1
|
Prajjwal P, Chandrasekar KK, Battula P, Gaviria E, Awe MO, Inban P, Almutairi AS, Das A, Tekuru Y, Marsool MDM, Reddy MM, Mitra S, Bamba H, Singh G, Jain H, Gadam S, Hussin OA. The efficacy of virtual reality-based rehabilitation in improving motor function in patients with stroke: a systematic review and meta-analysis. Ann Med Surg (Lond) 2024; 86:5425-5438. [PMID: 39238962 PMCID: PMC11374195 DOI: 10.1097/ms9.0000000000002403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/11/2024] [Indexed: 09/07/2024] Open
Abstract
Background Stroke is a major cause of adult disability, prompting the exploration of innovative rehabilitation methods. Virtual rehabilitation (VR), leveraging technological advances, has gained popularity as a treatment for stroke recovery. Methodology The authors conducted a systematic review and meta-analysis of randomized controlled trials (RCTs) published in English within the last decade, adhering to the PRISMA guidelines. The authors searched databases such as Medline/PubMed, and the Cochrane Library using specific search keywords and Medical Subject Headings (MeSH). The methodological quality was assessed using the PEDro scale, focusing on RCTs involving adult stroke patients undergoing VR rehabilitation, with outcomes related to motor function and quality of life. Results The authors included 15 studies in our meta-analysis. VR rehabilitation offers several advantages over traditional therapy, such as enhanced feedback and increased patient motivation. Engaging VR environments helps improve focus during treatment, potentially boosting recovery from post-stroke impairments. VR therapies significantly benefit motor function, which can improve activities of daily living and overall quality of life. Conclusion VR has demonstrated efficacy in improving motor function and quality of life for stroke survivors. Future research should explore patient variability and refine intervention methods. Incorporating VR into rehabilitation programs could optimize stroke recovery outcomes.
Collapse
Affiliation(s)
| | | | - Pavani Battula
- Department of Neurology, NTR University of Health Sciences, Hyderabad
| | | | | | | | - Adel S Almutairi
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Arpan Das
- Department of Neurology, RG Kar Medical College and Hospital, Kolkata
| | - Yogesh Tekuru
- Department of Neurology, RVM Institute of Medical Sciences and Research Center, Laxmakkapally
| | | | | | | | - Hyma Bamba
- Internal Medicine, Government Medical College and Hospital, Chandigarh
| | - Gurmehar Singh
- Internal Medicine, Government Medical College and Hospital, Chandigarh
| | - Hritvik Jain
- Internal Medicine, All India Institute of Medical Sciences (AIIMS), Jodhpur, India
| | | | | |
Collapse
|
2
|
Abdul Razak LH, Denis T, Murugiah Y, Yoong WK, Idris Z, Senik MH. The Effect of Traumatic Brain Injury on Memory. Malays J Med Sci 2024; 31:52-74. [PMID: 38984242 PMCID: PMC11229567 DOI: 10.21315/mjms2024.31.3.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/22/2023] [Indexed: 07/11/2024] Open
Abstract
Having a good memory is essential for carrying out daily tasks. People cannot study, plan, remember or navigate life effectively if they are memoryless. People may be at risk when mistakes made in the past will be repeated and lessons regarding danger cannot be learned. In the community, traumatic brain injury (TBI) is common and individuals with TBI frequently have memory problems. It is crucial to study how TBI affects memory to better understand the underlying mechanism and to tailor rehabilitation for patients with a range of pathologies and severity levels. Thus, this paper aimed to review studies related to TBI's effect on memory. This review examined recent studies to learn more regarding and comprehend the connection between TBI and memory, including short-term memory (STM), working memory (WM) and long-term memory (LTM). This will undoubtedly have a big impact on how memory problems that may arise after TBI will be addressed. Virtual reality and other technological advancements have given the medical community a new way to investigate rehabilitative therapy.
Collapse
Affiliation(s)
| | - Tedd Denis
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Yoghaanjaly Murugiah
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Weng Kei Yoong
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Zamzuri Idris
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Mohd Harizal Senik
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Brain and Behaviour Cluster, School of Medical Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
| |
Collapse
|
3
|
Begagić E, Bečulić H, Pugonja R, Memić Z, Balogun S, Džidić-Krivić A, Milanović E, Salković N, Nuhović A, Skomorac R, Sefo H, Pojskić M. Augmented Reality Integration in Skull Base Neurosurgery: A Systematic Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:335. [PMID: 38399622 PMCID: PMC10889940 DOI: 10.3390/medicina60020335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
Background and Objectives: To investigate the role of augmented reality (AR) in skull base (SB) neurosurgery. Materials and Methods: Utilizing PRISMA methodology, PubMed and Scopus databases were explored to extract data related to AR integration in SB surgery. Results: The majority of 19 included studies (42.1%) were conducted in the United States, with a focus on the last five years (77.8%). Categorization included phantom skull models (31.2%, n = 6), human cadavers (15.8%, n = 3), or human patients (52.6%, n = 10). Microscopic surgery was the predominant modality in 10 studies (52.6%). Of the 19 studies, surgical modality was specified in 18, with microscopic surgery being predominant (52.6%). Most studies used only CT as the data source (n = 9; 47.4%), and optical tracking was the prevalent tracking modality (n = 9; 47.3%). The Target Registration Error (TRE) spanned from 0.55 to 10.62 mm. Conclusion: Despite variations in Target Registration Error (TRE) values, the studies highlighted successful outcomes and minimal complications. Challenges, such as device practicality and data security, were acknowledged, but the application of low-cost AR devices suggests broader feasibility.
Collapse
Affiliation(s)
- Emir Begagić
- Department of General Medicine, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina;
| | - Hakija Bečulić
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina; (H.B.)
- Department of Anatomy, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina;
| | - Ragib Pugonja
- Department of Anatomy, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina;
| | - Zlatan Memić
- Department of General Medicine, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina;
| | - Simon Balogun
- Division of Neurosurgery, Department of Surgery, Obafemi Awolowo University Teaching Hospitals Complex, Ilesa Road PMB 5538, Ile-Ife 220282, Nigeria
| | - Amina Džidić-Krivić
- Department of Neurology, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina
| | - Elma Milanović
- Neurology Clinic, Clinical Center University of Sarajevo, Bolnička 25, 71000 Sarajevo, Bosnia and Herzegovina
| | - Naida Salković
- Department of General Medicine, School of Medicine, University of Tuzla, Univerzitetska 1, 75000 Tuzla, Bosnia and Herzegovina;
| | - Adem Nuhović
- Department of General Medicine, School of Medicine, University of Sarajevo, Univerzitetska 1, 71000 Sarajevo, Bosnia and Herzegovina;
| | - Rasim Skomorac
- Department of Neurosurgery, Cantonal Hospital Zenica, Crkvice 67, 72000 Zenica, Bosnia and Herzegovina; (H.B.)
- Department of Surgery, School of Medicine, University of Zenica, Travnička 1, 72000 Zenica, Bosnia and Herzegovina
| | - Haso Sefo
- Neurosurgery Clinic, Clinical Center University of Sarajevo, Bolnička 25, 71000 Sarajevo, Bosnia and Herzegovina
| | - Mirza Pojskić
- Department of Neurosurgery, University Hospital Marburg, Baldingerstr., 35033 Marburg, Germany
| |
Collapse
|
4
|
Calderone A, Carta D, Cardile D, Quartarone A, Rifici C, Calabrò RS, Corallo F. Use of Virtual Reality in Patients with Acquired Brain Injury: A Systematic Review. J Clin Med 2023; 12:7680. [PMID: 38137752 PMCID: PMC10743630 DOI: 10.3390/jcm12247680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 11/28/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND AND OBJECTIVES ABI is found in all societies as the most severe, disabling neurological disorder. A cognitive rehabilitation program is essential for the clinical recovery of these patients, improving functional outcomes and quality of life. Modern technologies such as virtual reality (VR) offer several advantages over traditional therapies, including the ability to engage people in simulated performance of functional tasks. This review will examine the studies in which virtual reality has been used as an aid, technique, or intervention in patients with acquired brain injury. MATERIALS AND METHODS Studies were identified from an online search of PubMed, Cochrane Library, and Web of Science databases. RESULTS We found that TBI patients responded positively to VR treatment depending on the damaged or impaired cognitive and motor functions they acquired. It is now a tool that is available in the rehabilitation of these patients and supports the recovery of various motor and cognitive functions. CONCLUSIONS This review has shown that VR is an intervention technique that increasingly exists in clinical rehabilitation practice for ABI patients. The device uses advanced technologies that can cause general changes in cognitive, motor, and psychological aspects and create a simulated environment that can partially restore these functions and behaviors, as well as the behaviors of everyday life.
Collapse
Affiliation(s)
| | | | - Davide Cardile
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy
| | | | | | | | | |
Collapse
|
5
|
Creeden R, Blonien N, Schultz JK, Wheeler J, Haltson EL, McKinney ZJ. Prolonged Disability following Re-Exposure after Complete Recovery from Aerotoxic Syndrome: A Case Report. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:7156. [PMID: 38131708 PMCID: PMC10742713 DOI: 10.3390/ijerph20247156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
Aerotoxic syndrome is a rarely recognized and poorly defined illness resulting from exposure to products of oil combustion in commercial aircraft bleed air systems. The pathophysiology of this syndrome is not well understood. A 42-year-old male pilot developed duty-limiting symptoms consistent with aerotoxic syndrome following exposure to airline cabin fumes and recurrence of symptoms following re-exposure despite apparent full recovery from the initial exposure event. Given his persistent symptoms and concern for immediate debilitation/incapacitation if re-exposed, the pilot was deemed medically unqualified for return to commercial piloting duties and a disability determination was made. Consideration of aerotoxic syndrome in aircrew members with unusual or episodic symptoms of neuro/cognitive dysfunction is essential for further characterizing this occupational illness, guiding medical management, and understanding its impact on aviation workforce health.
Collapse
Affiliation(s)
- Race Creeden
- HealthPartners Occupational and Environmental Residency, HealthPartners West End Clinic, 1665 Utica Ave. S., Suite 100, St. Louis Park, MN 55416, USA or (R.C.); or (N.B.); (E.L.H.)
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, 1260 Mayo Building, MMC 807, 420 Delaware St. SE, Minneapolis, MN 55455, USA
| | - Nick Blonien
- HealthPartners Occupational and Environmental Residency, HealthPartners West End Clinic, 1665 Utica Ave. S., Suite 100, St. Louis Park, MN 55416, USA or (R.C.); or (N.B.); (E.L.H.)
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, 1260 Mayo Building, MMC 807, 420 Delaware St. SE, Minneapolis, MN 55455, USA
| | - Jill K. Schultz
- Bright Eyes Vision Clinic, 13889 Ridgedale Drive, Minnetonka, MN 55305, USA;
| | - Jessika Wheeler
- NovaCare Rehabilitation, 480 Highway 96 East Suite 120, Vadnais Heights, MN 55127, USA;
| | - Erik L. Haltson
- HealthPartners Occupational and Environmental Residency, HealthPartners West End Clinic, 1665 Utica Ave. S., Suite 100, St. Louis Park, MN 55416, USA or (R.C.); or (N.B.); (E.L.H.)
| | - Zeke J. McKinney
- HealthPartners Occupational and Environmental Residency, HealthPartners West End Clinic, 1665 Utica Ave. S., Suite 100, St. Louis Park, MN 55416, USA or (R.C.); or (N.B.); (E.L.H.)
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, 1260 Mayo Building, MMC 807, 420 Delaware St. SE, Minneapolis, MN 55455, USA
- HealthPartners Institute, 8170 33rd Ave. S., Minneapolis, MN 55425, USA
| |
Collapse
|
6
|
Rich TL, Truty T, Muschler K, Gravely A, Marth LA, Barrett B, Mortimer D, Hansen AH. Virtual Reality Game Selection for Traumatic Brain Injury Rehabilitation: A Therapist's Wish List for Game Developers. Games Health J 2023; 12:445-449. [PMID: 37498203 DOI: 10.1089/g4h.2022.0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023] Open
Abstract
This project explored the selection process of commercially available virtual reality (VR) games for traumatic brain injury rehabilitation. Occupational therapy practitioners (OTPs) developed a classification framework that they used to evaluate VR games. The classification framework focused on movements required to effectively play the game, cognitive demand, position for game play, ease in menu navigation, and perceived therapeutic applications. OTPs used the ratings to aid in game selection and identified relevant game examples that allowed customizable settings and basic navigation with a game focus on functional activities. The OTPs and the research team identified the need for further work on accessibility and adaptability of game features (e.g., difficulty and limb usage) allowing for more individualization to optimize outcomes of VR-enhanced rehabilitation. The classification framework was useful in evaluating the potential therapeutic benefit of commercially available VR games. However, trial of the game by clinicians prior to use was still warranted.
Collapse
Affiliation(s)
- Tonya L Rich
- Minneapolis VA Health Care System, Rehabilitation & Extended Care Service Line, Minneapolis, Minnesota, USA
- University of Minnesota, Division of Rehabilitation Medicine, Minneapolis, Minnesota, USA
| | - Timothy Truty
- Minneapolis VA Health Care System, Research Service Line, Minneapolis, Minnesota, USA
| | - Katherine Muschler
- Minneapolis VA Health Care System, Research Service Line, Minneapolis, Minnesota, USA
| | - Amy Gravely
- Minneapolis VA Health Care System, Research Service Line, Minneapolis, Minnesota, USA
| | - Lindsay A Marth
- Minneapolis VA Health Care System, Rehabilitation & Extended Care Service Line, Minneapolis, Minnesota, USA
| | - Benjamin Barrett
- Minneapolis VA Health Care System, Rehabilitation & Extended Care Service Line, Minneapolis, Minnesota, USA
| | - Diane Mortimer
- Minneapolis VA Health Care System, Rehabilitation & Extended Care Service Line, Minneapolis, Minnesota, USA
- University of Minnesota, Division of Rehabilitation Medicine, Minneapolis, Minnesota, USA
| | - Andrew H Hansen
- Minneapolis VA Health Care System, Rehabilitation & Extended Care Service Line, Minneapolis, Minnesota, USA
- University of Minnesota, Division of Rehabilitation Medicine, Minneapolis, Minnesota, USA
- University of Minnesota, Department of Biomedical Engineering, Minneapolis, Minnesota, USA
| |
Collapse
|
7
|
Faria AL, Latorre J, Silva Cameirão M, Bermúdez i Badia S, Llorens R. Ecologically valid virtual reality-based technologies for assessment and rehabilitation of acquired brain injury: a systematic review. Front Psychol 2023; 14:1233346. [PMID: 37711328 PMCID: PMC10497882 DOI: 10.3389/fpsyg.2023.1233346] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/03/2023] [Indexed: 09/16/2023] Open
Abstract
Purpose A systematic review was conducted to examine the state of the literature regarding using ecologically valid virtual environments and related technologies to assess and rehabilitate people with Acquired Brain Injury (ABI). Materials and methods A literature search was performed following the PRISMA guidelines using PubMed, Web of Science, ACM and IEEE databases. The focus was on assessment and intervention studies using ecologically valid virtual environments (VE). All studies were included if they involved individuals with ABI and simulated environments of the real world or Activities of Daily Living (ADL). Results Seventy out of 363 studies were included in this review and grouped and analyzed according to the nature of its simulation, prefacing a total of 12 kitchens, 11 supermarkets, 10 shopping malls, 16 streets, 11 cities, and 10 other everyday life scenarios. These VE were mostly presented on computer screens, HMD's and laptops and patients interacted with them primarily via mouse, keyboard, and joystick. Twenty-five out of 70 studies had a non-experimental design. Conclusion Evidence about the clinical impact of ecologically valid VE is still modest, and further research with more extensive samples is needed. It is important to standardize neuropsychological and motor outcome measures to strengthen conclusions between studies. Systematic review registration identifier CRD42022301560, https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=301560.
Collapse
Affiliation(s)
- Ana Lúcia Faria
- Faculdade de Artes e Humanidades, Universidade da Madeira, Funchal, Portugal
- NOVA Laboratory for Computer Science and Informatics, Lisbon, Portugal
- Agência Regional para o Desenvolvimento da Investigação, Tecnologia e Inovação, Funchal, Portugal
| | - Jorge Latorre
- Neurorehabilitation and Brain Research Group, Instituto de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
- NEURORHB, Servicio de Neurorrehabilitación de Hospitales Vithas, Valencia, Spain
| | - Mónica Silva Cameirão
- NOVA Laboratory for Computer Science and Informatics, Lisbon, Portugal
- Agência Regional para o Desenvolvimento da Investigação, Tecnologia e Inovação, Funchal, Portugal
- Faculdade de Ciências Exatas e da Engenharia, Universidade da Madeira, Funchal, Portugal
| | - Sergi Bermúdez i Badia
- NOVA Laboratory for Computer Science and Informatics, Lisbon, Portugal
- Agência Regional para o Desenvolvimento da Investigação, Tecnologia e Inovação, Funchal, Portugal
- Faculdade de Ciências Exatas e da Engenharia, Universidade da Madeira, Funchal, Portugal
| | - Roberto Llorens
- Neurorehabilitation and Brain Research Group, Instituto de Investigación e Innovación en Bioingeniería, Universitat Politècnica de València, Valencia, Spain
- NEURORHB, Servicio de Neurorrehabilitación de Hospitales Vithas, Valencia, Spain
| |
Collapse
|
8
|
Kwon SH, Park JK, Koh YH. A systematic review and meta-analysis on the effect of virtual reality-based rehabilitation for people with Parkinson's disease. J Neuroeng Rehabil 2023; 20:94. [PMID: 37475014 PMCID: PMC10360300 DOI: 10.1186/s12984-023-01219-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Virtual reality (VR) is a promising solution for individuals with Parkinson's disease (PD) who experience symptoms that affect their daily activities and independence. Through VR-based rehabilitation, patients can improve their motor skills in a safe and stress-free environment, making it an attractive alternative to traditional in-person rehabilitation during the COVID-19 pandemic. This study aimed to provide the most recent and convincing evidence on the rehabilitative effects of VR technology compared with conventional treatments. METHODS Two investigators systematically searched Embase, MEDLINE, CINAHL, PEDro, and the Cochrane Library from their inception until May 31, 2022, to identify randomized controlled trials (RCTs) comparing the effectiveness of VR training with that of conventional treatment for patients with PD. Studies were selected based on the patient, intervention, comparator, and outcome criteria and assessed for the risk of bias using the Cochrane tool. Meta-analysis was conducted by pooling mean differences with 95% confidence intervals. RESULTS A total of 14 RCTs, involving 524 participants, were included in the meta-analysis. The results indicated that VR-based rehabilitation significantly improved balance function, as measured using the Berg balance scale (BBS) and activities-specific balance confidence. However, no statistically significant differences in gait ability, activities of daily living, motor function, and quality of life were observed between the experimental and control groups. Subgroup analysis revealed that combination therapy affected heterogeneity in the BBS analysis. Meta-regression analysis demonstrated a significant positive relationship, indicating that more recent studies have shown greater improvements in balance function. CONCLUSION This study's findings suggest that VR-based rehabilitation is a promising intervention for improving balance function in patients for PD compared with conventional treatment, and recent research supports its efficacy. However, future research should focus on conducting long-term follow-up studies and developing standardized protocols to comprehensively establish this intervention's potential benefits.
Collapse
Affiliation(s)
- Sun-Ho Kwon
- Division of Brain Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, 187 Osongsaengmyeong2‑ro, Osong‑eup, Cheongju‑si, Chungcheongbuk‑do 28159 Republic of Korea
| | - Jae Kyung Park
- Division of Brain Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, 187 Osongsaengmyeong2‑ro, Osong‑eup, Cheongju‑si, Chungcheongbuk‑do 28159 Republic of Korea
| | - Young Ho Koh
- Division of Brain Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, 187 Osongsaengmyeong2‑ro, Osong‑eup, Cheongju‑si, Chungcheongbuk‑do 28159 Republic of Korea
| |
Collapse
|
9
|
Lan L, Mao RQ, Qiu RY, Kay J, de Sa D. Immersive Virtual Reality for Patient-Specific Preoperative Planning: A Systematic Review. Surg Innov 2023; 30:109-122. [PMID: 36448920 PMCID: PMC9925905 DOI: 10.1177/15533506221143235] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background. Immersive virtual reality (iVR) facilitates surgical decision-making by enabling surgeons to interact with complex anatomic structures in realistic 3-dimensional environments. With emerging interest in its applications, its effects on patients and providers should be clarified. This systematic review examines the current literature on iVR for patient-specific preoperative planning. Materials and Methods. A literature search was performed on five databases for publications from January 1, 2000 through March 21, 2021. Primary studies on the use of iVR simulators by surgeons at any level of training for patient-specific preoperative planning were eligible. Two reviewers independently screened titles, abstracts, and full texts, extracted data, and assessed quality using the Quality Assessment Tool for Studies with Diverse Designs (QATSDD). Results were qualitatively synthesized, and descriptive statistics were calculated. Results. The systematic search yielded 2,555 studies in total, with 24 full-texts subsequently included for qualitative synthesis, representing 264 medical personnel and 460 patients. Neurosurgery was the most frequently represented discipline (10/24; 42%). Preoperative iVR did not significantly improve patient-specific outcomes of operative time, blood loss, complications, and length of stay, but may decrease fluoroscopy time. In contrast, iVR improved surgeon-specific outcomes of surgical strategy, anatomy visualization, and confidence. Validity, reliability, and feasibility of patient-specific iVR models were assessed. The mean QATSDD score of included studies was 32.9%. Conclusions. Immersive VR improves surgeon experiences of preoperative planning, with minimal evidence for impact on short-term patient outcomes. Future work should focus on high-quality studies investigating long-term patient outcomes, and utility of preoperative iVR for trainees.
Collapse
Affiliation(s)
- Lucy Lan
- Michael G. DeGroote School of
Medicine, McMaster University, Hamilton, ON, Canada,Lucy Lan, Michael G. DeGroote School of
Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8N 3Z5,
Canada.
| | - Randi Q. Mao
- Michael G. DeGroote School of
Medicine, McMaster University, Hamilton, ON, Canada
| | - Reva Y. Qiu
- Michael G. DeGroote School of
Medicine, McMaster University, Hamilton, ON, Canada
| | - Jeffrey Kay
- Division of Orthopaedic Surgery,
Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Darren de Sa
- Division of Orthopaedic Surgery,
Department of Surgery, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
10
|
Wender CL, Sandroff BM, Krch D. Rationale and methodology for examining the acute effects of aerobic exercise combined with varying degrees of virtual reality immersion on cognition in persons with TBI. Contemp Clin Trials Commun 2022; 29:100963. [PMID: 35865279 PMCID: PMC9294260 DOI: 10.1016/j.conctc.2022.100963] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 11/19/2022] Open
Abstract
Persons with Traumatic Brain Injury (TBI) commonly present with long-term cognitive deficits in executive function, processing speed, attention, and learning and memory. While specific cognitive rehabilitation techniques have shown significant success for deficits in individual domains, aerobic exercise training represents a promising approach for an efficient and general treatment modality that might improve many cognitive domains concurrently. Existing studies in TBI report equivocal results, however, and are hampered by methodological concerns, including small sample sizes, uncontrolled single-group designs, and the use of suboptimal exercise modalities for eliciting cognitive improvements in this population. One particularly promising modality involves the application of environmental enrichment via virtual reality (VR) during aerobic exercise in persons with TBI, but this has yet to be investigated. One approach for systematically developing an optimal aerobic exercise intervention for persons with TBI involves the examination of single bouts of aerobic exercise (i.e., acute aerobic exercise) on cognition. Acute exercise research is a necessary first step for informing the development of high-quality exercise training interventions that are more likely to induce meaningful beneficial effects. To date, such an acute exercise paradigm has yet to be conducted in persons with TBI. To that end, we propose an acute exercise study that will investigate the acute effects of aerobic exercise with incremental degrees of environmental enrichment (VR) relative to a control comparison condition on executive function (divided attention and working memory) and processing speed in 24 people with TBI.
Collapse
Affiliation(s)
- Carly L.A. Wender
- Center for Traumatic Brain Injury Research, Kessler Foundation, East Hanover, NJ, USA
- Department of Physical Medicine and Rehabilitation, Rutgers-NJ Medical School, Newark, NJ, USA
- Corresponding author. Kessler Foundation, 120 Eagle Rock Ave, Suite 100, East Hanover, NJ, 07936, USA.
| | - Brian M. Sandroff
- Center for Neuropsychology & Neuroscience Research, Kessler Foundation, West Orange, NJ, USA
- Department of Physical Medicine and Rehabilitation, Rutgers-NJ Medical School, Newark, NJ, USA
| | - Denise Krch
- Center for Traumatic Brain Injury Research, Kessler Foundation, East Hanover, NJ, USA
- Department of Physical Medicine and Rehabilitation, Rutgers-NJ Medical School, Newark, NJ, USA
| |
Collapse
|
11
|
Alashram AR, Padua E, Annino G. Virtual reality for balance and mobility rehabilitation following traumatic brain injury: A systematic review of randomized controlled trials. J Clin Neurosci 2022; 105:115-121. [PMID: 36182811 DOI: 10.1016/j.jocn.2022.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/11/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Balance and mobility deficits are most prevalent impairments in patients with traumatic brain injury (TBI). The evidence has proposed that rehabilitation plays an important role in improving balance and mobility post-TBI. Virtual reality (VR) is a computer technology that provides immersed users to generate feedback such as visual, audio, and haptic. OBJECTIVE This review aimed to examine the effects of the VR treatment intervention on balance and mobility in patients with TBI and to define the most effective VR treatment protocol. METHODS SCOPUS, PEDro, PubMed, REHABDATA, EMBASE, and the web of science were searched for experimental trials examining the impacts of VR training on balance and mobility in patients with TBI from inception until July 2022. Physiotherapy Evidence Database (PEDro) scale was used to assess the methodological quality of the selected studies. RESULTS Five randomized controlled trials (RCTs) met the inclusion criteria. The PEDro scores ranged from 6 to 8, with a median of 6. A total of 157 patients with TBI were included in this review, 31.2% of whom were females. The findings showed that VR intervention is not superior to traditional physiotherapy interventions in improving balance and mobility post- TBI. CONCLUSIONS The preliminary findings showed that the influence of VR on the balance and mobility ability in patients with TBI is promising. Combining VR with other concurrent rehabilitation interventions may show more significant improvements in balance and mobility compared to VR interventions alone. The optimal VR treatment protocol remains unclear. Further randomized controlled trials are strongly needed.
Collapse
Affiliation(s)
- Anas R Alashram
- Department of Physiotherapy, Middle East University, Amman, Jordan; Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy.
| | - Elvira Padua
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - Giuseppe Annino
- Department of Medicine Systems, University of Rome "Tor Vergata", Italy
| |
Collapse
|
12
|
Martin JL, Saredakis D, Hutchinson AD, Crawford GB, Loetscher T. Virtual Reality in Palliative Care: A Systematic Review. Healthcare (Basel) 2022; 10:healthcare10071222. [PMID: 35885749 PMCID: PMC9319274 DOI: 10.3390/healthcare10071222] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Virtual reality (VR) using head-mounted displays (HMDs) has demonstrated to be an effective tool for treating various somatic and psychological symptoms. Technological advances and increased affordability of VR technology provide an interesting option for delivering psychological interventions to patients in palliative care. The primary aim of this systematic review was to synthesise the available research on the use of VR for enhancing psychological and somatic outcomes for palliative care patients. Secondary aims included assessing general satisfaction and overall usability. Method: A pre-registered systematic literature search was conducted according to PRISMA guidelines using OVID Emcare, Cochrane Library, Embase, Medline, PsycINFO, and PubMed Care Search: Palliative Care Knowledge Network. Peer-reviewed experimental, quasi-experimental, observational, case, and feasibility studies consisting of single or multiple VR sessions using HMDs that reported psychological and/or somatic outcomes were included. Results: Eight studies published between 2019 and 2021 were included, representing 138 patients. While the reported quantitative psychological and somatic outcomes were ambiguous, the qualitative outcomes were largely positive. Participants were generally satisfied with VR, and most studies reported the VR interventions as usable, feasible, and acceptable. Conclusions: VR shows promise in palliative care and generally addresses a range of symptoms with few adverse effects. Future research should consist of adequately powered RCTs evaluating dosage and focusing on providing meaningful activities to enhance outcomes further.
Collapse
Affiliation(s)
- Jessica L. Martin
- UniSA Justice & Society, University of South Australia, Adelaide 5001, Australia; (J.L.M.); (A.D.H.); (T.L.)
| | - Dimitrios Saredakis
- UniSA Justice & Society, University of South Australia, Adelaide 5001, Australia; (J.L.M.); (A.D.H.); (T.L.)
- Correspondence:
| | - Amanda D. Hutchinson
- UniSA Justice & Society, University of South Australia, Adelaide 5001, Australia; (J.L.M.); (A.D.H.); (T.L.)
| | - Gregory B. Crawford
- Northern Adelaide Local Health Network, Adelaide 5092, Australia;
- Discipline of Medicine, University of Adelaide, Adelaide 5005, Australia
| | - Tobias Loetscher
- UniSA Justice & Society, University of South Australia, Adelaide 5001, Australia; (J.L.M.); (A.D.H.); (T.L.)
| |
Collapse
|
13
|
Corti C, Oprandi MC, Chevignard M, Jansari A, Oldrati V, Ferrari E, Martignoni M, Romaniello R, Strazzer S, Bardoni A. Virtual-Reality Performance-Based Assessment of Cognitive Functions in Adult Patients With Acquired Brain Injury: A Scoping Review. Neuropsychol Rev 2022; 32:352-399. [PMID: 33929656 DOI: 10.1007/s11065-021-09498-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 03/05/2021] [Indexed: 10/21/2022]
Abstract
Individuals with acquired brain injury (ABI) commonly present with impairments in cognitive abilities. As these competencies seem to be predictive of patients' abilities to reintegrate into the everyday settings, it is crucial to assess them properly. However, previous research has indicated that patients may perform relatively well on standard tests of cognitive functioning, but may nonetheless encounter significant difficulties in organizing and executing everyday tasks. In order to overcome this issue, virtual reality (VR) methods have been introduced in clinical practice with the aim of creating assessments that simulate real-world activities and thus, provide a clearer picture of patients' functioning in everyday settings. This review offers an overview of VR assessment tools described in the scientific literature between 2010 and 2019. Overall, 38 relevant records describing 31 different tools were found. Among these tools, 16 assessed executive functions and prospective memory, while the other 15 assessed visuo-spatial abilities. Although promising results have been reported, our analysis indicated that about half of the tools deliver tasks that differ from everyday activities, thus limiting the generalizability of patients' performance to the real-world. Moreover, a variety of methodological shortfalls related to study Internal and External Validity have been highlighted, which hamper the possibility of drawing definite recommendations on tool choice. These limitations suggest the importance of putting considerable efforts into the improvement or development of VR tools for patients with ABI for both research and clinical purposes, considering the great potential of this form of assessment.
Collapse
Affiliation(s)
- Claudia Corti
- Scientific Institute, IRCCS E. Medea, Bosisio Parini, Lecco, Italy.
| | | | - Mathilde Chevignard
- Rehabilitation Department for Children with Acquired Brain Injury, Saint Maurice Hospital, Saint Maurice, France
- Laboratoire D'Imagerie Biomedicale (LIB), Sorbonne Université, Paris, France
- GRC 24 Handicap Moteur Et Cognitif Et Réadaptation (HaMCRe), Sorbonne Université, Paris, France
| | | | - Viola Oldrati
- Scientific Institute, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | | | | | | | - Sandra Strazzer
- Scientific Institute, IRCCS E. Medea, Bosisio Parini, Lecco, Italy
| | | |
Collapse
|
14
|
Vilageliu-Jordà E, Enseñat-Cantallops A, García-Molina A. [Use of immersive virtual reality for cognitive rehabilitation of patients with brain injury]. Rev Neurol 2022; 74:331-339. [PMID: 35548914 PMCID: PMC11502186 DOI: 10.33588/rn.7410.2022034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Virtual reality (VR) is a therapeutic tool that is widely used in the cognitive rehabilitation of brain-damaged patients. Depending on the degree of immersiveness, a distinction can be made between non-immersive, semi-immersive and immersive VR. Studies assessing the utility of VR have focused on the non-immersive and semi-immersive modes. Little evidence is available on the effectiveness of immersive VR. AIM To describe the characteristics, methodological quality and main results of studies that have applied immersive VR programmes in the cognitive rehabilitation of brain-damaged patients. MATERIALS AND METHODS Following the PRISMA guidelines, a bibliographic search was conducted for studies published in the PubMed and PsycINFO databases. The methodological quality of the articles that met the selection criteria was assessed using the PEDro scale. RESULTS After applying the inclusion and exclusion criteria, of the 369 articles of potential interest, five met the eligibility criteria. One of them was a randomised clinical trial (with acceptable/good methodological quality). Three were studies with pre- and post-treatment measures and one was a single case study, all four of them displaying poor methodological quality. CONCLUSIONS According to the results obtained, there is no evidence of the effectiveness or utility of immersive VR in cognitive rehabilitation in brain-damaged patients. This finding is explained by the lack of studies with a methodological design that allows for the generation of quality evidence rather than because the results obtained in the articles analysed are negative or inconclusive.
Collapse
Affiliation(s)
- E Vilageliu-Jordà
- Universitat Autònoma de Barcelona, Bellaterra, España
- Institut Universitari de Neurorehabilitació Guttmann-UAB, Badalona, España
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, España
| | - A Enseñat-Cantallops
- Institut Universitari de Neurorehabilitació Guttmann-UAB, Badalona, España
- Universitat Autònoma de Barcelona, Bellaterra, España
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, España
| | - A García-Molina
- Institut Universitari de Neurorehabilitació Guttmann-UAB, Badalona, España
- Universidad Diego Portales, Santiago de Chile, Chile
- Universitat Autònoma de Barcelona, Bellaterra, España
- Fundació Institut d'Investigació en Ciències de la Salut Germans Trias i Pujol, Badalona, España
| |
Collapse
|
15
|
Bruschetta R, Maggio MG, Naro A, Ciancarelli I, Morone G, Arcuri F, Tonin P, Tartarisco G, Pioggia G, Cerasa A, Calabrò RS. Gender Influences Virtual Reality-Based Recovery of Cognitive Functions in Patients with Traumatic Brain Injury: A Secondary Analysis of a Randomized Clinical Trial. Brain Sci 2022; 12:brainsci12040491. [PMID: 35448022 PMCID: PMC9024763 DOI: 10.3390/brainsci12040491] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 02/01/2023] Open
Abstract
The rehabilitation of cognitive deficits in individuals with traumatic brain injury is essential for promoting patients’ recovery and autonomy. Virtual reality (VR) training is a powerful tool for reaching this target, although the effectiveness of this intervention could be interfered with by several factors. In this study, we evaluated if demographical and clinical variables could be related to the recovery of cognitive function in TBI patients after a well-validated VR training. One hundred patients with TBI were enrolled in this study and equally randomized into the Traditional Cognitive Rehabilitation Group (TCRG: n = 50) or Virtual Reality Training Group (VRTG: n = 50). The VRTG underwent a VRT with BTs-N, whereas the TCRG received standard cognitive treatment. All the patients were evaluated by a complete neuropsychological battery before (T0) and after the end of the training (T1). We found that the VR-related improvement in mood, as well as cognitive flexibility, and selective attention were influenced by gender. Indeed, females who underwent VR training were those showing better cognitive recovery. This study highlights the importance of evaluating gender effects in planning cognitive rehabilitation programs. The inclusion of different repetitions and modalities of VR training should be considered for TBI male patients.
Collapse
Affiliation(s)
- Roberta Bruschetta
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy, 98164 Messina, Italy; (R.B.); (G.T.); (G.P.)
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Maria Grazia Maggio
- Department of Biomedical and Biotechnological Science, University of Catania, 95123 Catania, Italy;
| | - Antonino Naro
- Stroke Unit, Azienda Ospedaliera Universitaria Gaetano Martino, 98123 Messina, Italy;
| | - Irene Ciancarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.C.); (G.M.)
| | - Giovanni Morone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (I.C.); (G.M.)
| | | | - Paolo Tonin
- S’Anna Institute, 88900 Crotone, Italy; (F.A.); (P.T.)
| | - Gennaro Tartarisco
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy, 98164 Messina, Italy; (R.B.); (G.T.); (G.P.)
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy, 98164 Messina, Italy; (R.B.); (G.T.); (G.P.)
| | - Antonio Cerasa
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy, 98164 Messina, Italy; (R.B.); (G.T.); (G.P.)
- S’Anna Institute, 88900 Crotone, Italy; (F.A.); (P.T.)
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, 87036 Rende, Italy
- Correspondence:
| | | |
Collapse
|
16
|
Riva G. Virtual Reality in Clinical Psychology. COMPREHENSIVE CLINICAL PSYCHOLOGY 2022. [PMCID: PMC7500920 DOI: 10.1016/b978-0-12-818697-8.00006-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Romeas T, Greffou S, Allard R, Forget R, McKerral M, Faubert J, Gagnon I. Dynamic Visual Stimulations Produced in a Controlled Virtual Reality Environment Reveals Long-Lasting Postural Deficits in Children With Mild Traumatic Brain Injury. Front Neurol 2021; 12:596615. [PMID: 34899549 PMCID: PMC8654728 DOI: 10.3389/fneur.2021.596615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/27/2021] [Indexed: 11/27/2022] Open
Abstract
Motor control deficits outlasting self-reported symptoms are often reported following mild traumatic brain injury (mTBI). The exact duration and nature of these deficits remains unknown. The current study aimed to compare postural responses to static or dynamic virtual visual inputs and during standard clinical tests of balance in 38 children between 9 and 18 years-of-age, at 2 weeks, 3 and 12 months post-concussion. Body sway amplitude (BSA) and postural instability (vRMS) were measured in a 3D virtual reality (VR) tunnel (i.e., optic flow) moving in the antero-posterior direction in different conditions. Measures derived from standard clinical balance evaluations (BOT-2, Timed tasks) and post-concussion symptoms (PCSS-R) were also assessed. Results were compared to those of 38 healthy non-injured children following a similar testing schedule and matched according to age, gender, and premorbid level of physical activity. Results highlighted greater postural response with BSA and vRMS measures at 3 months post-mTBI, but not at 12 months when compared to controls, whereas no differences were observed in post-concussion symptoms between mTBI and controls at 3 and 12 months. These deficits were specifically identified using measures of postural response in reaction to 3D dynamic visual inputs in the VR paradigm, while items from the BOT-2 and the 3 timed tasks did not reveal deficits at any of the test sessions. PCSS-R scores correlated between sessions and with the most challenging condition of the BOT-2 and as well as with the timed tasks, but not with BSA and vRMS. Scores obtained in the most challenging conditions of clinical balance tests also correlated weakly with BSA and vRMS measures in the dynamic conditions. These preliminary findings suggest that using 3D dynamic visual inputs such as optic flow in a controlled VR environment could help detect subtle postural impairments and inspire the development of clinical tools to guide rehabilitation and return to play recommendations.
Collapse
Affiliation(s)
- Thomas Romeas
- Faubert Laboratory, École d'Optométrie, Université de Montréal, Montréal, QC, Canada.,Institut National du Sport du Québec, Montréal, QC, Canada
| | - Selma Greffou
- Faubert Laboratory, École d'Optométrie, Université de Montréal, Montréal, QC, Canada
| | - Remy Allard
- Faubert Laboratory, École d'Optométrie, Université de Montréal, Montréal, QC, Canada
| | - Robert Forget
- School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montréal, QC, Canada.,Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal - IURDPM, Montréal, QC, Canada
| | - Michelle McKerral
- Department of Psychology, Université de Montréal and Centre for Interdisciplinary Research in Rehabilitation of Greater Montreal - IURDPM, Montréal, QC, Canada
| | - Jocelyn Faubert
- Faubert Laboratory, École d'Optométrie, Université de Montréal, Montréal, QC, Canada
| | - Isabelle Gagnon
- Montreal Children's Hospital, McGill University Health Center, McGill University, Montréal, QC, Canada.,School of Physical and Occupational Therapy, Faculty of Medicine and Health Sciences, McGill University, Montréal, QC, Canada
| |
Collapse
|
18
|
Felix RB, Rao A, Khalid M, Wang Y, Colloca L, Murthi SB, Morris NA. Adjunctive virtual reality pain relief following traumatic injury: protocol for a randomised within-subjects clinical trial. BMJ Open 2021; 11:e056030. [PMID: 34848527 PMCID: PMC8634353 DOI: 10.1136/bmjopen-2021-056030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
INTRODUCTION The annual mortality and national expense of the opioid crisis continue to rise in the USA (130 deaths/day, $50 billion/year). Opioid use disorder usually starts with the prescription of opioids for a medical condition. Its risk is associated with greater pain intensity and coping strategies characterised by pain catastrophising. Non-pharmacological analgesics in the hospital setting are critical to abate the opioid epidemic. One promising intervention is virtual reality (VR) therapy. It has performed well as a distraction tool and pain modifier during medical procedures; however, little is known about VR in the acute pain setting following traumatic injury. Furthermore, no studies have investigated VR in the setting of traumatic brain injury (TBI). This study aims to establish the safety and effect of VR therapy in the inpatient setting for acute traumatic injuries, including TBI. METHODS AND ANALYSIS In this randomised within-subjects clinical study, immersive VR therapy will be compared with two controls in patients with traumatic injury, including TBI. Affective measures including pain catastrophising, trait anxiety and depression will be captured prior to beginning sessions. Before and after each session, we will capture pain intensity and unpleasantness, additional affective measures and physiological measures associated with pain response, such as heart rate and variability, pupillometry and respiratory rate. The primary outcome is the change in pain intensity of the VR session compared with controls. ETHICS AND DISSEMINATION Dissemination of this protocol will allow researchers and funding bodies to stay abreast in their fields through exposure to research not otherwise widely publicised. Study protocols are compliant with federal regulation and University of Maryland Baltimore's Human Research Protections and Institutional Review Board (protocol number HP-00090603). Study results will be published on completion of enrolment and analysis, and deidentified data can be shared by request to the corresponding author. TRIAL REGISTRATION NUMBER NCT04356963; Pre-results.
Collapse
Affiliation(s)
- Ryan B Felix
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Aniruddha Rao
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, Maryland, USA
| | - Mazhar Khalid
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yang Wang
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, Maryland, USA
| | - Luana Colloca
- Department of Pain and Translational Symptom Science, University of Maryland School of Nursing, Baltimore, Maryland, USA
| | - Sarah B Murthi
- Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nicholas A Morris
- Department of Neurology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Pallavicini F, Pepe A, Clerici M, Mantovani F. Virtual Reality Applications in Medicine During the COVID-19 Pandemic: Systematic Review (Preprint). JMIR Serious Games 2021; 10:e35000. [PMID: 36282554 PMCID: PMC9605086 DOI: 10.2196/35000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/18/2022] [Accepted: 08/04/2022] [Indexed: 11/23/2022] Open
Abstract
Background Virtual reality can play an important role during the COVID-19 pandemic in the health care sector. This technology has the potential to supplement the traditional in-hospital medical training and treatment, and may increase access to training and therapies in various health care settings. Objective This systematic review aimed to describe the literature on health care–targeted virtual reality applications during the COVID-19 crisis. Methods We conducted a systematic search of the literature on the PsycINFO, Web of Science, and MEDLINE databases, according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. The search string was as follows: “[(virtual reality)] AND [(COVID-19) OR (coronavirus) OR (SARS-CoV-2) OR (healthcare)].” Papers published in English after December 2019 in peer-reviewed journals were selected and subjected to the inclusion and exclusion criteria. We used the Mixed Methods Appraisal Tool to assess the quality of studies and the risk of bias. Results Thirty-nine studies met the inclusion criteria. Seventeen studies showed the usefulness of virtual reality during the COVID-19 crisis for reducing stress, anxiety, depression, and pain, and promoting physical activity. Twenty-two studies revealed that virtual reality was a helpful learning and training tool during the COVID-19 crisis in several areas, including emergency medicine, nursing, and pediatrics. This technology was also used as an educational tool for increasing public understanding of the COVID-19 pandemic. Different levels of immersion (ie, immersive and desktop virtual reality), types of head-mounted displays (ie, PC-based, mobile, and standalone), and content (ie, 360° videos and photos, virtual environments, virtual reality video games, and embodied virtual agents) have been successfully used. Virtual reality was helpful in both face-to-face and remote trials. Conclusions Virtual reality has been applied frequently in medicine during the COVID-19 pandemic, with positive effects for treating several health conditions and for medical education and training. Some barriers need to be overcome for the broader adoption of virtual reality in the health care panorama. Trial Registration International Platform of Registered Systematic Review and Meta-analysis Protocols (INPLASY) INPLASY202190108; https://inplasy.com/inplasy-2021-9-0108/
Collapse
Affiliation(s)
- Federica Pallavicini
- Department of Human Sciences for Education, Università degli Studi di Milano-Bicocca, Milano, Italy
- Gamers VR Lab, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Alessandro Pepe
- Department of Human Sciences for Education, Università degli Studi di Milano-Bicocca, Milano, Italy
- Gamers VR Lab, Università degli Studi di Milano-Bicocca, Milano, Italy
| | - Massimo Clerici
- Department of Medicine and Surgery, Università degli Studi di Milano-Bicocca, Monza, Italy
| | - Fabrizia Mantovani
- Department of Human Sciences for Education, Università degli Studi di Milano-Bicocca, Milano, Italy
- Gamers VR Lab, Università degli Studi di Milano-Bicocca, Milano, Italy
| |
Collapse
|
20
|
Brassel S, Power E, Campbell A, Brunner M, Togher L. Recommendations for the Design and Implementation of Virtual Reality for Acquired Brain Injury Rehabilitation: Systematic Review. J Med Internet Res 2021; 23:e26344. [PMID: 34328434 PMCID: PMC8367177 DOI: 10.2196/26344] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/25/2021] [Accepted: 05/24/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Virtual reality (VR) is increasingly being used for the assessment and treatment of impairments arising from acquired brain injuries (ABIs) due to perceived benefits over traditional methods. However, no tailored options exist for the design and implementation of VR for ABI rehabilitation and, more specifically, traumatic brain injury (TBI) rehabilitation. In addition, the evidence base lacks systematic reviews of immersive VR use for TBI rehabilitation. Recommendations for this population are important because of the many complex and diverse impairments that individuals can experience. OBJECTIVE This study aims to conduct a two-part systematic review to identify and synthesize existing recommendations for designing and implementing therapeutic VR for ABI rehabilitation, including TBI, and to identify current evidence for using immersive VR for TBI assessment and treatment and to map the degree to which this literature includes recommendations for VR design and implementation. METHODS This review was guided by PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). A comprehensive search of 11 databases and gray literature was conducted in August 2019 and repeated in June 2020. Studies were included if they met relevant search terms, were peer-reviewed, were written in English, and were published between 2009 and 2020. Studies were reviewed to determine the level of evidence and methodological quality. For the first part, qualitative data were synthesized and categorized via meta-synthesis. For the second part, findings were analyzed and synthesized descriptively owing to the heterogeneity of data extracted from the included studies. RESULTS In the first part, a total of 14 papers met the inclusion criteria. Recommendations for VR design and implementation were not specific to TBI but rather to stroke or ABI rehabilitation more broadly. The synthesis and analysis of data resulted in three key phases and nine categories of recommendations for designing and implementing VR for ABI rehabilitation. In the second part, 5 studies met the inclusion criteria. A total of 2 studies reported on VR for assessment and three for treatment. Studies were varied in terms of therapeutic targets, VR tasks, and outcome measures. VR was used to assess or treat impairments in cognition, balance, and anxiety, with positive outcomes. However, the levels of evidence, methodological quality, and inclusion of recommendations for VR design and implementation were poor. CONCLUSIONS There is limited research on the use of immersive VR for TBI rehabilitation. Few studies have been conducted, and there is limited inclusion of recommendations for therapeutic VR design and implementation. Future research in ABI rehabilitation should consider a stepwise approach to VR development, from early co-design studies with end users to larger controlled trials. A list of recommendations is offered to provide guidance and a more consistent model to advance clinical research in this area.
Collapse
Affiliation(s)
- Sophie Brassel
- Discipline of Speech Pathology, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Emma Power
- Speech Pathology, Graduate School of Health, University of Technology Sydney, Sydney, Australia
| | - Andrew Campbell
- Cyberpsychology Research Group, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Melissa Brunner
- Discipline of Speech Pathology, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Leanne Togher
- Discipline of Speech Pathology, Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| |
Collapse
|
21
|
Mohamad UH, Ahmad MN, Benferdia Y, Shapi'i A, Bajuri MY. An Overview of Ontologies in Virtual Reality-Based Training for Healthcare Domain. Front Med (Lausanne) 2021; 8:698855. [PMID: 34307424 PMCID: PMC8298752 DOI: 10.3389/fmed.2021.698855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/14/2021] [Indexed: 11/13/2022] Open
Abstract
Virtual reality (VR) is one of the state-of-the-art technological applications in the healthcare domain. One major aspect of VR applications in this domain includes virtual reality-based training (VRT), which simplifies the complicated visualization process of diagnosis, treatment, disease analysis, and prevention. However, not much is known on how well the domain knowledge is shared and considered in the development of VRT applications. A pertinent mechanism, known as ontology, has acted as an enabler toward making the domain knowledge more explicit. Hence, this paper presents an overview to reveal the basic concepts and explores the extent to which ontologies are used in VRT development for medical education and training in the healthcare domain. From this overview, a base of knowledge for VRT development is proposed to initiate a comprehensive strategy in creating an effective ontology design for VRT applications in the healthcare domain.
Collapse
Affiliation(s)
| | | | - Youcef Benferdia
- Institute of IR4.0, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Azrulhizam Shapi'i
- Faculty of Information Science & Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Mohd Yazid Bajuri
- Department of Orthopaedics and Traumatology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
22
|
Development and Application of Medicine-Engineering Integration in the Rehabilitation of Traumatic Brain Injury. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9962905. [PMID: 34235225 PMCID: PMC8216791 DOI: 10.1155/2021/9962905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/21/2021] [Indexed: 02/02/2023]
Abstract
The rapid progress of the combination of medicine and engineering provides better chances for the clinical treatment and healthcare engineering. Traumatic brain injury (TBI) and its related symptoms have become a major global health problem. At present, these techniques has been widely used in the rehabilitation of TBI. In this review article, we summarizes the progress of the combination of medicine and industry in the rehabilitation of traumatic brain injury in recent years, mainly from the following aspects: artificial intelligence (AI), brain-computer interfaces (BCI), noninvasive brain stimulation (NIBS), and wearable-assisted devices. We believe the summary of this article can improve insight into the combination of medicine and industry in the rehabilitation of traumatic brain injury.
Collapse
|
23
|
Lino F, Arcangeli V, Chieffo DPR. The Virtual Challenge: Virtual Reality Tools for Intervention in Children with Developmental Coordination Disorder. CHILDREN-BASEL 2021; 8:children8040270. [PMID: 33915999 PMCID: PMC8065642 DOI: 10.3390/children8040270] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/12/2021] [Accepted: 03/29/2021] [Indexed: 01/20/2023]
Abstract
This narrative review highlights the latest achievements in the field of tele-rehabilitation: Virtual Reality (VR) and Augmented Reality (AR) serious games aimed at restoring and improving cognitive functions could be effectively used in Developmental Coordination Disorder Training. Studies investigating the effects of the abovementioned tech applications on cognitive improvement have been considered, following a comprehensive literature search in the scientific electronic databases: Pubmed, Scopus, Plos One, ScienceDirect. This review investigates the effects of VR and AR in improving space/motor skills through mental images manipulation training in children with developmental coordination disorders. The results revealed that in spite of the spreading of technology, actually only four studies investigated the effects of VR/AR tools on mental images manipulation. This study highlights new, promising VR and AR based therapeutic opportunities for digital natives now available, emphasizing the advantages of using motivational reward-oriented tools, in a playful therapeutic environment. However, more research in this filed is needed to identify the most effective virtual tool set for clinical use.
Collapse
Affiliation(s)
- Federica Lino
- Clinical Psychology Unit, Memory Clinic, IRRCS Fondazione Policlinico A. Gemelli, 00168 Roma, Italy;
| | - Valentina Arcangeli
- Clinical Psychology Unit, IRRCS Fondazione Policlinico A. Gemelli, 00168 Roma, Italy;
- Child Neuropsychiatry Unit, IRRCS Fondazione Policlinico A. Gemelli, 00168 Roma, Italy
| | - Daniela Pia Rosaria Chieffo
- Clinical Psychology Unit, IRRCS Fondazione Policlinico A. Gemelli, 00168 Roma, Italy;
- Child Neuropsychiatry Unit, IRRCS Fondazione Policlinico A. Gemelli, 00168 Roma, Italy
- Faculty of Medicine and Surgery, Catholic University of Sacred Heart, 00168 Roma, Italy
- Correspondence: ; Tel.: +6-015-3364 or +63-015-3364; Fax: +6-015-5676 or +63-015-5676
| |
Collapse
|
24
|
Converging Robotic Technologies in Targeted Neural Rehabilitation: A Review of Emerging Solutions and Challenges. SENSORS 2021; 21:s21062084. [PMID: 33809721 PMCID: PMC8002299 DOI: 10.3390/s21062084] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/05/2021] [Accepted: 03/11/2021] [Indexed: 11/17/2022]
Abstract
Recent advances in the field of neural rehabilitation, facilitated through technological innovation and improved neurophysiological knowledge of impaired motor control, have opened up new research directions. Such advances increase the relevance of existing interventions, as well as allow novel methodologies and technological synergies. New approaches attempt to partially overcome long-term disability caused by spinal cord injury, using either invasive bridging technologies or noninvasive human-machine interfaces. Muscular dystrophies benefit from electromyography and novel sensors that shed light on underlying neuromotor mechanisms in people with Duchenne. Novel wearable robotics devices are being tailored to specific patient populations, such as traumatic brain injury, stroke, and amputated individuals. In addition, developments in robot-assisted rehabilitation may enhance motor learning and generate movement repetitions by decoding the brain activity of patients during therapy. This is further facilitated by artificial intelligence algorithms coupled with faster electronics. The practical impact of integrating such technologies with neural rehabilitation treatment can be substantial. They can potentially empower nontechnically trained individuals-namely, family members and professional carers-to alter the programming of neural rehabilitation robotic setups, to actively get involved and intervene promptly at the point of care. This narrative review considers existing and emerging neural rehabilitation technologies through the perspective of replacing or restoring functions, enhancing, or improving natural neural output, as well as promoting or recruiting dormant neuroplasticity. Upon conclusion, we discuss the future directions for neural rehabilitation research, diagnosis, and treatment based on the discussed technologies and their major roadblocks. This future may eventually become possible through technological evolution and convergence of mutually beneficial technologies to create hybrid solutions.
Collapse
|
25
|
Zawy Alsofy S, Welzel Saravia H, Nakamura M, Ewelt C, Lewitz M, Sakellaropoulou I, Sarkis HM, Fortmann T, Schipmann S, Suero Molina E, Santacroce A, Salma A, Stroop R. Virtual reality-based evaluation of neurovascular conflict for the surgical planning of microvascular decompression in trigeminal neuralgia patients. Neurosurg Rev 2021; 44:3309-3321. [PMID: 33586035 DOI: 10.1007/s10143-021-01500-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/13/2020] [Accepted: 02/08/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Trigeminal neuralgia (TN) is a lightning bolt of violent, electrifying, and stinging pain, often secondary to the neurovascular conflict (NVC). The vessels involved in NVC are mostly arteries and rarely veins. Evaluation of NVC in the deep infratentorial region is inseparably connected with cranial imaging. We retrospectively analyzed the potential influence of three-dimensional (3D) virtual reality (VR) reconstructions compared to conventional magnetic resonance imaging (MRI) scans on the evaluation of NVC for the surgical planning of microvascular decompression in patients with TN. METHODS Medical files were retrospectively analyzed regarding patient- and disease-related data. Preoperative MRI scans were retrospectively visualized via VR software to detect the characteristics of NVC. A questionnaire of experienced neurosurgeons evaluated the influence of VR visualization technique on identification of anatomical structures involved in NVC and on surgical strategy. RESULTS Twenty-four patients were included and 480 answer sheets were evaluated. Compared to conventional MRI, image presentation using 3D-VR modality significantly influenced the identification of the affected trigeminal nerve (p = 0.004), the vascular structure involved in the NVC (p = 0.0002), and the affected side of the trigeminal nerve (p = 0.005). CONCLUSIONS In patients with TN caused by NVC, the reconstruction of conventional preoperative MRI scans and the spatial and anatomical presentation in 3D-VR models offers the possibility of increased understanding of the anatomy and even more the underlying pathology, and thus influences operation planning and strategy.
Collapse
Affiliation(s)
- Samer Zawy Alsofy
- Department of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany. .,Department of Neurosurgery, St. Barbara-Hospital, Academic Hospital of Westfälische Wilhelms-University Münster, Hamm, Germany.
| | - Heinz Welzel Saravia
- Department of Neurosurgery, St. Barbara-Hospital, Academic Hospital of Westfälische Wilhelms-University Münster, Hamm, Germany
| | - Makoto Nakamura
- Department of Neurosurgery, Academic Hospital Köln-Merheim, Witten/Herdecke University, Köln, Germany
| | - Christian Ewelt
- Department of Neurosurgery, St. Barbara-Hospital, Academic Hospital of Westfälische Wilhelms-University Münster, Hamm, Germany
| | - Marc Lewitz
- Department of Neurosurgery, St. Barbara-Hospital, Academic Hospital of Westfälische Wilhelms-University Münster, Hamm, Germany
| | - Ioanna Sakellaropoulou
- Department of Neurosurgery, St. Barbara-Hospital, Academic Hospital of Westfälische Wilhelms-University Münster, Hamm, Germany
| | - Hraq Mourad Sarkis
- Department of Neurosurgery, St. Barbara-Hospital, Academic Hospital of Westfälische Wilhelms-University Münster, Hamm, Germany
| | - Thomas Fortmann
- Department of Neurosurgery, St. Barbara-Hospital, Academic Hospital of Westfälische Wilhelms-University Münster, Hamm, Germany
| | | | - Eric Suero Molina
- Department of Neurosurgery, University Hospital Münster, Münster, Germany
| | - Antonio Santacroce
- Department of Neurosurgery, St. Barbara-Hospital, Academic Hospital of Westfälische Wilhelms-University Münster, Hamm, Germany.,Department of Neurosurgery, Eberhard-Karls-University, Tübingen, Germany
| | - Asem Salma
- Department of Neurosurgery, St. Rita's Neuroscience Institute, Lima, Ohio, USA
| | - Ralf Stroop
- Department of Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| |
Collapse
|
26
|
Cerebral Anatomy Detection and Surgical Planning in Patients with Anterior Skull Base Meningiomas Using a Virtual Reality Technique. J Clin Med 2021; 10:jcm10040681. [PMID: 33578799 PMCID: PMC7916569 DOI: 10.3390/jcm10040681] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/20/2021] [Accepted: 02/07/2021] [Indexed: 12/02/2022] Open
Abstract
Anterior skull base meningiomas represent a wide cohort of tumors with different locations, extensions, configurations, and anatomical relationships. Diagnosis of these tumors and review of their therapies are inseparably connected with cranial imaging. We analyzed the influence of three-dimensional-virtual reality (3D-VR) reconstructions versus conventional computed tomography (CT) and magnetic resonance imaging (MRI) images (two-dimensional (2D) and screen 3D) on the identification of anatomical structures and on the surgical planning in patients with anterior skull base meningiomas. Medical files were retrospectively analyzed regarding patient- and disease-related data. Preoperative 2D-CT and 2D-MRI scans were retrospectively reconstructed to 3D-VR images and visualized via VR software to detect the characteristics of tumors. A questionnaire of experienced neurosurgeons evaluated the influence of the VR visualization technique on identification of tumor morphology and relevant anatomy and on surgical strategy. Thirty patients were included and 600 answer sheets were evaluated. The 3D-VR modality significantly influenced the detection of tumor-related anatomical structures (p = 0.002), recommended head positioning (p = 0.005), and surgical approach (p = 0.03). Therefore, the reconstruction of conventional preoperative 2D scans into 3D images and the spatial and anatomical presentation in VR models enabled greater understanding of anatomy and pathology, and thus influenced operation planning and strategy.
Collapse
|
27
|
Zawy Alsofy S, Sakellaropoulou I, Nakamura M, Ewelt C, Salma A, Lewitz M, Welzel Saravia H, Sarkis HM, Fortmann T, Stroop R. Impact of Virtual Reality in Arterial Anatomy Detection and Surgical Planning in Patients with Unruptured Anterior Communicating Artery Aneurysms. Brain Sci 2020; 10:brainsci10120963. [PMID: 33321880 PMCID: PMC7763342 DOI: 10.3390/brainsci10120963] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 01/20/2023] Open
Abstract
Anterior-communicating artery (ACoA) aneurysms have diverse configurations and anatomical variations. The evaluation and operative treatment of these aneurysms necessitates a perfect surgical strategy based on review of three-dimensional (3D) angioarchitecture using several radiologic imaging methods. We analyzed the influence of 3D virtual reality (VR) reconstructions versus conventional computed tomography angiography (CTA) scans on the identification of vascular anatomy and on surgical planning in patients with unruptured ACoA aneurysms. Medical files were retrospectively analyzed regarding patient- and disease-related data. Preoperative CTA scans were retrospectively reconstructed to 3D-VR images and visualized via VR software to detect the characteristics of unruptured ACoA aneurysms. A questionnaire was used to evaluate the influence of VR on the identification of aneurysm morphology and relevant arterial anatomy and on surgical strategy. Twenty-six patients were included and 520 answer sheets were evaluated. The 3D-VR modality significantly influenced detection of the aneurysm-related vascular structure (p = 0.0001), the recommended head positioning (p = 0.005), and the surgical approach (p = 0.001) in the planning of microsurgical clipping. Thus, reconstruction of conventional preoperative CTA scans into 3D images and the spatial presentation in VR models enabled greater understanding of the anatomy and pathology, provided realistic haptic feedback for aneurysm surgery, and influenced operation planning and strategy.
Collapse
Affiliation(s)
- Samer Zawy Alsofy
- Department of Medicine, Faculty of Health, Witten/Herdecke University, 58448 Witten, Germany;
- Department of Neurosurgery, St. Barbara-Hospital, Academic Hospital of Westfälische Wilhelms-University Münster, 59073 Hamm, Germany; (I.S.); (C.E.); (M.L.); (H.W.S.); (H.M.S.); (T.F.)
- Correspondence:
| | - Ioanna Sakellaropoulou
- Department of Neurosurgery, St. Barbara-Hospital, Academic Hospital of Westfälische Wilhelms-University Münster, 59073 Hamm, Germany; (I.S.); (C.E.); (M.L.); (H.W.S.); (H.M.S.); (T.F.)
| | - Makoto Nakamura
- Department of Neurosurgery, Academic Hospital Köln-Merheim, Witten/Herdecke University, 51109 Köln, Germany;
| | - Christian Ewelt
- Department of Neurosurgery, St. Barbara-Hospital, Academic Hospital of Westfälische Wilhelms-University Münster, 59073 Hamm, Germany; (I.S.); (C.E.); (M.L.); (H.W.S.); (H.M.S.); (T.F.)
| | - Asem Salma
- Department of Neurosurgery, St. Rita’s Neuroscience Institute, Lima, OH 45801, USA;
| | - Marc Lewitz
- Department of Neurosurgery, St. Barbara-Hospital, Academic Hospital of Westfälische Wilhelms-University Münster, 59073 Hamm, Germany; (I.S.); (C.E.); (M.L.); (H.W.S.); (H.M.S.); (T.F.)
| | - Heinz Welzel Saravia
- Department of Neurosurgery, St. Barbara-Hospital, Academic Hospital of Westfälische Wilhelms-University Münster, 59073 Hamm, Germany; (I.S.); (C.E.); (M.L.); (H.W.S.); (H.M.S.); (T.F.)
| | - Hraq Mourad Sarkis
- Department of Neurosurgery, St. Barbara-Hospital, Academic Hospital of Westfälische Wilhelms-University Münster, 59073 Hamm, Germany; (I.S.); (C.E.); (M.L.); (H.W.S.); (H.M.S.); (T.F.)
| | - Thomas Fortmann
- Department of Neurosurgery, St. Barbara-Hospital, Academic Hospital of Westfälische Wilhelms-University Münster, 59073 Hamm, Germany; (I.S.); (C.E.); (M.L.); (H.W.S.); (H.M.S.); (T.F.)
| | - Ralf Stroop
- Department of Medicine, Faculty of Health, Witten/Herdecke University, 58448 Witten, Germany;
| |
Collapse
|
28
|
Riva G, Serino S. Virtual Reality in the Assessment, Understanding and Treatment of Mental Health Disorders. J Clin Med 2020; 9:E3434. [PMID: 33114623 PMCID: PMC7693021 DOI: 10.3390/jcm9113434] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/21/2022] Open
Abstract
Computer scientists usually describe virtual reality (VR) as a set of fancy hardware and software technologies. However, psychology and neuroscience are starting to consider VR as the most advanced form of human-computer interaction allowing individuals to act, communicate and become present in a computer-generated environment. In this view, the feeling of "being there" experienced during a VR experience can become a powerful tool for personal change: it offers a dynamic and social world where individuals can live and share a specific experience. For this reason, the use of VR in mental health shows promise: different researches support its clinical efficacy for conditions including anxiety disorders, stress-related disorders, obesity and eating disorders, pain management, addiction and schizophrenia. However, more research is needed to transform the promises of VR in a real clinical tool for mental health. This Special Issue aims to present the most recent advances in the mental health applications of VR, as well as their implications for future patient care.
Collapse
Affiliation(s)
- Giuseppe Riva
- Humane Technology Lab, Università Cattolica del Sacro Cuore, 20123 Milan, Italy;
- Istituto Auxologico Italiano, IRCCS, U.O. di Neurologia e Neuroriabilitazione, Ospedale S. Giuseppe, 28824 Piancavallo, Italy
| | - Silvia Serino
- Humane Technology Lab, Università Cattolica del Sacro Cuore, 20123 Milan, Italy;
- MySpace Lab, Department of Clinical Neuroscience, University Hospital Lausanne (CHUV), 1011 Lausanne, Switzerland
| |
Collapse
|
29
|
Lopatina OL, Morgun AV, Gorina YV, Salmin VV, Salmina AB. Current approaches to modeling the virtual reality in rodents for the assessment of brain plasticity and behavior. J Neurosci Methods 2020; 335:108616. [PMID: 32007483 DOI: 10.1016/j.jneumeth.2020.108616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 11/17/2022]
Abstract
Virtual reality (VR) and augmented reality (AR) have become valuable tools to study brains and behaviors resulting in development of new methods of diagnostics and treatment. Neurodegenerаtion is one of the best examples demonstrating efficacy of VR/АR technologies in modern neurology. Development of novel VR systems for rodents and combination of VR tools with up-to-date imaging techniques (i.e. MRI, imaging of neural networks etc.), brain electrophysiology (EEG, patch-clamp), precise analytics (microdialysis) allowed implementing of VR protocols into the animal neurobiology to study brain plasticity, sensorimotor integration, spatial navigation, memory, and decision-making. VR/AR for rodents is а young field of experimental neuroscience and has already provided more consistent testing conditions, less human-animal interaction, opportunities to use a wider variety of experimental parameters. Here we discuss present and future perspectives of using VR/AR to assess brain plasticity, neurogenesis and complex behavior in rodent and human study, and their advantages for translational neuroscience.
Collapse
Affiliation(s)
- Olga L Lopatina
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia; Laboratory for Social Brain Studies, Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia.
| | - Andrey V Morgun
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia; Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Yana V Gorina
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia; Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Vladimir V Salmin
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia; Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| | - Alla B Salmina
- Department of Biochemistry, Medical, Pharmaceutical, and Toxicological Chemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia; Research Institute of Molecular Medicine and Pathobiochemistry, Krasnoyarsk State Medical University Named after Prof. V.F. Voino-Yasenetsky, Krasnoyarsk, Russia
| |
Collapse
|
30
|
Alashram AR, Padua E, Hammash AK, Lombardo M, Annino G. Effectiveness of virtual reality on balance ability in individuals with incomplete spinal cord injury: A systematic review. J Clin Neurosci 2020; 72:322-327. [DOI: 10.1016/j.jocn.2020.01.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/05/2020] [Indexed: 10/25/2022]
|
31
|
Maggio MG, Torrisi M, Buda A, De Luca R, Piazzitta D, Cannavò A, Leo A, Milardi D, Manuli A, Calabro RS. Effects of robotic neurorehabilitation through lokomat plus virtual reality on cognitive function in patients with traumatic brain injury: A retrospective case-control study. Int J Neurosci 2019; 130:117-123. [PMID: 31590592 DOI: 10.1080/00207454.2019.1664519] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: Traumatic brain injury (TBI) is a clinical condition characterized by damage due to a mechanical physical event, which has a devastating impact on both the patient and his/her family. The purpose of this study is to evaluate the effects of robotic neurorehabilitation using Lokomat with virtual reality (VR) on attention processes and executive functions in patients with TBI.Materials and Methods: This is a retrospective case-control study. Fifty-six TBI patients have been included in the analysis, using an electronic recovery data system. The enrolled patients were divided into two groups: the experimental group (LPG) underwent rehabilitation training with Lokomat Pro, equipped with a VR screen, whereas the control group (LNG) performed rehabilitation training using Lokomat Nanos, without VR. The two groups matched for age, sex, education, brain lesions, interval from TBI. The rehabilitation protocol consisted of a total of 40 training sessions.Results: LPG and LNG had a significant improvement in mood and in the perception of physical well-being. However, only the LPG had a significant improvement in global cognitive, executive and attention functions. Furthermore, LPG presented a significant enhancement of the quality of life, with regard to the perception of the mental and physical state.Conclusion: Our study supports the idea that Lokomat is a useful tool in the rehabilitation of patients with TBI; in particular, the integration of the VR device can implement the cognitive and behavioral functions of TBI patients, enhancing also their physical and mental well-being.
Collapse
Affiliation(s)
| | | | - Antonio Buda
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | | | | | | | - Antonio Leo
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | - Demetrio Milardi
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy.,Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | | |
Collapse
|
32
|
Neurorehabilitation of Spatial Memory Using Virtual Environments: A Systematic Review. J Clin Med 2019; 8:jcm8101516. [PMID: 31547137 PMCID: PMC6833109 DOI: 10.3390/jcm8101516] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/10/2019] [Accepted: 09/19/2019] [Indexed: 12/27/2022] Open
Abstract
In recent years, virtual reality (VR) technologies have become widely used in clinical settings because they offer impressive opportunities for neurorehabilitation of different cognitive deficits. Specifically, virtual environments (VEs) have ideal characteristics for navigational training aimed at rehabilitating spatial memory. A systematic search, following PRISMA guidelines, was carried out to explore the current scenario in neurorehabilitation of spatial memory using virtual reality. The literature on this topic was queried, 5048 papers were screened, and 16 studies were included, covering patients presenting different neuropsychological diseases. Our findings highlight the potential of the navigational task in virtual environments (VEs) for enhancing navigation and orientation abilities in patients with spatial memory disorders. The results are promising and suggest that VR training can facilitate neurorehabilitation, promoting brain plasticity processes. An overview of how VR-based training has been implemented is crucial for using these tools in clinical settings. Hence, in the current manuscript, we have critically debated the structure and the length of training protocols, as well as a different type of exploration through VR devices with different degrees of immersion. Furthermore, we analyzed and highlighted the crucial role played by the selection of the assessment tools.
Collapse
|
33
|
Virtual reality in preoperative imaging in maxillofacial surgery: implementation of "the next level"? Br J Oral Maxillofac Surg 2019; 57:644-648. [PMID: 31204187 DOI: 10.1016/j.bjoms.2019.02.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 02/01/2019] [Indexed: 11/22/2022]
Abstract
Not only are current imaging techniques - cone-beam computed tomography (CT), CT, and magnetic resonance imaging (MRI) - becoming more precise in capturing data, but the illustration and interpretation of the acquired images is no longer limited to conventional display screens or projectors. The so-called "virtual reality" (VR) glasses have the potential to engage the viewer in a 3-dimensional space, and ultimately to enable evaluation of the reconstructed anatomical structures from a new perspective. For the first time in the field of oral and maxillofacial surgery (OMFS), a 3-dimensional imaging dataset (cone-beam CT, CT, and MRI) can be evaluated by using VR glasses. A medical student, an OMFS resident, and an OMFS consultant rated the preoperative usability of VR glasses to improve the operative understanding of three cases: a deeply impacted wisdom tooth, a fracture of the lower jaw, and an oncological resection. VR glasses seem to help to simplify operations and give the surgeon a good preoperative overview of the intraoperative findings, particularly in the evaluation of impacted teeth and hard tissue structures. In addition, VR glasses seem to be a promising innovation to help in the training of surgical residents and to teach students. However, the more experienced the surgeon, the smaller is the additional value of VR glasses. Preoperative examination using VR glasses can aid better understanding and planning of the surgical site in the future, and is an innovative piece of advanced technology for displaying CT, cone-beam CT, and MRI anatomical data.
Collapse
|
34
|
Alashram AR, Annino G, Padua E, Romagnoli C, Mercuri NB. Cognitive rehabilitation post traumatic brain injury: A systematic review for emerging use of virtual reality technology. J Clin Neurosci 2019; 66:209-219. [PMID: 31085075 DOI: 10.1016/j.jocn.2019.04.026] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 04/29/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND Traumatic brain injury (TBI) can causes numerous cognitive impairments usually in the aspects of problem-solving, executive function, memory, and attention. Several studies has suggested that rehabilitation treatment interventions can be effective in treating cognitive symptoms of brain injury. Virtual reality (VR) technology potential as a useful tool for the assessment and rehabilitation of cognitive processes. OBJECTIVES The aims of present systematic review are to examine effects of VR training intervention on cognitive function, and to identify effective VR treatment protocol in patients with TBI. METHODS PubMed, Scopus, PEDro, REHABDATA, EMBASE, web of science, and MEDLINE were searched for studies investigated effect of VR on cognitive functions post TBI. The methodological quality were evaluated using PEDro scale. The results of selected studies were summarized. RESULTS Nine studies were included in present study. Four were randomized clinical trials, case studies (n = 3), prospective study (n = 1), and pilot study (n = 1). The scores on the PEDro ranged from 0 to 7 with a mean score of 3. The results showed improvement in various cognitive function aspects such as; memory, executive function, and attention in patients with TBI after VR training. CONCLUSION Using different VR tools with following treatment protocol; 10-12 sessions, 20-40 min in duration with 2-4 sessions per week may improves cognitive function in patients with TBI. There was weak evidence for effects of VR training on attention post TBI.
Collapse
Affiliation(s)
- Anas R Alashram
- Department of Neurology, Faculty of Medicine and Surgery, University of Rome "Tor Vergata", Italy.
| | - Giuseppe Annino
- Department of Medicine Systems, University of Rome "Tor Vergata", Italy; Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy
| | - Elvira Padua
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome, Italy.
| | - Cristian Romagnoli
- PhD School in Science and Culture of Well-being and Lifestyle, Alma Mater University, Bologna, Italy.
| | - Nicola Biagio Mercuri
- Department of Neurology, Faculty of Medicine and Surgery, University of Rome "Tor Vergata", Italy; Department of Medicine Systems, University of Rome "Tor Vergata", Italy.
| |
Collapse
|
35
|
Cognitive rehabilitation in patients with traumatic brain injury: A narrative review on the emerging use of virtual reality. J Clin Neurosci 2019; 61:1-4. [DOI: 10.1016/j.jocn.2018.12.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 12/22/2018] [Indexed: 12/13/2022]
|
36
|
Oagaz H, Schoun B, Pooji M, Choi MH. Neurocognitive Assessment in Virtual Reality Through Behavioral Response Analysis. IEEE J Biomed Health Inform 2018; 23:1899-1910. [PMID: 30442624 DOI: 10.1109/jbhi.2018.2881455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The ability to detect and diagnose neurocognitive disorders at the earliest possible moment is key to a better prognosis for the patient. Two of the earliest indicators of potential neurocognitive problems are motor and visual dysfunction. Motor disorders and problems in visual cognition can be seen in many neurocognitive disorders, resulting in abnormal physical reactions to visual stimuli. Analyzing physical behaviors when presented with such stimuli can provide insights into the visual perception and motor abilities of an individual, yet there is currently no unbiased, objective, general-purpose tool that analyzes attention and motor behavior to assess neurocognitive function. We propose a novel method of neurocognitive function assessment that tests the patient's cognition using virtual reality with eye tracking and motion analysis. By placing the patient in a controlled virtual environment and analyzing their movements, we can evoke certain physical responses from subjects for neurocognitive assessment. We have developed a prototype system that places the subject in a virtual baseball field and captures their full body motion as they try to catch baseballs. This scenario tests the subject's ability to determine the landing time and position of the ball, as well as the test subject's balance, motor skills, attention, and memory. Preliminary tests with 20 healthy normal individuals demonstrate the ability of this tool to assess the test subject's balance, memory, attention, and reaction to visual stimuli. This platform has a twofold contribution: it is used to assess several neurocognitive constructs that affect visual and motor capability neutrally and objectively based on controlled stimuli, and it enables objective comparison between different neurocognitive disorders research in this field.
Collapse
|
37
|
Di Lernia D, Cipresso P, Pedroli E, Riva G. Toward an Embodied Medicine: A Portable Device with Programmable Interoceptive Stimulation for Heart Rate Variability Enhancement. SENSORS 2018; 18:s18082469. [PMID: 30061531 PMCID: PMC6111417 DOI: 10.3390/s18082469] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/22/2018] [Accepted: 07/25/2018] [Indexed: 12/21/2022]
Abstract
In this paper, we describe and test a new portable device that is able to deliver tactile interoceptive stimulation. The device works by delivering precise interoceptive parasympathetic stimuli to C-tactile afferents connected to the lamina I spinothalamocortical system. In humans, interoceptive stimulation can be used to enhance heart rate variability (HRV). To test the effectiveness of the device in enhancing HRV, 13 subjects were randomly assigned in a single-blind between-subjects design either to the experimental condition or to the control condition. In the experimental condition, subjects received stimulation with the developed device; in the control condition subjects received stimulation with static non-interoceptive pressure. Subjects’ electrocardiograms (ECG) were recorded, with sampling at 1000 Hz for 5 min as a baseline, and then during the stimulations (11 min). Time domain analyses were performed to estimate the short-term vagally mediated component (rMSSD) of HRV. Results indicated that the experimental group showed enhanced rMSSD, compared to the control group. Moreover, frequency domain analyses indicated that high frequency band power, which reflects parasympathetic activity in humans, also appeared to be enhanced in the experimental group compared to control subjects. Conclusions and future challenges for an embodied perspective of rehabilitative medicine are discussed.
Collapse
Affiliation(s)
- Daniele Di Lernia
- Department of Psychology, Università Cattolica del Sacro Cuore, Largo Gemelli, 1, 20100 Milan, Italy.
| | - Pietro Cipresso
- Department of Psychology, Università Cattolica del Sacro Cuore, Largo Gemelli, 1, 20100 Milan, Italy.
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Via Magnasco, 2, 20149 Milan, Italy.
| | - Elisa Pedroli
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Via Magnasco, 2, 20149 Milan, Italy.
| | - Giuseppe Riva
- Department of Psychology, Università Cattolica del Sacro Cuore, Largo Gemelli, 1, 20100 Milan, Italy.
- Applied Technology for Neuro-Psychology Lab, IRCCS Istituto Auxologico Italiano, Via Magnasco, 2, 20149 Milan, Italy.
| |
Collapse
|