural products based clinical studies mentioned in this study have yielded positive results. To achieve the expected results from natural products based clinical studies, researchers should focus on enhancing bioavailability and determining the synergistic mechanisms of herbal compounds and extracts, which will lead to the discovery of more effective phytomedicines while averting the probable negative effects of natural product extracts. Therefore, future studies developing nutraceuticals to mitigate neuroimmune diseases that incorporate phytochemicals to produce synergistic effects must analyse efficacy, bioavailability, gut-brain axis function safety, chemical modifications, and encapsulation with nanoparticles.
Collapse
Affiliation(s)
- Gayathri Wijeweera
- Institute for Combinatorial Advanced Research and Education (KDU-CARE), General Sir John Kotelawala Defense University, Sri Lanka
- Interdisciplinary Centre for Innovation in Biotechnology and Neurosciences, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
| | - Nalaka Wijekoon
- Institute for Combinatorial Advanced Research and Education (KDU-CARE), General Sir John Kotelawala Defense University, Sri Lanka
- Interdisciplinary Centre for Innovation in Biotechnology and Neurosciences, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
- Department of Cellular Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Lakmal Gonawala
- Institute for Combinatorial Advanced Research and Education (KDU-CARE), General Sir John Kotelawala Defense University, Sri Lanka
- Interdisciplinary Centre for Innovation in Biotechnology and Neurosciences, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
- Department of Cellular Neuroscience, Faculty of Health, Medicine & Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Yoonus Imran
- Interdisciplinary Centre for Innovation in Biotechnology and Neurosciences, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
| | - Chandra Mohan
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - K. Ranil D. De Silva
- Institute for Combinatorial Advanced Research and Education (KDU-CARE), General Sir John Kotelawala Defense University, Sri Lanka
- Interdisciplinary Centre for Innovation in Biotechnology and Neurosciences, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Lanka
| |
Collapse
|
2
|
Joseph JM, Gigliobianco MR, Firouzabadi BM, Censi R, Di Martino P. Nanotechnology as a Versatile Tool for 19F-MRI Agent's Formulation: A Glimpse into the Use of Perfluorinated and Fluorinated Compounds in Nanoparticles. Pharmaceutics 2022; 14:382. [PMID: 35214114 PMCID: PMC8874484 DOI: 10.3390/pharmaceutics14020382] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
Simultaneously being a non-radiative and non-invasive technique makes magnetic resonance imaging (MRI) one of the highly sought imaging techniques for the early diagnosis and treatment of diseases. Despite more than four decades of research on finding a suitable imaging agent from fluorine for clinical applications, it still lingers as a challenge to get the regulatory approval compared to its hydrogen counterpart. The pertinent hurdle is the simultaneous intrinsic hydrophobicity and lipophobicity of fluorine and its derivatives that make them insoluble in any liquids, strongly limiting their application in areas such as targeted delivery. A blossoming technique to circumvent the unfavorable physicochemical characteristics of perfluorocarbon compounds (PFCs) and guarantee a high local concentration of fluorine in the desired body part is to encapsulate them in nanosystems. In this review, we will be emphasizing different types of nanocarrier systems studied to encapsulate various PFCs and fluorinated compounds, headway to be applied as a contrast agent (CA) in fluorine-19 MRI (19F MRI). We would also scrutinize, especially from studies over the last decade, the different types of PFCs and their specific applications and limitations concerning the nanoparticle (NP) system used to encapsulate them. A critical evaluation for future opportunities would be speculated.
Collapse
Affiliation(s)
- Joice Maria Joseph
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (J.M.J.); (B.M.F.); (P.D.M.)
| | | | | | - Roberta Censi
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (J.M.J.); (B.M.F.); (P.D.M.)
| | - Piera Di Martino
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (J.M.J.); (B.M.F.); (P.D.M.)
- Dipartimento di Farmacia, Università “G. D’Annunzio” Chieti e Pescara, 66100 Chieti, Italy
| |
Collapse
|
3
|
Scarpelli ML, Healey DR, Mehta S, Quarles CC. Imaging Glioblastoma With 18F-Fluciclovine Amino Acid Positron Emission Tomography. Front Oncol 2022; 12:829050. [PMID: 35174096 PMCID: PMC8841434 DOI: 10.3389/fonc.2022.829050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionConventional methods of imaging brain tumors fail to assess metabolically active tumor regions, which limits their capabilities for tumor detection, localization, and response assessment. Positron emission tomography (PET) with 18F-fluciclovine (fluciclovine) provides regional assessment of amino acid uptake in tumors that could overcome some of the limitations of conventional imaging. However, the biological basis of enhanced fluciclovine uptake is insufficiently characterized in brain tumors, which confounds clinical interpretation and application. This study sought to address this gap by correlating multiple biologic quantities with fluciclovine PET uptake across a range of human glioblastoma xenograft models.MethodsThirty-one rats underwent orthotopic implantations with one of five different human glioblastoma cell lines. After tumors were established, fluciclovine PET and magnetic resonance imaging (MRI) scans were performed. The fluciclovine tumor-to-normal-brain (TN) uptake ratio was used to quantify fluciclovine uptake. MRI scans were used to assess tumor volume and gadolinium enhancement status. Histologic assessments quantified tumor cell proliferation, tumor cell density, and tumor cell amino acid transporters (LAT1 and ASCT2). Multivariate linear regression models related fluciclovine uptake with the other measured quantities.ResultsWithin the multivariate regression, the fluciclovine TN uptake ratio (measured 15 to 35 minutes after fluciclovine injection) was most strongly associated with tumor ASCT2 levels (β=0.64; P=0.001). The fluciclovine TN uptake ratio was also significantly associated with tumor volume (β=0.45; P=0.001) and tumor enhancement status (β=0.40; P=0.01). Tumor cell proliferation, tumor cell density, and LAT1 levels were not significantly associated with fluciclovine uptake in any of the multivariate models. In general, both enhancing and non-enhancing tumors could be visualized on fluciclovine PET images, with the median TN uptake ratio across the five tumor lines being 2.4 (range 1.1 to 8.9).ConclusionsIncreased fluciclovine PET uptake was associated with increased levels of the amino acid transporter ASCT2, suggesting fluciclovine PET may be useful for assessing brain tumor amino acid metabolism. Fluciclovine PET uptake was elevated in both enhancing and non-enhancing tumors but the degree of uptake was greater in larger tumors and tumors with enhancement, indicating these variables could confound fluciclovine metabolic measurements if not accounted for.
Collapse
Affiliation(s)
| | - Debbie R. Healey
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Shwetal Mehta
- Ivy Brain Tumor Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - C. Chad Quarles
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, AZ, United States
- *Correspondence: C. Chad Quarles,
| |
Collapse
|
4
|
Conti E, Piccardi B, Sodero A, Tudisco L, Lombardo I, Fainardi E, Nencini P, Sarti C, Allegra Mascaro AL, Baldereschi M. Translational Stroke Research Review: Using the Mouse to Model Human Futile Recanalization and Reperfusion Injury in Ischemic Brain Tissue. Cells 2021; 10:3308. [PMID: 34943816 PMCID: PMC8699609 DOI: 10.3390/cells10123308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 12/20/2022] Open
Abstract
The approach to reperfusion therapies in stroke patients is rapidly evolving, but there is still no explanation why a substantial proportion of patients have a poor clinical prognosis despite successful flow restoration. This issue of futile recanalization is explained here by three clinical cases, which, despite complete recanalization, have very different outcomes. Preclinical research is particularly suited to characterize the highly dynamic changes in acute ischemic stroke and identify potential treatment targets useful for clinical translation. This review surveys the efforts taken so far to achieve mouse models capable of investigating the neurovascular underpinnings of futile recanalization. We highlight the translational potential of targeting tissue reperfusion in fully recanalized mouse models and of investigating the underlying pathophysiological mechanisms from subcellular to tissue scale. We suggest that stroke preclinical research should increasingly drive forward a continuous and circular dialogue with clinical research. When the preclinical and the clinical stroke research are consistent, translational success will follow.
Collapse
Affiliation(s)
- Emilia Conti
- Neuroscience Institute, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (E.C.); (A.L.A.M.)
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Benedetta Piccardi
- Neurofarba Department, University of Florence, Via G. Pieraccini 6, 50139 Florence, Italy; (A.S.); (L.T.); (C.S.)
| | - Alessandro Sodero
- Neurofarba Department, University of Florence, Via G. Pieraccini 6, 50139 Florence, Italy; (A.S.); (L.T.); (C.S.)
| | - Laura Tudisco
- Neurofarba Department, University of Florence, Via G. Pieraccini 6, 50139 Florence, Italy; (A.S.); (L.T.); (C.S.)
| | - Ivano Lombardo
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (I.L.); (E.F.)
| | - Enrico Fainardi
- Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy; (I.L.); (E.F.)
| | - Patrizia Nencini
- Stroke Unit, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy;
| | - Cristina Sarti
- Neurofarba Department, University of Florence, Via G. Pieraccini 6, 50139 Florence, Italy; (A.S.); (L.T.); (C.S.)
| | - Anna Letizia Allegra Mascaro
- Neuroscience Institute, National Research Council, Via G. Moruzzi 1, 56124 Pisa, Italy; (E.C.); (A.L.A.M.)
- European Laboratory for Non-Linear Spectroscopy, Via Nello Carrara 1, 50019 Sesto Fiorentino, Italy
| | - Marzia Baldereschi
- Neuroscience Institute, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy;
| |
Collapse
|
5
|
Takatsu H, Komatsu T, Fukasawa N, Fukuda T, Iguchi Y. Spontaneously changing MRI findings of primary central nervous system vasculitis: A case report. J Clin Neurosci 2020; 83:125-127. [PMID: 33246904 DOI: 10.1016/j.jocn.2020.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/24/2020] [Accepted: 11/01/2020] [Indexed: 10/22/2022]
Abstract
Spontaneously disappearing lesions on magnetic resonance imaging (MRI) has been described in primary central nervous system lymphoma. In this case, we report our experience of spontaneously changing MRI findings of primary central nervous system vasculitis (PCNSV) confirmed histopathologically. A 69-year-old man presented with sudden unsteady gait. Fluid-attenuated inversion recovery (FLAIR) images showed high-intensity areas in the right deep white matter. Contrast-enhanced T1-weighted MRI demonstrated a nodular lesion in the white matter of the left occipitoparietal lobe. On repeat MRI 7 days later, FLAIR hyperintense lesions had spontaneously disappeared and contrast-enhanced lesions had progressed, with new contrast lesions in the right corpus callosum. Repeat MRI 14 days after admission demonstrated contrast-enhancing lesions either increased or decreased in intensity in both occipitoparietal lobes. Contrast-enhancing lesions were therefore biopsied. Histopathological examination revealed vasculitis with fibrinoid necrosis. PCNSV was diagnosed without any signs of inflammation in blood vessels other than cerebral blood vessels. Spontaneously changing MRI findings may play an important role in diagnosing PCNSV.
Collapse
Affiliation(s)
- Hiroki Takatsu
- Department of Neurology, the Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan.
| | - Teppei Komatsu
- Department of Neurology, the Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Nei Fukasawa
- Department of Pathology, the Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Takahiro Fukuda
- Division of Neuropathology, Department of Pathology, the Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Yasuyuki Iguchi
- Department of Neurology, the Jikei University School of Medicine, 3-25-8, Nishi-Shimbashi, Minato-ku, Tokyo 105-8461, Japan
| |
Collapse
|
6
|
Pol S, Schweser F, Bertolino N, Preda M, Sveinsson M, Sudyn M, Babek N, Zivadinov R. Characterization of leptomeningeal inflammation in rodent experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis. Exp Neurol 2019; 314:82-90. [PMID: 30684521 DOI: 10.1016/j.expneurol.2019.01.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 01/14/2019] [Accepted: 01/21/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND Leptomeningeal inflammation, as evidenced by leptomeningeal contrast enhancement (LMCE), is associated to cortical pathology in multiple sclerosis. The temporal pattern of LMCE in experimental autoimmune encephalomyelitis (EAE) myelin oligodendrocyte glycoprotein (MOG) is unknown. OBJECTIVE To investigate LMCE using serial MRI in the EAE model of MS, and its association with clinical disease progression. To characterize the relationship between LMCE and underlying histological correlates. DESIGN Thirteen C57BL/6J mice, MOG-immunized (35-55 amino acid) and 8 saline injected animals were assessed at pre-induction and at 3, 6, 10, 20, 27, 32, 45 and 63 days post induction (dPI). LMCE scan was obtained using FLAIR-RARE sequence after post-contrast gadolinium administration on 9.4 T scanner. Brain cryo-sections were assessed for measuring cellular density of Iba1 positive macrophage/microglia at 10 dPI and 32 dPI, and for the presence of T, B and macrophage cells in the meningeal layer at 10 dPI and 63 dPI. RESULTS All EAE-MOG animals showed presence of LMCE and none of the control mice. The peak signal intensity of LMCE was evidenced at 10dPI in the meninges and decreased through 10-63 dPI. The peak of LMCE was associated with a weight loss starting at 1 week PI and with clinical symptoms starting at 2 weeks PI. Histological analysis of the brain tissue showed a higher density of Iba1 positive microglial cells in the EAE-MOG animals, corresponding to the areas of LMCE. Meninges of EAE mice showed higher density of Iba1 stained macrophage cells relative to saline animals. EAE animals also showed the presence of T and B cells in the meninges which were absent in the saline animals. CONCLUSIONS LMCE peak intensity in the meninges corresponds to the acute inflammatory phase of EAE-MOG disease progression, and is associated with clinical symptoms and higher inflammatory cell density.
Collapse
Affiliation(s)
- Suyog Pol
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Ferdinand Schweser
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Nicola Bertolino
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Marilena Preda
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Michele Sveinsson
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Michelle Sudyn
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Natan Babek
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA; Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, USA.
| |
Collapse
|
7
|
Pronin AI, Dolgushin MB, Lyuosev AS, Odzharova AA, Nevzorov DI, Nechipay EA, Gasparyan TG. [Capabilities of 18F-FET PET/CT in a patient with brain glioma (a case report and literature review)]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2018; 82:95-99. [PMID: 29795092 DOI: 10.17116/oftalma201882295-99] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Positron emission tomography combined with computed tomography (PET/CT) enables assessment of not only anatomical and structural but also metabolic changes in tumor mass. 18F-fluoroethyl tyrosine (18F-FET) PET/CT is based on evaluation of transport of 18F-labeled tyrosine in tissues. We present a clinical case of a patient with a newly diagnosed brain tumor, demonstrating the capabilities of 18F-FET PET/CT in assessing the reliable volume and degree of tumor anaplasia, which is important when choosing the treatment approach for a patient.
Collapse
Affiliation(s)
- A I Pronin
- Blokhin Russian Cancer Research Center, Kashirskoe Shosse, 23, Moscow, Russia, 115478
| | - M B Dolgushin
- Blokhin Russian Cancer Research Center, Kashirskoe Shosse, 23, Moscow, Russia, 115478
| | - A S Lyuosev
- Blokhin Russian Cancer Research Center, Kashirskoe Shosse, 23, Moscow, Russia, 115478
| | - A A Odzharova
- Blokhin Russian Cancer Research Center, Kashirskoe Shosse, 23, Moscow, Russia, 115478
| | - D I Nevzorov
- Blokhin Russian Cancer Research Center, Kashirskoe Shosse, 23, Moscow, Russia, 115478
| | - E A Nechipay
- Blokhin Russian Cancer Research Center, Kashirskoe Shosse, 23, Moscow, Russia, 115478
| | - T G Gasparyan
- Blokhin Russian Cancer Research Center, Kashirskoe Shosse, 23, Moscow, Russia, 115478
| |
Collapse
|
8
|
Voin V, Khalid S, Shrager S, Tubbs RS, Greiner R, Thamburaj K, Rizk E. Neuroleukemiosis: Two Case Reports. Cureus 2017; 9:e1529. [PMID: 28975064 PMCID: PMC5621778 DOI: 10.7759/cureus.1529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Extramedullary tumors composed of myeloblasts or monoblasts can present in various locations. Patients with a history of acute myeloid leukemia (AML) can present with neuropathic pain and no evidence of relapse of their leukemia. Neuroleukemiosis is a form of extramedullary tumor present in the peripheral nervous systems (PNS) of leukemia patients. We report two AML patients who were in remission and later presented with neurological symptoms due to neuroleukemiosis with negative bone marrow biopsies.
Collapse
Affiliation(s)
- Vlad Voin
- Research Fellow, Seattle Science Foundation
| | - Shehzad Khalid
- Department of Anatomical Sciences, St. George's University School of Medicine, Grenada, West Indies
| | - Sebastian Shrager
- Department of Anatomical Research, St. George's University School of Medicine, Grenada, West Indies
| | | | - Robert Greiner
- Hematology-Oncology, Penn State Milton S. Hershey Medical Center
| | | | - Elias Rizk
- Department of Neurosurgery, Penn State Milton S. Hershey Medical Center
| |
Collapse
|
9
|
Prediction of disease activity in models of multiple sclerosis by molecular magnetic resonance imaging of P-selectin. Proc Natl Acad Sci U S A 2017; 114:6116-6121. [PMID: 28533365 DOI: 10.1073/pnas.1619424114] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
New strategies for detecting disease activity in multiple sclerosis are being investigated to ameliorate diagnosis and follow-up of patients. Today, although magnetic resonance imaging (MRI) is widely used to diagnose and monitor multiple sclerosis, no imaging tools exist to predict the evolution of disease and the efficacy of therapeutic strategies. Here, we show that molecular MRI targeting the endothelial adhesion molecule P-selectin unmasks the pathological events that take place in the spinal cord of mice subjected to chronic or relapsing experimental autoimmune encephalomyelitis. This approach provides a quantitative spatiotemporal follow-up of disease course in relation to clinical manifestations. Moreover, it predicts relapse in asymptomatic mice and remission in symptomatic animals. Future molecular MRI targeting P-selectin may be used to improve diagnosis, follow-up of treatment, and management of relapse/remission cycles in multiple sclerosis patients by providing information currently inaccessible through conventional MRI techniques.
Collapse
|
10
|
Selvaraj UM, Ortega SB, Hu R, Gilchrist R, Kong X, Partin A, Plautz EJ, Klein RS, Gidday JM, Stowe AM. Preconditioning-induced CXCL12 upregulation minimizes leukocyte infiltration after stroke in ischemia-tolerant mice. J Cereb Blood Flow Metab 2017; 37:801-813. [PMID: 27006446 PMCID: PMC5363460 DOI: 10.1177/0271678x16639327] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Repetitive hypoxic preconditioning creates long-lasting, endogenous protection in a mouse model of stroke, characterized by reductions in leukocyte-endothelial adherence, inflammation, and infarct volumes. The constitutively expressed chemokine CXCL12 can be upregulated by hypoxia and limits leukocyte entry into brain parenchyma during central nervous system inflammatory autoimmune disease. We therefore hypothesized that the sustained tolerance to stroke induced by repetitive hypoxic preconditioning is mediated, in part, by long-term CXCL12 upregulation at the blood-brain barrier (BBB). In male Swiss Webster mice, repetitive hypoxic preconditioning elevated cortical CXCL12 protein levels, and the number of cortical CXCL12+ microvessels, for at least two weeks after the last hypoxic exposure. Repetitive hypoxic preconditioning-treated mice maintained more CXCL12-positive vessels than untreated controls following transient focal stroke, despite cortical decreases in CXCL12 mRNA and protein. Continuous administration of the CXCL12 receptor (CXCR4) antagonist AMD3100 for two weeks following repetitive hypoxic preconditioning countered the increase in CXCL12-positive microvessels, both prior to and following stroke. AMD3100 blocked the protective post-stroke reductions in leukocyte diapedesis, including macrophages and NK cells, and blocked the protective effect of repetitive hypoxic preconditioning on lesion volume, but had no effect on blood-brain barrier dysfunction. These data suggest that CXCL12 upregulation prior to stroke onset, and its actions following stroke, contribute to the endogenous, anti-inflammatory phenotype induced by repetitive hypoxic preconditioning.
Collapse
Affiliation(s)
- Uma Maheswari Selvaraj
- 1 Department of Neurology & Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Sterling B Ortega
- 1 Department of Neurology & Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Ruilong Hu
- 2 Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert Gilchrist
- 2 Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiangmei Kong
- 1 Department of Neurology & Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Alexander Partin
- 1 Department of Neurology & Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Erik J Plautz
- 1 Department of Neurology & Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA
| | - Robyn S Klein
- 4 Department of Medicine, Washington University, St Louis, MO, USA
| | - Jeffrey M Gidday
- 2 Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA.,3 Department of Ophthalmology, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Ann M Stowe
- 1 Department of Neurology & Neurotherapeutics, UT Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
11
|
Early Inflammatory Response following Traumatic Brain Injury in Rabbits Using USPIO- and Gd-Enhanced MRI. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8431987. [PMID: 27868069 PMCID: PMC5102713 DOI: 10.1155/2016/8431987] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/04/2016] [Indexed: 11/28/2022]
Abstract
Purpose. To monitor the inflammatory response (IR) following traumatic brain injury (TBI) before and after the rehabilitation of the blood-brain barrier (BBB) in rabbits using USPIO- and Gd-enhanced MRI. Materials and Methods. Twenty white big-eared rabbits with mild TBI (mTBI) were randomly and equally divided into four groups. Rabbits were sacrificed for the brain specimens immediately after the last MRI-monitoring. Sequences were tse-T1WI, tse-T2WI, Gd-T1WI, and USPIO-T1WI. Dynamical MRI presentations were evaluated and compared with pathological findings for each group. Results. Twenty-four hours after injury, all rabbits displayed high signal foci on T2WI, while only 55% lesions could be found on Gd-T1WI and none on USPIO-T1WI. The lesions were enhanced on Gd-T1WI in 100% subjects after 48 h and the enhancement sizes augmented to the largest after 72 h. At the time point of 72 h after TBI, 90% lesions were enhanced by USPIO. Five days after injury, 19 lesions showed decreased Gd-enhancement and one disappeared; however, USPIO-enhancement became larger than before. Pathological findings showed microglias slightly appeared in dense leukocytes at 48 h, but became the dominant inflammatory cells after five days. Conclusions. Dynamic IR following injury could be monitored by combination of Gd- and USPIO-MRI in mTBI rabbits.
Collapse
|
12
|
Abstract
Disorders of peripheral nerve have been traditionally diagnosed and monitored using clinical and electrodiagnostic approaches. The last two decades have seen rapid development of both magnetic resonance imaging (MRI) and ultrasound imaging of peripheral nerve, such that these imaging modalities are increasingly invaluable to the diagnosis of patients with peripheral nerve disorders. Peripheral nerve imaging provides information which is supplementary to clinical and electrodiagnostic diagnosis. Both MRI and ultrasound have particular benefits in specific clinical circumstances and can be considered as complementary techniques. These technologic developments in peripheral nerve imaging will usher in an era of multimodality assessment of peripheral nerve disorders, with clinical evaluations supported by anatomic information from imaging, and functional information from electrodiagnostic studies. Such a multimodality approach will improve the accuracy and efficiency of patient care.
Collapse
Affiliation(s)
- Neil G Simon
- St Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Jason Talbott
- Department of Radiology, University of California, San Francisco, CA, USA
| | - Cynthia T Chin
- Department of Radiology, University of California, San Francisco, CA, USA
| | - Michel Kliot
- Department of Neurological Surgery, Northwestern Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
13
|
Juhász C, Dwivedi S, Kamson DO, Michelhaugh SK, Mittal S. Comparison of amino acid positron emission tomographic radiotracers for molecular imaging of primary and metastatic brain tumors. Mol Imaging 2015; 13. [PMID: 24825818 DOI: 10.2310/7290.2014.00015] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Positron emission tomography (PET) is an imaging technology that can detect and characterize tumors based on their molecular and biochemical properties, such as altered glucose, nucleoside, or amino acid metabolism. PET plays a significant role in the diagnosis, prognostication, and treatment of various cancers, including brain tumors. In this article, we compare uptake mechanisms and the clinical performance of the amino acid PET radiotracers (l-[methyl-11C]methionine [MET], 18F-fluoroethyl-tyrosine [FET], 18F-fluoro-l-dihydroxy-phenylalanine [FDOPA], and 11C-alpha-methyl-l-tryptophan [AMT]) most commonly used for brain tumor imaging. First, we discuss and compare the mechanisms of tumoral transport and accumulation, the basis of differential performance of these radioligands in clinical studies. Then we summarize studies that provided direct comparisons among these amino acid tracers and to clinically used 2-deoxy-2[18F]fluoro-d-glucose [FDG] PET imaging. We also discuss how tracer kinetic analysis can enhance the clinical information obtained from amino acid PET images. We discuss both similarities and differences in potential clinical value for each radioligand. This comparative review can guide which radiotracer to favor in future clinical trials aimed at defining the role of these molecular imaging modalities in the clinical management of brain tumor patients.
Collapse
|
14
|
Wang T, Miao Y, Meng Y, Li A. Isolated leukemic infiltration of peripheral nervous system. Muscle Nerve 2014; 51:290-3. [PMID: 25155316 DOI: 10.1002/mus.24435] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 08/17/2014] [Accepted: 08/19/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Tingzhong Wang
- Department of Neurosurgery; the Fourth Affiliated Hospital of China Medical University; Chongshandong Road 4 Shenyang China 110032
| | - Yuan Miao
- Department of Pathology; College of Basic Medical Sciences of China Medical University; Shenyang China
| | - Yanli Meng
- Department of Hematology; the Fourth Affiliated Hospital of China Medical University; Shenyang China
| | - Ailin Li
- Department of Radiation Oncology; the First Affiliated Hospital of China Medical University; Shenyang China
| |
Collapse
|
15
|
Petters C, Irrsack E, Koch M, Dringen R. Uptake and metabolism of iron oxide nanoparticles in brain cells. Neurochem Res 2014; 39:1648-60. [PMID: 25011394 DOI: 10.1007/s11064-014-1380-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 01/29/2023]
Abstract
Magnetic iron oxide nanoparticles (IONPs) are used for various applications in biomedicine, for example as contrast agents in magnetic resonance imaging, for cell tracking and for anti-tumor treatment. However, IONPs are also known for their toxic effects on cells and tissues which are at least in part caused by iron-mediated radical formation and oxidative stress. The potential toxicity of IONPs is especially important concerning the use of IONPs for neurobiological applications as alterations in brain iron homeostasis are strongly connected with human neurodegenerative diseases. Since IONPs are able to enter the brain, potential adverse consequences of an exposure of brain cells to IONPs have to be considered. This article describes the pathways that allow IONPs to enter the brain and summarizes the current knowledge on the uptake, the metabolism and the toxicity of IONPs for the different types of brain cells in vitro and in vivo.
Collapse
Affiliation(s)
- Charlotte Petters
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, P.O. Box 330440, 28334, Bremen, Germany
| | | | | | | |
Collapse
|