1
|
Dong J, Dong Y, An L, Wang Y, Li Y, Jin L. The role of the sensory input intervention in recovery of the motor function in hypoxic ischemic encephalopathy rat model. J Neurophysiol 2024; 131:865-871. [PMID: 38568478 PMCID: PMC11381113 DOI: 10.1152/jn.00054.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/12/2024] [Accepted: 03/24/2024] [Indexed: 05/01/2024] Open
Abstract
Motor disturbances predominantly characterize hypoxic-ischemic encephalopathy (HIE). Among its intervention methods, environmental enrichment (EE) is strictly considered a form of sensory intervention. However, limited research uses EE as a single sensory input intervention to validate outcomes postintervention. A Sprague-Dawley rat model subjected to left common carotid artery ligation and exposure to oxygen-hypoxic conditions is used in this study. EE was achieved by enhancing the recreational and stress-relief items within the cage, increasing the duration of sunlight, colorful items exposure, and introducing background music. JZL184 (JZL) was administered as neuroprotective drugs. EE was performed 21 days postoperatively and the rats were randomly assigned to the standard environment and EE groups, the two groups were redivided into control, JZL, and vehicle injection subgroups. The Western blotting and behavior test indicated that EE and JZL injections were efficacious in promoting cognitive function in rats following HIE. In addition, the motor function performance in the EE-alone intervention group and the JZL-alone group after HIE was significantly improved compared with the control group. The combined EE and JZL intervention group exhibited even more pronounced improvements in these performances. EE may enhance motor function through sensory input different from the direct neuroprotective effect of pharmacological treatment.NEW & NOTEWORTHY Rarely does literature assess motor function, even though it is common after hypoxia ischemic encephalopathy (HIE). Previously used environmental enrichment (EE) components have not been solely used as sensory inputs. Physical factors were minimized in our study to observe the effects of purely sensory inputs.
Collapse
Affiliation(s)
- Juchuan Dong
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Yifei Dong
- Department of Rehabilitation Medicine, Kunming Medical University, Kunming, People's Republic of China
| | - Lijuan An
- Department of Rehabilitation Medicine, Kunming Medical University, Kunming, People's Republic of China
| | - Yufan Wang
- Department of Rehabilitation Medicine, Kunming Medical University, Kunming, People's Republic of China
| | - Yongmei Li
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| | - Lihua Jin
- Department of Rehabilitation Medicine, Second Affiliated Hospital of Kunming Medical University, Kunming, People's Republic of China
| |
Collapse
|
2
|
Sowndharya S, Rajan KE. Environmental enrichment improves social isolation-induced memory impairment: The possible role of ITSN1-Reelin-AMPA receptor signaling pathway. PLoS One 2024; 19:e0294354. [PMID: 38241230 PMCID: PMC10798460 DOI: 10.1371/journal.pone.0294354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 10/30/2023] [Indexed: 01/21/2024] Open
Abstract
Environmental enrichment (EE) through combination of social and non-biological stimuli enhances activity-dependent synaptic plasticity and improves behavioural performance. Our earlier studies have suggested that EE resilience the stress induced depression/ anxiety-like behaviour in Indian field mice Mus booduga. This study was designed to test whether EE reverses the social isolation (SI) induced effect and improve memory. Field-caught mice M. booduga were subjected to behaviour test (Direct wild, DW), remaining animals were housed under SI for ten days and then housed for short-term at standard condition (STSC)/ long-term at standard condition (LTSC) or as group in EE cage. Subsequently, we have examined reference, working memory and expression of genes associated with synaptic plasticity. Our analysis have shown that EE reversed SI induced impairment in reference, working memory and other accompanied changes i.e. increased level of Intersectin 1 (ITSN1), Huntingtin (Htt), Synaptotagmin -IV (SYT4), variants of brain-derived neurotrophic factor (Bdnf - III), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor (GluR1) expression, and decreased variants of Bdnf (IV), BDNF, Reelin, Apolipoprotein E receptor 2 (ApoER2), very low-density lipoprotein receptor (VLDLR), Src family tyrosine kinase (SFKs), Disabled protein (Dab)-1, Protein kinase B (PKB/Akt), GluR2, Mitogen-activated protein kinase (MAPK) and Extracellular signal-regulated kinase (ERK1/2) expression. In addition, SI induced reduction in BDNF expressing neurons in dentate gyrus of hippocampus reversed by EE. Further, we found that SI decreases small neuro-active molecules such as Benzenedicarboxylic acid, and increases 2-Pregnene in the hippocampus and feces reversed by EE. Overall, this study demonstrated that EE is effectively reversed the SI induced memory impairment by potentially regulating the molecules associated with the ITSN1-Reelin-AMPA receptor pathway to increase synaptic plasticity.
Collapse
Affiliation(s)
- Swamynathan Sowndharya
- Behavioural Neuroscience Laboratory, Department of Animal Science, Bharathidasan University, Tiruchirappalli, India
| | - Koilmani Emmanuvel Rajan
- Behavioural Neuroscience Laboratory, Department of Animal Science, Bharathidasan University, Tiruchirappalli, India
| |
Collapse
|
3
|
Malone SG, Shaykin JD, Stairs DJ, Bardo MT. Neurobehavioral effects of environmental enrichment and drug abuse vulnerability: An updated review. Pharmacol Biochem Behav 2022; 221:173471. [PMID: 36228739 DOI: 10.1016/j.pbb.2022.173471] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/16/2022] [Accepted: 10/05/2022] [Indexed: 12/14/2022]
Abstract
Environmental enrichment consisting of social peers and novel objects is known to alter neurobiological functioning and have an influence on the behavioral effects of drugs of abuse in preclinical rodent models. An earlier review from our laboratory (Stairs and Bardo, 2009) provided an overview of enrichment-specific changes in addiction-like behaviors and neurobiology. The current review updates the literature in this extensive field. Key findings from this updated review indicate that enrichment produces positive outcomes in drug abuse vulnerability beyond just psychostimulants. Additionally, recent studies indicate that enrichment activates key genes involved in cell proliferation and protein synthesis in nucleus accumbens and enhances growth factors in hippocampus and neurotransmitter signaling pathways in prefrontal cortex, amygdala, and hypothalamus. Remaining gaps in the literature and future directions for environmental enrichment and drug abuse research are identified.
Collapse
Affiliation(s)
- Samantha G Malone
- Department of Psychology, University of Kentucky, BBSRB, 741 S. Limestone, Lexington, KY, USA
| | - Jakob D Shaykin
- Department of Psychology, University of Kentucky, BBSRB, 741 S. Limestone, Lexington, KY, USA
| | - Dustin J Stairs
- Department of Psychological Science, Creighton University, Hixson-Lied Science Building, 2500 California Plaza, Omaha, NE, USA
| | - Michael T Bardo
- Department of Psychology, University of Kentucky, BBSRB, 741 S. Limestone, Lexington, KY, USA.
| |
Collapse
|
4
|
Lupori L, Cornuti S, Mazziotti R, Borghi E, Ottaviano E, Cas MD, Sagona G, Pizzorusso T, Tognini P. The gut microbiota of environmentally enriched mice regulates visual cortical plasticity. Cell Rep 2022; 38:110212. [PMID: 35021093 DOI: 10.1016/j.celrep.2021.110212] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 11/08/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
Exposing animals to an enriched environment (EE) has dramatic effects on brain structure, function, and plasticity. The poorly known "EE-derived signals'' mediating the EE effects are thought to be generated within the central nervous system. Here, we shift the focus to the body periphery, revealing that gut microbiota signals are crucial for EE-driven plasticity. Developmental analysis reveals striking differences in intestinal bacteria composition between EE and standard rearing (ST) mice, as well as enhanced levels of short-chain fatty acids (SCFA) in EE mice. Depleting the microbiota of EE mice with antibiotics strongly decreases SCFA and prevents activation of adult ocular dominance plasticity, spine dynamics, and microglia rearrangement. SCFA treatment in ST mice mimics EE induction of ocular dominance plasticity and microglial remodeling. Remarkably, transferring the microbiota of EE mice to ST recipients activates adult ocular dominance plasticity. Thus, experience-dependent changes in gut microbiota regulate brain plasticity.
Collapse
Affiliation(s)
| | - Sara Cornuti
- BIO@SNS Lab, Scuola Normale Superiore, 56126 Pisa, Italy
| | - Raffaele Mazziotti
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - Elisa Borghi
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy
| | | | - Michele Dei Cas
- Department of Health Sciences, Università degli Studi di Milano, 20142 Milan, Italy
| | - Giulia Sagona
- Department of Developmental Neuroscience, IRCCS Stella Maris Foundation, 56128 Pisa, Italy
| | - Tommaso Pizzorusso
- BIO@SNS Lab, Scuola Normale Superiore, 56126 Pisa, Italy; Department of Neuroscience, Psychology, Drug Research and Child Health NEUROFARBA University of Florence, 50100 Florence, Italy; Institute of Neuroscience, National Research Council, 56124 Pisa, Italy
| | - Paola Tognini
- BIO@SNS Lab, Scuola Normale Superiore, 56126 Pisa, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy.
| |
Collapse
|
5
|
Environmental Enrichment Enhances Ca v 2.1 Channel-Mediated Presynaptic Plasticity in Hypoxic-Ischemic Encephalopathy. Int J Mol Sci 2021; 22:ijms22073414. [PMID: 33810296 PMCID: PMC8037860 DOI: 10.3390/ijms22073414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 03/23/2021] [Indexed: 12/16/2022] Open
Abstract
Hypoxic–ischemic encephalopathy (HIE) is a devastating neonatal brain condition caused by lack of oxygen and limited blood flow. Environmental enrichment (EE) is a classic paradigm with a complex stimulation of physical, cognitive, and social components. EE can exert neuroplasticity and neuroprotective effects in immature brains. However, the exact mechanism of EE on the chronic condition of HIE remains unclear. HIE was induced by a permanent ligation of the right carotid artery, followed by an 8% O2 hypoxic condition for 1 h. At 6 weeks of age, HIE mice were randomly assigned to either standard cages or EE cages. In the behavioral assessments, EE mice showed significantly improved motor performances in rotarod tests, ladder walking tests, and hanging wire tests, compared with HIE control mice. EE mice also significantly enhanced cognitive performances in Y-maze tests. Particularly, EE mice showed a significant increase in Cav 2.1 (P/Q type) and presynaptic proteins by molecular assessments, and a significant increase of Cav 2.1 in histological assessments of the cerebral cortex and hippocampus. These results indicate that EE can upregulate the expression of the Cav 2.1 channel and presynaptic proteins related to the synaptic vesicle cycle and neurotransmitter release, which may be responsible for motor and cognitive improvements in HIE.
Collapse
|
6
|
Kim K, Wi S, Seo JH, Pyo S, Cho SR. Reduced Interaction of Aggregated α-Synuclein and VAMP2 by Environmental Enrichment Alleviates Hyperactivity and Anxiety in a Model of Parkinson's Disease. Genes (Basel) 2021; 12:genes12030392. [PMID: 33801790 PMCID: PMC7998569 DOI: 10.3390/genes12030392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/22/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
Parkinson’s disease (PD) is a prevalent motor disease caused by the accumulation of mutated α-synuclein (α-Syn); however, its early stages are also characterized by non-motor symptoms, such as olfactory loss, cognitive decline, depression, and anxiety. The therapeutic effects of environmental enrichment (EE) on motor recovery have been reported, but its effects on non-motor symptoms remain unclear. Herein, we reveal the beneficial effects of EE on PD-related non-motor symptoms and changes in synaptic plasticity in the nucleus accumbens. To investigate its therapeutic effects in the early phase of PD, we randomly assigned eight-month-old mice overexpressing human A53T (hA53T) α-Syn to either the EE or standard condition groups for two months. Next, we performed behavioral tests and biochemical and histological analyses at 10 months of age. EE significantly alleviated locomotor hyperactivity and anxiety during the early stages of PD. It normalized the levels of tyrosine hydroxylase, phosphorylated and oligomeric α-Syn, and soluble N-ethylmaleimide-sensitive factor attachment protein receptor complex-forming proteins, including synaptosomal-associated protein, 25 kDa, syntaxin1, and vesicle-associated membrane protein 2 (VAMP2). Moreover, the interactions between VAMP2 and pSer129 α-Syn were markedly reduced following EE. The restoration of synaptic vesicle transportation status may underlie the neuroprotective effects of EE in hA53T α-Syn mice.
Collapse
Affiliation(s)
- Kyungri Kim
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul 03722, Korea; (K.K.); (J.H.S.); (S.P.)
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Soohyun Wi
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, Korea;
| | - Jung Hwa Seo
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul 03722, Korea; (K.K.); (J.H.S.); (S.P.)
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Soonil Pyo
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul 03722, Korea; (K.K.); (J.H.S.); (S.P.)
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Sung-Rae Cho
- Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul 03722, Korea; (K.K.); (J.H.S.); (S.P.)
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
- Rehabilitation Institute of Neuromuscular Disease, Yonsei University College of Medicine, Seoul 03722, Korea
- Graduate Program of Nano Science and Technology, Yonsei University College of Medicine, Seoul 03722, Korea
- Correspondence: ; Tel.: +82-2-2228-3715
| |
Collapse
|
7
|
Iannucci J, Johnson SL, Majchrzak M, Barlock BJ, Akhlaghi F, Seeram NP, Sen A, Grammas P. Short-term treatment with dabigatran alters protein expression patterns in a late-stage tau-based Alzheimer's disease mouse model. Biochem Biophys Rep 2020; 24:100862. [PMID: 33294639 PMCID: PMC7689047 DOI: 10.1016/j.bbrep.2020.100862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/29/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022] Open
Abstract
Proteins that regulate the coagulation cascade, including thrombin, are elevated in the brains of Alzheimer's disease (AD) patients. While studies using amyloid-based AD transgenic mouse models have implicated thrombin as a protein of interest, the role of thrombin in tau-based animal models has not been explored. The current study aims to determine how inhibiting thrombin could alter oxidative stress, inflammation, and AD-related proteins in a tau-based mouse model, the Tg4510. Aged Tg4510 mice were treated with the direct thrombin inhibitor dabigatran or vehicle for 7 days, brains collected, and western blot and data-independent proteomics using mass spectrometry with SWATH-MS acquisition performed to evaluate proteins related to oxidative stress, intracellular signaling, inflammation, and AD pathology. Dabigatran reduced iNOS, NOX4, and phosphorylation of tau (S396, S416). Additionally, dabigatran treatment increased expression of several signaling proteins related to cell survival and synaptic function. Increasing evidence supports a chronic procoagulant state in AD, highlighting a possible pathogenic role for thrombin. Our data demonstrate that inhibiting thrombin produces alterations in the expression of proteins involved in oxidative stress, inflammation, and AD-related pathology, suggesting that thrombin-mediated signaling affects multiple AD-related pathways providing a potential future therapeutic target. Thrombin inhibition with dabigatran reduces markers of oxidative stress in vivo. Dabigatran treatment reduces tau pathology in vivo. Dabigatran treatment promotes factors related to cell survival, synaptic function.
Collapse
Affiliation(s)
- Jaclyn Iannucci
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Shelby L Johnson
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA.,Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Mark Majchrzak
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA
| | - Benjamin J Barlock
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Fatemeh Akhlaghi
- Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Navindra P Seeram
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA.,Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Abhik Sen
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA
| | - Paula Grammas
- George & Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, 02881, USA.,Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| |
Collapse
|