1
|
Roumengous T, Peterson CL. The assessment of biceps voluntary activation with transcranial magnetic stimulation in individuals with tetraplegia. Restor Neurol Neurosci 2022; 40:169-184. [DOI: 10.3233/rnn-221254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Assessment of voluntary activation is useful in the study of neuromuscular impairments, particularly after spinal cord injury (SCI). Measurement of voluntary activation with transcranial magnetic stimulation (VATMS) is limited by technical challenges, including the difficulty in preferential stimulation of cortical neurons projecting to the target muscle and minimal stimulation of antagonists. Thus, the motor evoked potential (MEP) response to TMS in the target muscle compared to its antagonist may be an important parameter in the assessment of VATMS. OBJECTIVE: The purpose of this study was to evaluate the effect of isometric elbow flexion angle on two metrics in individuals with tetraplegia following SCI: 1) the ratio of biceps/triceps MEP amplitude across a range of voluntary efforts, and 2) VATMS. METHODS: Ten individuals with tetraplegia and ten nonimpaired individuals were recruited to participate in three sessions wherein VATMS was assessed at 45°, 90°, and 120° of isometric elbow flexion. RESULTS: In SCI participants, the biceps/triceps MEP ratio was not modulated by elbow angle. In nonimpaired participants, the biceps/triceps MEP ratio was greater in the more flexed elbow angle (120° flexion) compared to 90° during contractions of 50% and 75% MVC, but VATMS was not different. VATMS assessed in the more extended elbow angle (45° flexion) was lower relative to 90° elbow flexion; this effect was dependent on the biceps/triceps MEP ratio. In both groups, VATMS was sensitive to the linearity of the voluntary moment and superimposed twitch relationship, regardless of elbow angle. Linearity was lower in SCI relative to nonimpaired participants. CONCLUSIONS: Increasing the MEP ratio via elbow angle did not enable estimation of VATMS in SCI participants. VATMS may not be a viable approach to assess neuromuscular function in individuals with tetraplegia.
Collapse
Affiliation(s)
- Thibault Roumengous
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Carrie L. Peterson
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
2
|
Sheng W, Li S, Zhao J, Wang Y, Luo Z, Lo WLA, Ding M, Wang C, Li L. Upper Limbs Muscle Co-contraction Changes Correlated With the Impairment of the Corticospinal Tract in Stroke Survivors: Preliminary Evidence From Electromyography and Motor-Evoked Potential. Front Neurosci 2022; 16:886909. [PMID: 35720692 PMCID: PMC9198335 DOI: 10.3389/fnins.2022.886909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
Objective Increased muscle co-contraction of the agonist and antagonist muscles during voluntary movement is commonly observed in the upper limbs of stroke survivors. Much remain to be understood about the underlying mechanism. The aim of the study is to investigate the correlation between increased muscle co-contraction and the function of the corticospinal tract (CST). Methods Nine stroke survivors and nine age-matched healthy individuals were recruited. All the participants were instructed to perform isometric maximal voluntary contraction (MVC) and horizontal task which consist of sponge grasp, horizontal transportation, and sponge release. We recorded electromyography (EMG) activities from four muscle groups during the MVC test and horizontal task in the upper limbs of stroke survivors. The muscle groups consist of extensor digitorum (ED), flexor digitorum (FD), triceps brachii (TRI), and biceps brachii (BIC). The root mean square (RMS) of EMG was applied to assess the muscle activation during horizontal task. We adopted a co-contraction index (CI) to evaluate the degree of muscle co-contraction. CST function was evaluated by the motor-evoked potential (MEP) parameters, including resting motor threshold, amplitude, latency, and central motor conduction time. We employed correlation analysis to probe the association between CI and MEP parameters. Results The RMS, CI, and MEP parameters on the affected side showed significant difference compared with the unaffected side of stroke survivors and the healthy group. The result of correlation analysis showed that CI was significantly correlated with MEP parameters in stroke survivors. Conclusion There existed increased muscle co-contraction and impairment in CST functionality on the affected side of stroke survivors. The increased muscle co-contraction was correlated with the impairment of the CST. Intervention that could improve the excitability of the CST may contribute to the recovery of muscle discoordination in the upper limbs of stroke survivors.
Collapse
Affiliation(s)
- Wenfei Sheng
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shijue Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiangli Zhao
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yujia Wang
- Faculty of Science and Technology, University of Macau, Taipa, Macao SAR, China
| | - Zichong Luo
- Faculty of Science and Technology, University of Macau, Taipa, Macao SAR, China
| | - Wai Leung Ambrose Lo
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Minghui Ding
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Chuhuai Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Le Li
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
3
|
Ebrahimzadeh M, Ansari NN, Abdollahi I, Akhbari B, Monjezi S. Effects of Dry Needling on Connectivity of Corticospinal Tract, Spasticity, and Function of Upper Extremity in People with Stroke: Study Protocol for a Randomized Controlled Trial. J Acupunct Meridian Stud 2021; 14:238-243. [DOI: 10.51507/j.jams.2021.14.6.238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 08/16/2021] [Accepted: 09/05/2021] [Indexed: 02/05/2023] Open
Affiliation(s)
- Masoome Ebrahimzadeh
- Department of Physiotherapy, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Noureddin Nakhostin Ansari
- Department of Physiotherapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for War-affected People, Tehran University of Medical Sciences, Tehran, Iran
| | - Iraj Abdollahi
- Department of Physiotherapy, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Behnam Akhbari
- Department of Physiotherapy, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Saeideh Monjezi
- Musculoskeletal Rehabilitation Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
4
|
Zhou S, Guo Z, Wong K, Zhu H, Huang Y, Hu X, Zheng YP. Pathway-specific cortico-muscular coherence in proximal-to-distal compensation during fine motor control of finger extension after stroke. J Neural Eng 2021; 18. [PMID: 34428752 DOI: 10.1088/1741-2552/ac20bc] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 08/24/2021] [Indexed: 11/12/2022]
Abstract
Objective.Proximal-to-distal compensation is commonly observed in the upper extremity (UE) after a stroke, mainly due to the impaired fine motor control in hand joints. However, little is known about its related neural reorganization. This study investigated the pathway-specific corticomuscular interaction in proximal-to-distal UE compensation during fine motor control of finger extension post-stroke by directed corticomuscular coherence (dCMC).Approach.We recruited 14 chronic stroke participants and 11 unimpaired controls. Electroencephalogram (EEG) from the sensorimotor area was concurrently recorded with electromyography (EMG) from extensor digitorum (ED), flexor digitorum (FD), triceps brachii (TRI) and biceps brachii (BIC) muscles in both sides of the stroke participants and in the dominant (right) side of the controls during the unilateral isometric finger extension at 20% maximal voluntary contractions. The dCMC was analyzed in descending (EEG → EMG) and ascending pathways (EMG → EEG) via the directed coherence. It was also analyzed in stable (segments with higher EMG stability) and less-stable periods (segments with lower EMG stability) subdivided from the whole movement period to investigate the fine motor control. Finally, the corticomuscular conduction time was estimated by dCMC phase delay.Main results.The affected limb had significantly lower descending dCMC in distal UE (ED and FD) than BIC (P< 0.05). It showed the descending dominance (significantly higher descending dCMC than the ascending,P< 0.05) in proximal UE (BIC and TRI) rather than the distal UE as in the controls. In the less-stable period, the affected limb had significantly lower EMG stability but higher ascending dCMC (P< 0.05) in distal UE than the controls. Furthermore, significantly prolonged descending conduction time (∼38.8 ms) was found in ED in the affected limb than the unaffected (∼26.94 ms) and control limbs (∼25.74 ms) (P< 0.05).Significance.The proximal-to-distal UE compensation in fine motor control post-stroke exhibited altered descending dominance from the distal to proximal UE, increased ascending feedbacks from the distal UE for fine motor control, and prolonged descending conduction time in the agonist muscle.
Collapse
Affiliation(s)
- Sa Zhou
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China.,University Research Facility in Behavioural and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Ziqi Guo
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China.,University Research Facility in Behavioural and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Kiufung Wong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China.,University Research Facility in Behavioural and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Hanlin Zhu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China.,University Research Facility in Behavioural and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Yanhuan Huang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China.,University Research Facility in Behavioural and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| | - Xiaoling Hu
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China.,University Research Facility in Behavioural and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong, People's Republic of China.,The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, People's Republic of China
| | - Yong-Ping Zheng
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, People's Republic of China.,University Research Facility in Behavioural and Systems Neuroscience (UBSN), The Hong Kong Polytechnic University, Hong Kong, People's Republic of China
| |
Collapse
|
5
|
Rizzo V, Terranova C, Raffa G, Cardali SM, Angileri FF, Marzano G, Quattropani MC, Germanò A, Girlanda P, Quartarone A. Cortical Excitability and Connectivity in Patients With Brain Tumors. Front Neurol 2021; 12:673836. [PMID: 34512501 PMCID: PMC8426573 DOI: 10.3389/fneur.2021.673836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Brain tumors can cause different changes in excitation and inhibition at the neuronal network level. These changes can be generated from mechanical and cellular alterations, often manifesting clinically as seizures. Objective/Hypothesis: The effects of brain tumors on cortical excitability (CE) have not yet been well-evaluated. The aim of the current study was to further investigate cortical-cortical and cortical-spinal excitability in patients with brain tumors using a more extensive transcranial magnetic stimulation protocol. Methods: We evaluated CE on 12 consecutive patients with lesions within or close to the precentral gyrus, as well as in the subcortical white matter motor pathways. We assessed resting and active motor threshold, short-latency intracortical inhibition (SICI), intracortical facilitation (ICF), short-latency afferent inhibition (SAI), long-latency afferent inhibition, cortical silent period, and interhemispheric inhibition. Results: CE was reduced in patients with brain tumors than in healthy controls. In addition, SICI, ICF, and SAI were lower in the affected hemisphere compared to the unaffected and healthy controls. Conclusions: CE is abnormal in hemispheres affected by brain tumors. Further studies are needed to determine if CE is related with motor impairment.
Collapse
Affiliation(s)
- Vincenzo Rizzo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Carmen Terranova
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Giovanni Raffa
- Division of Neurosurgery, BIOMORF Department, University of Messina, Messina, Italy
| | | | | | - Giuseppina Marzano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Antonino Germanò
- Division of Neurosurgery, BIOMORF Department, University of Messina, Messina, Italy
| | - Paolo Girlanda
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Angelo Quartarone
- Department of Biomedical Science and Morphological and Functional Images, University of Messina, Messina, Italy
| |
Collapse
|
6
|
Kishimoto KC, Héroux ME, Gandevia SC, Butler JE, Diong J. Estimation of maximal muscle electromyographic activity from the relationship between muscle activity and voluntary activation. J Appl Physiol (1985) 2021; 130:1352-1361. [PMID: 33600280 DOI: 10.1152/japplphysiol.00557.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Maximal muscle activity recorded with surface electromyography (EMG) is an important neurophysiological measure. It is frequently used to normalize EMG activity recorded during passive or active movement. However, the true maximal muscle activity cannot be determined in people with impaired capacity to voluntarily activate their muscles. Here, we determined whether maximal muscle activity can be estimated from muscle activity produced during submaximal voluntary activation. Twenty-five able-bodied adults (18 males, mean age 29 yr, range 19-64 yr) participated in the study. Participants were seated with the knee flexed 90° and the ankle in 5° of dorsiflexion from neutral. Participants performed isometric voluntary ankle plantarflexion contractions at target torques, in random order: 1, 5, 10, 15, 25, 50, 75, 90, 95, and 100% of maximal voluntary torque. Ankle torque, muscle activity in soleus, medial and lateral gastrocnemius muscles, and voluntary muscle activation determined using twitch interpolation were recorded. There was a strong loge-linear relationship between measures of muscle activation and muscle activity in all three muscles tested. Linear mixed models were fitted to muscle activation and loge-transformed EMG data. Each 1% increase in muscle activation increased muscle activity by a mean of 0.027 ln(mV) [95% confidence interval (CI) 0.025 to 0.029 ln(mV)] in soleus, 0.025 ln(mV) [0.022 to 0.028 ln(mV)] in medial gastrocnemius, and 0.028 ln(mV) [0.026 to 0.030 ln(mV)] in lateral gastrocnemius. The relationship between voluntary muscle activation and muscle activity can be described with simple mathematical functions. In future, it should be possible to normalize recorded muscle activity using these types of functions.NEW & NOTEWORTHY Muscle activity is often normalized to maximal muscle activity; however, it is difficult to obtain accurate measures of maximal muscle activity in people with impaired voluntary neural drive. We determined the relationship between voluntary muscle activation and plantarflexor muscle activity across a broad range of muscle activation values in able-bodied people. The relationship between voluntary muscle activation and muscle activity can be described with simple mathematical functions capable of estimating maximal muscle activity.
Collapse
Affiliation(s)
- Kenzo C Kishimoto
- Discipline of Physiotherapy, Faculty of Health Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Martin E Héroux
- Neuroscience Research Australia (NeuRA), Sydney, New South Wales, Australia.,School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Simon C Gandevia
- Neuroscience Research Australia (NeuRA), Sydney, New South Wales, Australia.,Prince of Wales Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Jane E Butler
- Neuroscience Research Australia (NeuRA), Sydney, New South Wales, Australia.,School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Joanna Diong
- Neuroscience Research Australia (NeuRA), Sydney, New South Wales, Australia.,Discipline of Anatomy and Histology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
7
|
Reliability of Tibialis Anterior Muscle Voluntary Activation Using the Interpolated Twitch Technique and the Central Activation Ratio in People with Stroke. Brain Sci 2021; 11:brainsci11020176. [PMID: 33535411 PMCID: PMC7912757 DOI: 10.3390/brainsci11020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 12/04/2022] Open
Abstract
Voluntary activation (VA) is measured by applying supramaximal electrical stimulation to a muscle during a maximal voluntary contraction (MVC). The amplitude of the evoked muscle twitch is used to determine any VA deficit, and indicates incomplete central neural drive to the motor units. People with stroke experience VA deficits and greater levels of central fatigue, which is the decrease in VA that occurs following exercise. This study investigated the between-session reliability of VA and central fatigue of the tibialis anterior muscle (TA) in people with chronic stroke (n = 12), using the interpolated twitch technique (ITT), adjusted-ITT, and central activation ratio (CAR) methods. On two separate sessions, supramaximal electrical stimulation was applied to the TA when it was at rest and maximally activated, at the start and end of a 30-s isometric dorsiflexor MVC. The most reliable measures of VA were obtained using the CAR calculation on transformed data, which produced an ICC of 0.92, and a lower bound confidence interval in the good range (95% CI 0.77 to 0.98). Reliability was lower for the CAR calculation on non-transformed data (ICC 0.82, 95% CI 0.63 to 0.91) and the ITT and adjusted-ITT calculations on transformed data (ICCs 0.82, 95% CIs 0.51 to 0.94), which had lower bound confidence intervals in the moderate range. The two ITT calculations on non-transformed data demonstrated the poorest reliability (ICCs 0.62, 95% CI 0.25 to 0.74). Central fatigue measures demonstrated very poor reliability. Thus, the reliability for VA in people with chronic stroke ranged from good to poor, depending on the calculation method and statistical analysis method, whereas the reliability for central fatigue was very poor.
Collapse
|
8
|
Hucteau E, Jubeau M, Cornu C, Cattagni T. Is there an intermuscular relationship in voluntary activation capacities and contractile kinetics? Eur J Appl Physiol 2020; 120:513-526. [PMID: 31925519 DOI: 10.1007/s00421-019-04299-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 12/30/2019] [Indexed: 01/14/2023]
Abstract
PURPOSE The force-generating capacities of human skeletal muscles are interrelated, highlighting a common construct of limb strength. This study aimed to further determine whether there is an intermuscular relationship in maximal voluntary activation capacities and contractile kinetics of human muscles. METHODS Twenty-six young healthy individuals participated in this study. Isometric maximal voluntary contraction (MVC) torque, voluntary activation level (VAL), and doublet twitch contractile kinetics (contraction time and half-relaxation time) evoked by a paired supramaximal peripheral nerve stimulation at 100 Hz were obtained in elbow flexors, knee extensors, plantar flexors and dorsiflexors of the dominant limb. RESULTS Peak MVC torque had significant positive correlations between all muscle group pairs (all P values < 0.01). A significant positive correlation for VAL was found only between knee extensors and plantar flexors (r = 0.60, P < 0.01). There were no significant correlations between all muscle group pairs for doublet twitch contraction time and doublet twitch half-relaxation time. DISCUSSION These results show that there is a partial common construct of maximal voluntary activation capacities that only concerns muscle groups that have incomplete activation during MVC (i.e., knee extensors and plantar flexors). This suggests that the common construct of MVC strength between these two muscle groups is partly influenced by neural mechanisms. The lack of intermuscular relationship of contractile kinetics showed that there is no common construct of muscle contractile kinetics, as assessed in vivo by investigating the time-course of evoked doublet twitch contractions.
Collapse
Affiliation(s)
- Elyse Hucteau
- Laboratoire "Motricité, Interactions, Performance" EA 4334, Faculty of Sport Sciences, UFR STAPS, University of Nantes, 25 bis Boulevard Guy Mollet-BP 72206, 44 322, Nantes cedex 3, France
| | - Marc Jubeau
- Laboratoire "Motricité, Interactions, Performance" EA 4334, Faculty of Sport Sciences, UFR STAPS, University of Nantes, 25 bis Boulevard Guy Mollet-BP 72206, 44 322, Nantes cedex 3, France
| | - Christophe Cornu
- Laboratoire "Motricité, Interactions, Performance" EA 4334, Faculty of Sport Sciences, UFR STAPS, University of Nantes, 25 bis Boulevard Guy Mollet-BP 72206, 44 322, Nantes cedex 3, France
| | - Thomas Cattagni
- Laboratoire "Motricité, Interactions, Performance" EA 4334, Faculty of Sport Sciences, UFR STAPS, University of Nantes, 25 bis Boulevard Guy Mollet-BP 72206, 44 322, Nantes cedex 3, France.
| |
Collapse
|
9
|
Arya KN, Pandian S, Sharma A, Kumar V, Kashyap VK. Interlimb coupling in poststroke rehabilitation: a pilot randomized controlled trial. Top Stroke Rehabil 2019; 27:272-289. [PMID: 31707972 DOI: 10.1080/10749357.2019.1682368] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background: The interlimb coupling, coordination between the limbs, gets hampered in post-stroke hemiparesis. Most of the poststroke motor regimes primarily focus on the more affected limb.Objectives: To develop an interlimb coupling protocol and assess its feasibility and effect on motor recovery, gait and disability among post-stroke subjects.Design: A pilot randomized controlled, doubled blinded trialSetting: A rehabilitation instituteMethods: 50 post-stroke (> 6 months) hemiparetic subjects (Brunnstrom recovery stage ≥ 3) were randomly divided into experimental (n=26) and control (n=24) groups. The 8-week experimental intervention (3 sessions of 1 hour each, per week) comprised activities demanding coordinated, alternate, and rhythmic use of the affected as well as the less-affected limbs. The outcome measures were feasibility of activities, Fugl-Meyer assessment (FMA), Rivermead visual gait assessment (RVGA), Functional ambulation category (FAC) and modified Rankin scale (mRS).Results: The experimental protocol was found to be feasible by the participants. Post intervention, the experimental group exhibited highly significant difference for FMA (mean difference = 7.12, 95% CI = 5.71 - 8.53, p < 0.001), RVGA reduction (mean difference = - 6.32, 95% CI = 7.51 - 5.13, p < 0.001), and median FAC enhancement (p < 0.001) in comparison to the controls. However, the median mRS level of experimental group did not change significantly (p = 0.056) when compared with the controls.Conclusions: The interlimb coupling training, a feasible program may enhance recovery of the upper and lower limbs and gait in stroke. Further definitive randomized trials are warranted to validate the present findings.
Collapse
Affiliation(s)
- Kamal Narayan Arya
- Department of Occupational Therapy, Pandit Deendayal Upadhyaya National Institute for Persons with Physical Disabilities, New Delhi, India
| | - Shanta Pandian
- Department of Occupational Therapy, Pandit Deendayal Upadhyaya National Institute for Persons with Physical Disabilities, New Delhi, India
| | - Abhishek Sharma
- Department of Occupational Therapy, Pandit Deendayal Upadhyaya National Institute for Persons with Physical Disabilities, New Delhi, India
| | - Vikas Kumar
- Department of Occupational Therapy, Pandit Deendayal Upadhyaya National Institute for Persons with Physical Disabilities, New Delhi, India
| | | |
Collapse
|
10
|
Mugnosso M, Zenzeri J, Hughes CML, Marini F. Coupling Robot-Aided Assessment and Surface Electromyography (sEMG) to Evaluate the Effect of Muscle Fatigue on Wrist Position Sense in the Flexion-Extension Plane. Front Hum Neurosci 2019; 13:396. [PMID: 31736733 PMCID: PMC6838006 DOI: 10.3389/fnhum.2019.00396] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/22/2019] [Indexed: 11/13/2022] Open
Abstract
Proprioception is a crucial sensory modality involved in the control and regulation of coordinated movements and in motor learning. However, the extent to which proprioceptive acuity is influenced by local muscle fatigue is obscured by methodological differences in proprioceptive and fatiguing protocols. In this study, we used high resolution kinematic measurements provided by a robotic device, as well as both frequency and time domain analysis of signals captured via surface electromyography (sEMG) to examine the effects of local muscle fatigue on wrist proprioceptive acuity in 16 physically and neurologically healthy young adults. To this end, participants performed a flexion/extension ipsilateral joint position matching test (JPM), after which a high-resistive robotic task was used to induce muscle fatigue of the flexor carpi radialis (FCR) muscle. The JPM test was then repeated in order to analyze potential changes in proprioceptive acuity. Results indicated that the fatigue protocol had a significant effect on movements performed in flexion direction, with participants exhibiting a tendency to undershoot the target before the fatigue protocol (−1.218°), but overshooting after the fatigue protocol (0.587°). In contrast, in the extension direction error bias values were similar before and after the fatigue protocol as expected (pre = −1.852°, post = −1.237°) and reflected a tendency to undershoot the target. Moreover, statistical analysis indicated that movement variability was not influenced by the fatigue protocol or movement direction. In sum, results of the present study demonstrate that an individual’s estimation of wrist joint displacement (i.e., error bias), but not precision (i.e., variability), is affected by muscular fatigue in a sample of neurologically and physically healthy adults.
Collapse
Affiliation(s)
- Maddalena Mugnosso
- Motor Learning, Assistive and Rehabilitation Robotics Laboratory, Robotics, Brain and Cognitive Sciences Department, Istituto Italiano di Tecnologia, Genoa, Italy.,Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genoa, Genoa, Italy
| | - Jacopo Zenzeri
- Motor Learning, Assistive and Rehabilitation Robotics Laboratory, Robotics, Brain and Cognitive Sciences Department, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Charmayne M L Hughes
- NeuroTech Laboratory, Health Equity Institute, San Francisco State University, San Francisco, CA, United States
| | - Francesca Marini
- Motor Learning, Assistive and Rehabilitation Robotics Laboratory, Robotics, Brain and Cognitive Sciences Department, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
11
|
Shin H, Suresh NL, Rymer WZ, Hu X. Relative contribution of different altered motor unit control to muscle weakness in stroke: a simulation study. J Neural Eng 2019; 15:016014. [PMID: 28994667 DOI: 10.1088/1741-2552/aa925d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Chronic muscle weakness impacts the majority of individuals after a stroke. The origins of this hemiparesis is multifaceted, and an altered spinal control of the motor unit (MU) pool can lead to muscle weakness. However, the relative contribution of different MU recruitment and discharge organization is not well understood. In this study, we sought to examine these different effects by utilizing a MU simulation with variations set to mimic the changes of MU control in stroke. APPROACH Using a well-established model of the MU pool, this study quantified the changes in force output caused by changes in MU recruitment range and recruitment order, as well as MU firing rate organization at the population level. We additionally expanded the original model to include a fatigue component, which variably decreased the output force with increasing length of contraction. Differences in the force output at both the peak and fatigued time points across different excitation levels were quantified and compared across different sets of MU parameters. MAIN RESULTS Across the different simulation parameters, we found that the main driving factor of the reduced force output was due to the compressed range of MU recruitment. Recruitment compression caused a decrease in total force across all excitation levels. Additionally, a compression of the range of MU firing rates also demonstrated a decrease in the force output mainly at the higher excitation levels. Lastly, changes to the recruitment order of MUs appeared to minimally impact the force output. SIGNIFICANCE We found that altered control of MUs alone, as simulated in this study, can lead to a substantial reduction in muscle force generation in stroke survivors. These findings may provide valuable insight for both clinicians and researchers in prescribing and developing different types of therapies for the rehabilitation and restoration of lost strength after stroke.
Collapse
Affiliation(s)
- Henry Shin
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, 144 MacNider Hall, Chapel Hill, NC, United States of America
| | | | | | | |
Collapse
|
12
|
Radinmehr H, Ansari NN, Naghdi S, Tabatabaei A, Moghimi E. Comparison of Therapeutic Ultrasound and Radial Shock Wave Therapy in the Treatment of Plantar Flexor Spasticity After Stroke: A Prospective, Single-blind, Randomized Clinical Trial. J Stroke Cerebrovasc Dis 2019; 28:1546-1554. [PMID: 30935809 DOI: 10.1016/j.jstrokecerebrovasdis.2019.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 02/16/2019] [Accepted: 03/01/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND This study aimed to compare the effects of therapeutic ultrasound (US) and radial extracorporeal shock wave therapy (rESWT) in the treatment of plantar flexor spasticity after stroke. MATERIALS AND METHODS In this prospective, single-blind, randomized clinical trial, 32 patients (age range 42-78 years; male 19) with stroke were randomly divided into two groups: The US group (n = 16) received the continuous ultrasound, intensity 1.5 w/cm2, frequency 1 MHz, and duration 10 minutes. The rESWT group (n = 16) was treated with rESWT, 0.340 mJ/mm2, 2000 shots. Both groups received the treatments for 1 session. The H-reflex tests of Hmax/Mmax ratio and H-reflex latency, the Modified Modified Ashworth Scale (MMAS), active range of motion (AROM), passive range of motion (PROM), passive plantar flexor torque (PPFT), and the timed "up and go" test (TUG) were blinded assessed at baseline (T0), immediately post-treatment (T1), and one hour follow-up (T2). RESULTS The H-reflex tests did not improve across the groups. However, the MMAS spasticity scores, AROM and PROM, PPFT, and TUG improved significantly within groups. The results found no significant differences between groups for all outcome measures. CONCLUSIONS The US and rESWT had similar effects, and the rESWT was not more effective than the US in improving ankle plantar flexor spasticity after stroke.
Collapse
Affiliation(s)
- Hojjat Radinmehr
- Department of Physiotherapy, School of Rehabilitation, Hamadan University of Medical Science, Hamadan, Iran.
| | - Noureddin Nakhostin Ansari
- Department of Physiotherapy, School of Rehabilitation, Tehran University of Medical Science, Tehran, Iran; Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Neuromusculoskeletal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Soofia Naghdi
- Department of Physiotherapy, School of Rehabilitation, Tehran University of Medical Science, Tehran, Iran; Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Neuromusculoskeletal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azade Tabatabaei
- Department of Physiotherapy, School of Rehabilitation, Tehran University of Medical Science, Tehran, Iran
| | - Ehsan Moghimi
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Dongés SC, Boswell-Ruys CL, Butler JE, Taylor JL. The effect of paired corticospinal-motoneuronal stimulation on maximal voluntary elbow flexion in cervical spinal cord injury: an experimental study. Spinal Cord 2019; 57:796-804. [PMID: 31086274 DOI: 10.1038/s41393-019-0291-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/17/2019] [Indexed: 11/09/2022]
Abstract
STUDY DESIGN Randomised, controlled, crossover study. OBJECTIVES Paired corticospinal-motoneuronal stimulation (PCMS) involves repeatedly pairing stimuli to corticospinal neurones and motoneurones to induce changes in corticospinal transmission. Here, we examined whether PCMS could enhance maximal voluntary elbow flexion in people with cervical spinal cord injury. SETTING Neuroscience Research Australia, Sydney, Australia. METHODS PCMS comprised 100 pairs of transcranial magnetic and electrical peripheral nerve stimulation (0.1 Hz), timed so corticospinal potentials arrived at corticospinal-motoneuronal synapses 1.5 ms before antidromic motoneuronal potentials. On two separate days, sets of five maximal elbow flexions were performed by 11 individuals with weak elbow flexors post C4 or C5 spinal cord injury before and after PCMS or control (100 peripheral nerve stimuli) conditioning. During contractions, supramaximal biceps brachii stimulation elicited superimposed twitches, which were expressed as a proportion of resting twitches to give maximal voluntary activation. Maximal torque and electromyographic activity were also assessed. RESULTS Baseline median (range) maximal torque was 11 Nm (6-41 Nm) and voluntary activation was 92% (62-99%). Linear mixed modelling revealed no significant differences between PCMS and control protocols after conditioning (maximal torque: p = 0.87, superimposed twitch: p = 0.87, resting twitch: p = 0.44, voluntary activation: p = 0.36, biceps EMG: p = 0.25, brachioradialis EMG: 0.67). CONCLUSIONS Possible explanations for the lack of effect include a potential ceiling effect for voluntary activation, or that PCMS may be less effective for elbow flexors than distal muscles. Despite results, previous studies suggest that PCMS is worthy of further investigation.
Collapse
Affiliation(s)
| | - Claire L Boswell-Ruys
- Neuroscience Research Australia, Sydney, Australia.,University of New South Wales, Sydney, Australia.,Prince of Wales Hospital, Sydney, Australia
| | - Jane E Butler
- Neuroscience Research Australia, Sydney, Australia.,University of New South Wales, Sydney, Australia
| | - Janet L Taylor
- Neuroscience Research Australia, Sydney, Australia. .,University of New South Wales, Sydney, Australia. .,Edith Cowan University, Perth, Australia.
| |
Collapse
|
14
|
Murphy S, Durand M, Negro F, Farina D, Hunter S, Schmit B, Gutterman D, Hyngstrom A. The Relationship Between Blood Flow and Motor Unit Firing Rates in Response to Fatiguing Exercise Post-stroke. Front Physiol 2019; 10:545. [PMID: 31133877 PMCID: PMC6524339 DOI: 10.3389/fphys.2019.00545] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/17/2019] [Indexed: 11/22/2022] Open
Abstract
We quantified the relationship between the change in post-contraction blood flow with motor unit firing rates and metrics of fatigue during intermittent, sub-maximal fatiguing contractions of the knee extensor muscles after stroke. Ten chronic stroke survivors (>1-year post-stroke) and nine controls participated. Throughout fatiguing contractions, the discharge timings of individual motor units were identified by decomposition of high-density surface EMG signals. After five consecutive contractions, a blood flow measurement through the femoral artery was obtained using an ultrasound machine and probe designed for vascular measurements. There was a greater increase of motor unit firing rates from the beginning of the fatigue protocol to the end of the fatigue protocol for the control group compared to the stroke group (14.97 ± 3.78% vs. 1.99 ± 11.90%, p = 0.023). While blood flow increased with fatigue for both groups (p = 0.003), the magnitude of post-contraction blood flow was significantly greater for the control group compared to the stroke group (p = 0.004). We found that despite the lower magnitude of muscle perfusion through the femoral artery in the stroke group, blood flow has a greater impact on peripheral fatigue for the control group; however, we observed a significant correlation between change in blood flow and motor unit firing rate modulation (r2 = 0.654, p = 0.004) during fatigue in the stroke group and not the control group (r2 = 0.024, p < 0.768). Taken together, this data showed a disruption between motor unit firing rates and post-contraction blood flow in the stroke group, suggesting that there may be a disruption to common inputs to both the reticular system and the corticospinal tract. This study provides novel insights in the relationship between the hyperemic response to exercise and motor unit firing behavior for post-stroke force production and may provide new approaches for recovery by improving both blood flow and muscle activation simultaneously.
Collapse
Affiliation(s)
- Spencer Murphy
- Integrative Neural Engineering and Rehabilitation Laboratory, Department of Biomedical Engineering, Marquette University, Milwaukee, WI, United States
| | - Matthew Durand
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Università degli studi di Brescia, Brescia, Italy
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Sandra Hunter
- Department of Physical Therapy, Marquette University, Milwaukee, WI, United States
| | - Brian Schmit
- Integrative Neural Engineering and Rehabilitation Laboratory, Department of Biomedical Engineering, Marquette University, Milwaukee, WI, United States
| | - David Gutterman
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Allison Hyngstrom
- Integrative Neural Engineering and Rehabilitation Laboratory, Department of Biomedical Engineering, Marquette University, Milwaukee, WI, United States.,Department of Physical Therapy, Marquette University, Milwaukee, WI, United States
| |
Collapse
|
15
|
Nuzzo JL, Taylor JL, Gandevia SC. CORP: Measurement of upper and lower limb muscle strength and voluntary activation. J Appl Physiol (1985) 2019; 126:513-543. [DOI: 10.1152/japplphysiol.00569.2018] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Muscle strength, the maximal force-generating capacity of a muscle or group of muscles, is regularly assessed in physiological experiments and clinical trials. An understanding of the expected variation in strength and the factors that contribute to this variation is important when designing experiments, describing methodologies, interpreting results, and attempting to replicate methods of others and reproduce their findings. In this review (Cores of Reproducibility in Physiology), we report on the intra- and inter-rater reliability of tests of upper and lower limb muscle strength and voluntary activation in humans. Isometric, isokinetic, and isoinertial strength exhibit good intra-rater reliability in most samples (correlation coefficients ≥0.90). However, some tests of isoinertial strength exhibit systematic bias that is not resolved by familiarization. With the exception of grip strength, few attempts have been made to examine inter-rater reliability of tests of muscle strength. The acute factors most likely to affect muscle strength and serve as a source of its variation from trial-to-trial or day-to-day include attentional focus, breathing technique, remote muscle contractions, rest periods, temperature (core, muscle), time of day, visual feedback, body and limb posture, body stabilization, acute caffeine consumption, dehydration, pain, fatigue from preceding exercise, and static stretching >60 s. Voluntary activation, the nervous system’s ability to drive a muscle to create its maximal force, exhibits good intra-rater reliability when examined with twitch interpolation (correlation coefficients >0.80). However, inter-rater reliability has not been formally examined. The methodological factors most likely to influence voluntary activation are myograph compliance and sensitivity; stimulation location, intensity, and inadvertent stimulation of antagonists; joint angle (muscle length); and the resting twitch.
Collapse
Affiliation(s)
- James L. Nuzzo
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Janet L. Taylor
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- School of Medical Sciences, University of New South Wales, Sydney, Australia
- School of Medical and Health Sciences, Edith Cowan University, Perth, Western Australia, Australia
| | - Simon C. Gandevia
- Neuroscience Research Australia, Randwick, New South Wales, Australia
- Prince of Wales Hospital Clinical School, University of New South Wales, Sydney, Australia
| |
Collapse
|
16
|
McPherson LM, Dewald JPA. Differences between flexion and extension synergy-driven coupling at the elbow, wrist, and fingers of individuals with chronic hemiparetic stroke. Clin Neurophysiol 2019; 130:454-468. [PMID: 30771722 DOI: 10.1016/j.clinph.2019.01.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The flexion and extension synergies were quantified at the paretic elbow, forearm, wrist, and finger joints within the same group of participants for the first time. Differences in synergy expression at each of the four joints were examined, as were the ways these differences varied across the joints. METHODS Twelve post-stroke individuals with chronic moderate-to-severe hemiparesis and six age-matched controls participated. Participants generated isometric shoulder abduction (SABD) and shoulder adduction (SADD) at four submaximal levels to progressively elicit the flexion and extension synergies, respectively. Isometric joint torques and EMG were recorded from shoulder, elbow, forearm (radio-ulnar), wrist, and finger joints and muscles. RESULTS SABD elicited strong wrist and finger flexion torque that increased with shoulder torque level. SADD produced primarily wrist and finger flexion torque, but magnitudes at the wrist were less than during SABD. Findings contrasted with those at the elbow and forearm, where torques and EMG generated due to SABD and SADD were opposite in direction. CONCLUSIONS Flexion and extension synergy expression are more similar at the hand than at the shoulder and elbow. Specific bulbospinal pathways that may underlie flexion and extension synergy expression are discussed. SIGNIFICANCE Whole-limb behavior must be considered when examining paretic hand function in moderately-to-severely impaired individuals.
Collapse
Affiliation(s)
- Laura Miller McPherson
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA; Department of Physical Therapy, Nicole Wertheim College of Nursing and Health Sciences, Florida International University, Miami, FL, USA; Department of Biomedical Engineering, College of Engineering and Computing, Florida International University, Miami, FL, USA
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
17
|
Contralateral Lumbar to Sacral Nerve Rerouting for Hemiplegic Patients After Stroke: A Clinical Pilot Study. World Neurosurg 2019; 121:12-18. [DOI: 10.1016/j.wneu.2018.09.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/13/2018] [Accepted: 09/15/2018] [Indexed: 11/18/2022]
|
18
|
Ding Q, Patten C. External biomechanical constraints impair maximal voluntary grip force stability post-stroke. Clin Biomech (Bristol, Avon) 2018; 57:26-34. [PMID: 29894857 DOI: 10.1016/j.clinbiomech.2018.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/23/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Grip strength is frequently measured as a global indicator of motor function. In clinical populations, such as hemiparesis post-stroke, grip strength is associated with upper-extremity motor impairment, function, and ability to execute activities of daily living. However, biomechanical configuration of the distal arm and hand may influence the magnitude and stability of maximal voluntary grip force and varies across studies. The influence of distal arm/hand biomechanical configuration on grip force remains unclear. Here we investigated how biomechanical configuration of the distal arm/hand influence the magnitude and trial-to-trial variability of maximal grip force performed in similar positions with variations in external constraint. METHODS We studied three groups of 20 individuals: healthy young, healthy older, and individuals post-stroke. We tested maximal voluntary grip force in 4 conditions: 1: self-determined/"free"; 2: standard; 3: fixed arm-rest; 4: gripper fixed to arm-rest, using an instrumented grip dynamometer in both dominant/non-dominant and non-paretic/paretic hands. FINDINGS Regardless of hand or group, maximal voluntary grip force was highest when the distal limb was most constrained (i.e., Condition 4), followed by the least constrained (i.e., Condition 1) (Cohen's f = 0.52, P's < 0.001). Coefficient of variation among three trials was greater in the paretic hand compared with healthy individuals, particularly in more (Conditions 3 and 4) compared to less (Conditions 1 and 2) constrained conditions (Cohen's f = 0.29, P's < 0.05). INTERPRETATION These findings have important implications for design of rehabilitation interventions and devices. Particularly in individuals post-stroke, external biomechanical constraints increase maximal voluntary grip force variability while fewer biomechanical constraints yield more stable performance.
Collapse
Affiliation(s)
- Qian Ding
- Neural Control of Movement Lab, Malcolm Randall VA Medical Center (151A), Gainesville, FL 32608, USA; Rehabilitation Sciences Doctoral Program, Department of Physical Therapy, University of Florida, Gainesville, FL 32608, USA
| | - Carolynn Patten
- Biomechanics and Neural Control of Movement Lab, University of California, Davis School of Medicine, Northern California VA Health Care System, Sacramento, CA 95817, USA.
| |
Collapse
|
19
|
McManus L, Hu X, Rymer WZ, Suresh NL, Lowery MM. Motor Unit Activity during Fatiguing Isometric Muscle Contraction in Hemispheric Stroke Survivors. Front Hum Neurosci 2017; 11:569. [PMID: 29225574 PMCID: PMC5705653 DOI: 10.3389/fnhum.2017.00569] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/09/2017] [Indexed: 12/03/2022] Open
Abstract
Enhanced muscle weakness is commonly experienced following stroke and may be accompanied by increased susceptibility to fatigue. To examine the contributions of central and peripheral factors to isometric muscle fatigue in stroke survivors, this study investigates changes in motor unit (MU) mean firing rate, and action potential duration during, and directly following, a sustained submaximal fatiguing contraction at 30% maximum voluntary contraction (MVC). A series of short contractions of the first dorsal interosseous muscle were performed pre- and post-fatigue at 20% MVC, and again following a 10-min recovery period, by 12 chronic stroke survivors. Individual MU firing times were extracted using surface EMG decomposition and used to obtain the spike-triggered average MU action potential waveforms. During the sustained fatiguing contraction, the mean rate of change in firing rate across all detected MUs was greater on the affected side (-0.02 ± 0.03 Hz/s) than on the less-affected side (-0.004 ± 0.003 Hz/s, p = 0.045). The change in firing rate immediately post-fatigue was also greater on the affected side than less-affected side (-13.5 ± 20 and 0.1 ± 19%, p = 0.04). Mean MU firing rates increased following the recovery period on the less-affected side when compared to the affected side (19.3 ± 17 and 0.5 ± 20%, respectively, p = 0.03). MU action potential duration increased post-fatigue on both sides (10.3 ± 1.2 to 11.2 ± 1.3 ms on the affected side and 9.9 ± 1.7 to 11.2 ± 1.9 ms on the less-affected side, p = 0.001 and p = 0.02, respectively), and changes in action potential duration tended to be smaller in subjects with greater impairment (p = 0.04). This study presents evidence of both central and peripheral fatigue at the MU level during isometric fatiguing contraction for the first time in stroke survivors. Together, these preliminary observations indicate that the response to an isometric fatiguing contraction differs between the affected and less-affected side post-stroke, and may suggest that central mechanisms observed here as changes in firing rate are the dominant processes leading to task failure on the affected side.
Collapse
Affiliation(s)
- Lara McManus
- Neuromuscular Systems Lab, School of Electrical and Electronic Engineering, University College Dublin, Belfield, Ireland
| | - Xiaogang Hu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, United States
| | - William Z Rymer
- Shirley Ryan AbilityLab, Chicago, IL, United States.,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States
| | - Nina L Suresh
- Shirley Ryan AbilityLab, Chicago, IL, United States.,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, United States
| | - Madeleine M Lowery
- Neuromuscular Systems Lab, School of Electrical and Electronic Engineering, University College Dublin, Belfield, Ireland
| |
Collapse
|
20
|
Hesam-Shariati N, Trinh T, Thompson-Butel AG, Shiner CT, McNulty PA. A Longitudinal Electromyography Study of Complex Movements in Poststroke Therapy. 2: Changes in Coordinated Muscle Activation. Front Neurol 2017; 8:277. [PMID: 28775705 PMCID: PMC5517410 DOI: 10.3389/fneur.2017.00277] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/29/2017] [Indexed: 12/24/2022] Open
Abstract
Fine motor control is achieved through the coordinated activation of groups of muscles, or "muscle synergies." Muscle synergies change after stroke as a consequence of the motor deficit. We investigated the pattern and longitudinal changes in upper limb muscle synergies during therapy in a largely unconstrained movement in patients with a broad spectrum of poststroke residual voluntary motor capacity. Electromyography (EMG) was recorded using wireless telemetry from 6 muscles acting on the more-affected upper body in 24 stroke patients at early and late therapy during formal Wii-based Movement Therapy (WMT) sessions, and in a subset of 13 patients at 6-month follow-up. Patients were classified with low, moderate, or high motor-function. The Wii-baseball swing was analyzed using a non-negative matrix factorization (NMF) algorithm to extract muscle synergies from EMG recordings based on the temporal activation of each synergy and the contribution of each muscle to a synergy. Motor-function was clinically assessed immediately pre- and post-therapy and at 6-month follow-up using the Wolf Motor Function Test, upper limb motor Fugl-Meyer Assessment, and Motor Activity Log Quality of Movement scale. Clinical assessments and game performance demonstrated improved motor-function for all patients at post-therapy (p < 0.01), and these improvements were sustained at 6-month follow-up (p > 0.05). NMF analysis revealed fewer muscle synergies (mean ± SE) for patients with low motor-function (3.38 ± 0.2) than those with high motor-function (4.00 ± 0.3) at early therapy (p = 0.036) with an association trend between the number of synergies and the level of motor-function. By late therapy, there was no significant change between groups, although there was a pattern of increase for those with low motor-function over time. The variability accounted for demonstrated differences with motor-function level (p < 0.05) but not time. Cluster analysis of the pooled synergies highlighted the therapy-induced change in muscle activation. Muscle synergies could be identified for all patients during therapy activities. These results show less complexity and more co-activation in the muscle activation for patients with low motor-function as a higher number of muscle synergies reflects greater movement complexity and task-related phasic muscle activation. The increased number of synergies and changes within synergies by late-therapy suggests improved motor control and movement quality with more distinct phases of movement.
Collapse
Affiliation(s)
- Negin Hesam-Shariati
- Neuroscience Research Australia, Sydney, NSW, Australia.,School of Medical Science, University of New South Wales, Sydney, NSW, Australia
| | - Terry Trinh
- Neuroscience Research Australia, Sydney, NSW, Australia.,School of Medical Science, University of New South Wales, Sydney, NSW, Australia
| | - Angelica G Thompson-Butel
- Neuroscience Research Australia, Sydney, NSW, Australia.,School of Medical Science, University of New South Wales, Sydney, NSW, Australia
| | - Christine T Shiner
- Neuroscience Research Australia, Sydney, NSW, Australia.,School of Medical Science, University of New South Wales, Sydney, NSW, Australia
| | - Penelope A McNulty
- Neuroscience Research Australia, Sydney, NSW, Australia.,School of Medical Science, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
21
|
Abstract
Stroke instigates a dynamic process of repair and remodelling of remaining neural circuits, and this process is shaped by behavioural experiences. The onset of motor disability simultaneously creates a powerful incentive to develop new, compensatory ways of performing daily activities. Compensatory movement strategies that are developed in response to motor impairments can be a dominant force in shaping post-stroke neural remodelling responses and can have mixed effects on functional outcome. The possibility of selectively harnessing the effects of compensatory behaviour on neural reorganization is still an insufficiently explored route for optimizing functional outcome after stroke.
Collapse
Affiliation(s)
- Theresa A Jones
- Department of Psychology and Institute for Neuroscience, University of Texas at Austin, Texas 78712, USA
| |
Collapse
|
22
|
Radinmehr H, Nakhostin Ansari N, Naghdi S, Olyaei G, Tabatabaei A. Effects of one session radial extracorporeal shockwave therapy on post-stroke plantarflexor spasticity: a single-blind clinical trial. Disabil Rehabil 2017; 39:483-490. [PMID: 26971745 DOI: 10.3109/09638288.2016.1148785] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Purpose To examine the effects of radial extracorporeal shockwave therapy (rESWT) on plantarflexor spasticity after stroke. Method Twelve patients with stroke were randomly included for this prospective, single-blind clinical trial. Patients received one rESWT session (0.340 mJ/mm2, 2000 shots) on plantarflexor muscle. The Modified Modified Ashworth Scale (MMAS), H-reflex tests, ankle range of motion (ROM), passive plantarflexor torque (PPFT) and timed up and go test (TUG) were measured at baseline (T0), immediately after treatment (T1) and one hour after the end of the treatment (T2). Results Patients had improved the MMAS scores for both the gastrocnemius and the soleus muscles, active and passive ROM, PPFT and TUG over time after rESWT. For the PPFT, it was greater at high velocity than at low velocity, and there was a significant three-way interaction between time, knee position (extended/flexed) and velocity (low/high). The H-reflex latency had decreased at T1, but there was no significant effect on Hmax/Mmax ratio. Conclusions The rESWT improved plantarflexor spasticity, and the effects sustained for one hour, whereas it was not effective in improving spinal excitability. Implications for Rehabilitation One session radial extracorporeal shock wave therapy (rESWT) is safe and effective in improving post stroke plantarflexor spasticity, ankle active and passive range of motion, passive torque, and walking capability. The spasticity scores improved for both the gastrocnemius and the soleus muscles and persisted one hour after rESWT. The magnitude of resistive plantarflexor passive torque in the knee extended position and high velocity was larger over time suggesting greater gastrocnemius spasticity than soleus. The rESWT had no significant effects on alpha motorneuron excitability.
Collapse
Affiliation(s)
- Hojjat Radinmehr
- a Department of Physiotherapy, School of Rehabilitation , Tehran University of Medical Sciences , Tehran , Iran
| | - Noureddin Nakhostin Ansari
- a Department of Physiotherapy, School of Rehabilitation , Tehran University of Medical Sciences , Tehran , Iran
| | - Soofia Naghdi
- a Department of Physiotherapy, School of Rehabilitation , Tehran University of Medical Sciences , Tehran , Iran
| | - Gholamreza Olyaei
- a Department of Physiotherapy, School of Rehabilitation , Tehran University of Medical Sciences , Tehran , Iran
| | - Azadeh Tabatabaei
- a Department of Physiotherapy, School of Rehabilitation , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
23
|
Fakhari Z, Ansari NN, Naghdi S, Mansouri K, Radinmehr H. A single group, pretest-posttest clinical trial for the effects of dry needling on wrist flexors spasticity after stroke. NeuroRehabilitation 2017; 40:325-336. [PMID: 28222554 DOI: 10.3233/nre-161420] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Spasticity is a common complication after stroke. Dry needling (DN) is suggested as a novel method for treatment of muscle spasticity. OBJECTIVE To explore the effects of DN on wrist flexors spasticity poststroke. METHODS A single group, pretest-posttest clinical trial was used. Twenty nine patients with stroke (16 male; mean age 54.3 years) were tested at baseline (T0), immediately after DN (T1), and one hour after DN (T2). DN was applied for flexor carpi radialis (FCR) and flexor carpi ulnaris on the affected arm for single session, one minute per muscle. The Modified Modified Ashworth Scale (MMAS), passive resistance force, wrist active and passive range of motion, Box and Block Test, and FCR H-reflex were outcome measures. RESULTS Significant reductions in MMAS scores were seen both immediately after DN and at 1-hour follow-up (median 2 at T0 to 1 at T1 and T2). There were significant improvements in other measures between the baseline values at T0 and those recorded immediately after the DN at T1 or one hour later at T2. CONCLUSIONS This study suggests that DN reduced wrist flexors spasticity and alpha motor neuron excitability in patients with stroke, and improvements persisted for one hour after DN.
Collapse
Affiliation(s)
- Zahra Fakhari
- Department of Physiotherapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Noureddin Nakhostin Ansari
- Department of Physiotherapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
- Neuromusculoskeletal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Soofia Naghdi
- Department of Physiotherapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
- Neuromusculoskeletal Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Korosh Mansouri
- Neuromusculoskeletal Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Physical Medicine and Rehabilitation, Medical School, Iran University of Medical Sciences, Tehran, Iran
| | - Hojjat Radinmehr
- Department of Physiotherapy, School of Rehabilitation, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
24
|
Trinh T, Shiner CT, Thompson-Butel AG, McNulty PA. Targeted upper-limb Wii-based Movement Therapy also improves lower-limb muscle activation and functional movement in chronic stroke. Disabil Rehabil 2016; 39:1939-1949. [DOI: 10.1080/09638288.2016.1213892] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Terry Trinh
- Neuroscience Research Australia, Sydney, NSW, Australia
- Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Christine T. Shiner
- Neuroscience Research Australia, Sydney, NSW, Australia
- Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Angelica G. Thompson-Butel
- Neuroscience Research Australia, Sydney, NSW, Australia
- Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Penelope A. McNulty
- Neuroscience Research Australia, Sydney, NSW, Australia
- Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
25
|
Fernandez-Gonzalo R, Fernandez-Gonzalo S, Turon M, Prieto C, Tesch PA, García-Carreira MDC. Muscle, functional and cognitive adaptations after flywheel resistance training in stroke patients: a pilot randomized controlled trial. J Neuroeng Rehabil 2016; 13:37. [PMID: 27052303 PMCID: PMC4823904 DOI: 10.1186/s12984-016-0144-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 04/01/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Resistance exercise (RE) improves neuromuscular function and physical performance after stroke. Yet, the effects of RE emphasizing eccentric (ECC; lengthening) actions on muscle hypertrophy and cognitive function in stroke patients are currently unknown. Thus, this study explored the effects of ECC-overload RE training on skeletal muscle size and function, and cognitive performance in individuals with stroke. METHODS Thirty-two individuals with chronic stroke (≥6 months post-stroke) were randomly assigned into a training group (TG; n = 16) performing ECC-overload flywheel RE of the more-affected lower limb (12 weeks, 2 times/week; 4 sets of 7 maximal closed-chain knee extensions; <2 min of contractile activity per session) or a control group (CG; n = 16), maintaining daily routines. Before and after the intervention, quadriceps femoris volume, maximal force and power for each leg were assessed, and functional and dual task performance, and cognitive functions were measured. RESULTS Quadriceps femoris volume of the more-affected leg increased by 9.4 % in TG. Muscle power of the more-affected, trained (48.2 %), and the less-affected, untrained limb (28.1 %) increased after training. TG showed enhanced balance (8.9 %), gait performance (10.6 %), dual-task performance, executive functions (working memory, verbal fluency tasks), attention, and speed of information processing. CG showed no changes. CONCLUSION ECC-overload flywheel resistance exercise comprising 4 min of contractile activity per week offers a powerful aid to regain muscle mass and function, and functional performance in individuals with stroke. While the current intervention improved cognitive functions, the cause-effect relationship, if any, with the concomitant neuromuscular adaptations remains to be explored. TRIAL REGISTRATION Clinical Trials NCT02120846.
Collapse
Affiliation(s)
| | - Sol Fernandez-Gonzalo
- Research Department, Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí I3PT. Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Marc Turon
- Research Department, Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí I3PT. Universitat Autònoma de Barcelona, Sabadell, Spain.,Centro de Investigación Biomédica En Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Prieto
- Department of Radiology, Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí I3PT. Universitat Autònoma de Barcelona, Sabadell, Spain.,Diagnostic Imaging, Althaia Xarxa Assistencial Universitària de Manresa, Manresa, Spain
| | - Per A Tesch
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Maria del Carmen García-Carreira
- Department of Neurology, Parc Taulí Hospital Universitari. Institut d'Investigació i Innovació Parc Taulí I3PT. Universitat Autònoma de Barcelona, Sabadell, Spain
| |
Collapse
|
26
|
Potter-Baker KA, Varnerin NM, Cunningham DA, Roelle SM, Sankarasubramanian V, Bonnett CE, Machado AG, Conforto AB, Sakaie K, Plow EB. Influence of Corticospinal Tracts from Higher Order Motor Cortices on Recruitment Curve Properties in Stroke. Front Neurosci 2016; 10:79. [PMID: 27013942 PMCID: PMC4781847 DOI: 10.3389/fnins.2016.00079] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 02/18/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Recruitment curves (RCs) acquired using transcranial magnetic stimulation are commonly used in stroke to study physiologic functioning of corticospinal tracts (CST) from M1. However, it is unclear whether CSTs from higher motor cortices contribute as well. OBJECTIVE To explore whether integrity of CST from higher motor areas, besides M1, relates to CST functioning captured using RCs. METHODS RCs were acquired for a paretic hand muscle in patients with chronic stroke. Metrics describing gain and overall output of CST were collected. CST integrity was defined by diffusion tensor imaging. For CST emerging from M1 and higher motor areas, integrity (fractional anisotropy) was evaluated in the region of the posterior limb of the internal capsule, the length of CST and in the region of the stroke lesion. RESULTS We found that output and gain of RC was related to integrity along the length of CST emerging from higher motor cortices but not the M1. CONCLUSIONS Our results suggest that RC parameters in chronic stroke infer function primarily of CST descending from the higher motor areas but not M1. RCs may thus serve as a simple, in-expensive means to assess re-mapping of alternate areas that is generally studied with resource-intensive neuroimaging in stroke.
Collapse
Affiliation(s)
- Kelsey A Potter-Baker
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation Cleveland, OH, USA
| | - Nicole M Varnerin
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation Cleveland, OH, USA
| | - David A Cunningham
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic FoundationCleveland, OH, USA; School of Biomedical Sciences, Department of Neuroscience, Kent State UniversityKent, OH, USA
| | - Sarah M Roelle
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation Cleveland, OH, USA
| | | | - Corin E Bonnett
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation Cleveland, OH, USA
| | - Andre G Machado
- Center for Neurological Restoration, Neurosurgery, Neurological Institute, Cleveland Clinic Foundation Cleveland, OH, USA
| | - Adriana B Conforto
- Neurology Clinical Division, Neurology Department, Clinics Hospital, São Paulo UniversitySão Paulo, Brazil; Hospital Israelita Albert EinsteinSão Paulo, Brazil
| | - Ken Sakaie
- Department of Diagnostic Radiology, Imaging Institute, Cleveland Clinic Foundation Cleveland, OH, USA
| | - Ela B Plow
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic FoundationCleveland, OH, USA; Center for Neurological Restoration, Neurosurgery, Neurological Institute, Cleveland Clinic FoundationCleveland, OH, USA; Department of Physical Medicine and Rehabilitation, Neurological Institute, Cleveland Clinic FoundationCleveland, OH, USA
| |
Collapse
|
27
|
Khatoonabadi AR, Nakhostin-Ansari N, Piran A, Tahmasian H. Development, cross-cultural adaptation, and validation of the Persian Mississippi Aphasia Screening Test in patients with post-stroke aphasia. IRANIAN JOURNAL OF NEUROLOGY 2015; 14:101-107. [PMID: 26056555 PMCID: PMC4449390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 01/25/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND The Mississippi Aphasia Screening Test (MAST) is a brief screening test for assessing the expressive and receptive language abilities in patients with aphasia. The objective of the study was to develop and validate the Persian version of the MAST (MASTp) as a screening test for language disorders in patients with post-stroke aphasia. METHODS This study used a cross-sectional design to cross-culturally adapt the MASTp following the guidelines for the process of cross-cultural adaptation of measures. A total of 40 subjects (20 patients with post-stroke aphasia and 20 healthy subjects) were included. The MASTp was tested for floor or ceiling effects, internal consistency reliability, intra-rater reliability, discriminative validity, and factor structure. RESULTS There were no floor or ceiling effects for MASTp total score. The MASTp yielded values for internal consistency reliability that were not adequate (Cronbach's alpha 0.64 and 0.66 for test and retest, respectively. The intra-rater reliability of the MASTp within a 7 day-interval was excellent for total score (ICC agreement = 0.96) and both expressive index (ICC = 0.95) and receptive index (ICC agreement = 0.98). here were statistically significant differences in MASTp total scores and both indexes between patients and healthy subjects suggesting the discriminative validity of the MASTp (P < 0.001). Factor analysis revealed a 3-factor solution, which jointly accounted for 72.06% of the total variance. Additional factor analysis suggested 6-item MASTp as a unidimensional measure. CONCLUSION The MASTp is useful as a valid and reliable screening tool for evaluation of language abilities in Persian speaking patients with aphasia after stroke.
Collapse
Affiliation(s)
- Ahmad Reza Khatoonabadi
- Department of Speech Therapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Noureddin Nakhostin-Ansari
- Department of Physiotherapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Piran
- Department of Speech Therapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Tahmasian
- Department of Speech Therapy, School of Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|