1
|
Jasińska M, Jasek-Gajda E, Ziaja M, Litwin JA, Lis GJ, Pyza E. Light-Modulated Circadian Synaptic Plasticity in the Somatosensory Cortex: Link to Locomotor Activity. Int J Mol Sci 2024; 25:12870. [PMID: 39684579 DOI: 10.3390/ijms252312870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
The circadian clock controls various physiological processes, including synaptic function and neuronal activity, affecting the functioning of the entire organism. Light is an important external factor regulating the day-night cycle. This study examined the effects of the circadian clock and light on synaptic plasticity, and explored how locomotor activity contributes to these processes. We analyzed synaptic protein expression and excitatory synapse density in the somatosensory cortex of mice from four groups exposed to different lighting conditions (LD 12:12, DD, LD 16:8, and LL). Locomotor activity was assessed through individual wheel-running monitoring. To explore daily and circadian changes in synaptic proteins, we performed double-immunofluorescence labeling and laser scanning confocal microscopy imaging, targeting three pairs of presynaptic and postsynaptic proteins (Synaptophysin 1/PSD95, Piccolo/Homer 1, Neurexins/PICK1). Excitatory synapse density was evaluated by co-labeling presynaptic and postsynaptic markers. Our results demonstrated that all the analyzed synaptic proteins exhibited circadian regulation modulated by light. Under constant light conditions, only Piccolo and Homer 1 showed rhythmicity. Locomotor activity was also associated with the circadian clock's effects on synaptic proteins, showing a stronger connection to changes in postsynaptic protein levels. Excitatory synapse density peaked during the day/subjective day and exhibited an inverse relationship with locomotor activity. Continued light exposure disrupted cyclic changes in synapse density but kept it consistently elevated. These findings underscore the crucial roles of light and locomotor activity in regulating synaptic plasticity.
Collapse
Affiliation(s)
- Małgorzata Jasińska
- Department of Histology, Jagiellonian University Medical College, 31-034 Krakow, Poland
| | - Ewa Jasek-Gajda
- Department of Histology, Jagiellonian University Medical College, 31-034 Krakow, Poland
| | - Marek Ziaja
- Department of Histology, Jagiellonian University Medical College, 31-034 Krakow, Poland
| | - Jan A Litwin
- Department of Histology, Jagiellonian University Medical College, 31-034 Krakow, Poland
| | - Grzegorz J Lis
- Department of Histology, Jagiellonian University Medical College, 31-034 Krakow, Poland
| | - Elżbieta Pyza
- Department of Cell Biology and Imaging, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Krakow, Poland
| |
Collapse
|
2
|
Nik Ramli NN, Kamarul Sahrin NA, Nasarudin SNAZ, Hashim MH, Abdul Mutalib M, Mohamad Alwi MN, Abd Rashed A, Ramasamy R. Restricted Daily Exposure of Environmental Enrichment: Bridging the Practical Gap from Animal Studies to Human Application. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1584. [PMCID: PMC11675408 DOI: 10.3390/ijerph21121584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 01/05/2025]
Abstract
Daily restricted environmental enrichment (REE) refers to limited, structured periods of enrichment aimed at improving both physical and cognitive well-being in animals and humans. This review explores the significance of REE, focusing on studies that investigate 2 and 3 h daily enrichment protocols. Through an analysis of 21 key studies, this paper highlights how even brief periods of REE can lead to substantial improvements in brain plasticity, cognitive function, and stress resilience. The review tracks the evolution of environmental enrichment from early research on enriched environments in animals to modern applications in human rehabilitation, particularly for stroke recovery and mental health treatment. While the traditional approach to environmental enrichment often involves continuous exposure, recent research suggests that restricted daily enrichment can yield comparable benefits, offering a practical, scalable solution for clinical settings. This review underscores the importance of adapting REE for individual needs and developing flexible, home-based programs for broader application.
Collapse
Affiliation(s)
- Nik Nasihah Nik Ramli
- School of Graduate Studies, Management and Science University, Shah Alam 40100, Selangor, Malaysia
| | | | | | - Mohamad Hisham Hashim
- School of Graduate Studies, Management and Science University, Shah Alam 40100, Selangor, Malaysia
| | - Maisarah Abdul Mutalib
- School of Graduate Studies, Management and Science University, Shah Alam 40100, Selangor, Malaysia
| | | | - Aswir Abd Rashed
- Nutrition, Metabolism and Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health, Malaysia, No.1, Jalan Setia Murni U13/52, Seksyen U13 Setia Alam, Shah Alam 40170, Selangor, Malaysia
| | - Rajesh Ramasamy
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
3
|
Morello GM, Capas-Peneda S, Brajon S, Lamas S, Lopes IM, Gilbert C, Olsson IAS. Proper micro-environment alleviates mortality in laboratory mouse breeding induced by litter overlap and older dams. Commun Biol 2024; 7:1008. [PMID: 39154136 PMCID: PMC11330512 DOI: 10.1038/s42003-024-06654-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 07/30/2024] [Indexed: 08/19/2024] Open
Abstract
The ongoing worldwide effort to reduce animal numbers in research often omits the issue of pre-weaning mortality in mouse breeding. A conservative estimate of 20% mortality would mean approximately 1.1 M mice die annually in the EU before scientific use. We hypothesize that pre-weaning mortality in laboratory mouse breeding is associated with cage social and macro/micro-environment conditions. Here we count pups from 509 C57BL/6J litters daily for accurate detection of mortality, and monitor cage micro-environment for 172 C57BL/6J litters. Probability of pups to die increases with the increase in dam age, number and age of older pups in the cage (of overlapped/cohabitating litters), and in small (<6 pups) and large (>11 pups) focal litters. Higher temperatures (>23.6 °C) and nest scores (>3.75) compensate for some of the socially-associated risks for pup death. These findings can be implemented in strategies for reducing pre-weaning mouse mortality, a more welfare-friendly and sustainable approach for science.
Collapse
Affiliation(s)
- Gabriela M Morello
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.
| | - Sara Capas-Peneda
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Sophie Brajon
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Sofia Lamas
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Igor M Lopes
- Sociedade Portuguesa de Inovação, Porto, Portugal
| | | | - I Anna S Olsson
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| |
Collapse
|
4
|
Song C, Suo Z, Wang Z, Cao J, Dong Y, Chen Y. Melatonin modulates neuroinflammatory response and microglial activation in mice exposed to dim blue light at night. Front Pharmacol 2024; 15:1416350. [PMID: 38873431 PMCID: PMC11169869 DOI: 10.3389/fphar.2024.1416350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/02/2024] [Indexed: 06/15/2024] Open
Abstract
Objectives Dim light at night contributes to neurodegenerative diseases by causing neuroinflammation. In the central nervous system, the activation of microglia is a significant contributor to neuroinflammation. Therefore, there is an urgent need to find an intervention to treat the neuroinflammatory response caused by dim light at night. Melatonin is a rhythmic hormone whose synthesis is suppressed during the day. In this study, we attempt to explore whether and how melatonin improves hippocampal neuroinflammation in mice exposed to dim blue light at night. Materials and Methods In vivo, a total of 36 male C57BL6/J mice that exposed to no light at night, dim blue light at night, and dim blue light at night with melatonin treatment. In vitro, the corticosterone-induced BV2 cells with or without melatonin treatment were used. Results Both in vivo and in vitro experiments showed melatonin treatment significantly reduced dim blue light -induced hippocampal microglial activation and the expression of inflammatory factors IL-1β and TNF-α. This improved effect of melatonin is related to its receptor MT2 rather than MT1. The MT2 blockers significantly increased mRNA levels of M1-type activation marker CD86 and inflammatory cytokines IL-1β and TNF-α in melatonin-treated BV2 cells. Binding of melatonin to its receptor MT2 downregulated the expression of inflammatory proteins P-P65 and NLRP3, consequently inhibited the CD80 expression and M1-type activation in microglia. Furthermore, consistent with the decrease in microglial activation and inflammatory response after melatonin treatment, we also observed a reduction in hippocampal neuron loss and damage to the HT22 cells. Conclusion Our findings suggested that melatonin may regulate microglial polarization through MT2/NF-kB-NLRP3 pathway and improves dim blue light -induced hippocampal neuroinflammation in mice.
Collapse
Affiliation(s)
- Chao Song
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhaotaize Suo
- The High School Affiliated to Renmin University of China, Beijing, China
| | - Zixu Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Cao
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yulan Dong
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yaoxing Chen
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Padilla J, Osman NM, Bissig-Choisat B, Grimm SL, Qin X, Major AM, Yang L, Lopez-Terrada D, Coarfa C, Li F, Bissig KD, Moore DD, Fu L. Circadian dysfunction induces NAFLD-related human liver cancer in a mouse model. J Hepatol 2024; 80:282-292. [PMID: 37890720 PMCID: PMC10929560 DOI: 10.1016/j.jhep.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/21/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND & AIMS Chronic circadian dysfunction increases the risk of non-alcoholic fatty liver disease (NAFLD)-related hepatocellular carcinoma (HCC), but the underlying mechanisms and direct relevance to human HCC have not been established. In this study, we aimed to determine whether chronic circadian dysregulation can drive NAFLD-related carcinogenesis from human hepatocytes and human HCC progression. METHODS Chronic jet lag of mice with humanized livers induces spontaneous NAFLD-related HCCs from human hepatocytes. The clinical relevance of this model was analysed by biomarker, pathological/histological, genetic, RNA sequencing, metabolomic, and integrated bioinformatic analyses. RESULTS Circadian dysfunction induces glucose intolerance, NAFLD-associated human HCCs, and human HCC metastasis independent of diet in a humanized mouse model. The deregulated transcriptomes in necrotic-inflammatory humanized livers and HCCs bear a striking resemblance to those of human non-alcoholic steatohepatitis (NASH), cirrhosis, and HCC. Stable circadian entrainment of hosts rhythmically paces NASH and HCC transcriptomes to decrease HCC incidence and prevent HCC metastasis. Circadian disruption directly reprogrammes NASH and HCC transcriptomes to drive a rapid progression from hepatocarcinogenesis to HCC metastasis. Human hepatocyte and tumour transcripts are clearly distinguishable from mouse transcripts in non-parenchymal cells and tumour stroma, and display dynamic changes in metabolism, inflammation, angiogenesis, and oncogenic signalling in NASH, progressing to hepatocyte malignant transformation and immunosuppressive tumour stroma in HCCs. Metabolomic analysis defines specific bile acids as prognostic biomarkers that change dynamically during hepatocarcinogenesis and in response to circadian disruption at all disease stages. CONCLUSION Chronic circadian dysfunction is independently carcinogenic to human hepatocytes. Mice with humanized livers provide a powerful preclinical model for studying the impact of the necrotic-inflammatory liver environment and neuroendocrine circadian dysfunction on hepatocarcinogenesis and anti-HCC therapy. IMPACT AND IMPLICATIONS Human epidemiological studies have linked chronic circadian dysfunction to increased hepatocellular carcinoma (HCC) risk, but direct evidence that circadian dysfunction is a human carcinogen has not been established. Here we show that circadian dysfunction induces non-alcoholic steatohepatitis (NASH)-related carcinogenesis from human hepatocytes in a murine humanized liver model, following the same molecular and pathologic pathways observed in human patients. The gene expression signatures of humanized HCC transcriptomes from circadian-disrupted mice closely match those of human HCC with the poorest prognostic outcomes, while those from stably circadian entrained mice match those from human HCC with the best prognostic outcomes. Our studies establish a new model for defining the mechanism of NASH-related HCC and highlight the importance of circadian biology in HCC prevention and treatment.
Collapse
Affiliation(s)
- Jennifer Padilla
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Noha M Osman
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Beatrice Bissig-Choisat
- Department of Pediatrics, Division of Medical Genetics, Y.T. and Alice Chen Pediatric Genetics and Genomics Research Center, Duke University, Durham, NC 27710, USA
| | - Sandra L Grimm
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xuan Qin
- NMR and Drug Metabolic Core, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Angela M Major
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Li Yang
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dolores Lopez-Terrada
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cristian Coarfa
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Feng Li
- NMR and Drug Metabolic Core, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Karl-Dimiter Bissig
- Department of Pediatrics, Division of Medical Genetics, Y.T. and Alice Chen Pediatric Genetics and Genomics Research Center, Duke University, Durham, NC 27710, USA
| | - David D Moore
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA94720, USA.
| | - Loning Fu
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
6
|
Sacchini S, Bombardi C, Arbelo M, Herráez P. The Hypothalamus of the Beaked Whales: The Paraventricular, Supraoptic, and Suprachiasmatic Nuclei. BIOLOGY 2023; 12:1319. [PMID: 37887029 PMCID: PMC10604544 DOI: 10.3390/biology12101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/30/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023]
Abstract
The hypothalamus is the body's control coordinating center. It is responsible for maintaining the body's homeostasis by directly influencing the autonomic nervous system or managing hormones. Beaked whales are the longest divers among cetaceans and their brains are rarely available for study. Complete hypothalamic samples from a female Cuvier's beaked whale and a male Blainville's beaked whale were processed to investigate the paraventricular (PVN) and supraoptic (SON) nuclei, using immunohistochemical staining against vasopressin. The PVN occupied the preoptic region, where it reached its maximum size, and then regressed in the anterior or suprachiasmatic region. The SON was located from the preoptic to the tuberal hypothalamic region, encompassing the optical structures. It was composed of a retrochiasmatic region (SONr), which bordered and infiltrated the optic tracts, and a principal region (SONp), positioned more medially and dorsally. A third vasopressin-positive nucleus was also detected, i.e., the suprachiasmatic nucleus (SCN), which marked the end of the SON. This is the first description of the aforementioned nuclei in beaked whales-and in any marine mammals-as well as their rostro-caudal extent and immunoreactivity. Moreover, the SCN has been recognized for the first time in any marine mammal species.
Collapse
Affiliation(s)
- Simona Sacchini
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, c/Transmontaña, s/n, 35416 Arucas, Spain; (M.A.); (P.H.)
- Department of Morphology, Campus Universitario de San Cristobal, University of Las Palmas de Gran Canaria, c/Blas Cabrera Felipe s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Cristiano Bombardi
- Department of Veterinary Medical Science, University of Bologna, Ozzano dell’Emilia, 40064 Bologna, Italy;
| | - Manuel Arbelo
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, c/Transmontaña, s/n, 35416 Arucas, Spain; (M.A.); (P.H.)
| | - Pedro Herráez
- Veterinary Histology and Pathology, Atlantic Center for Cetacean Research, University Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, c/Transmontaña, s/n, 35416 Arucas, Spain; (M.A.); (P.H.)
| |
Collapse
|
7
|
Schröder JK, Abdel-Hafiz L, Ali AAH, Cousin TC, Hallenberger J, Rodrigues Almeida F, Anstötz M, Lenz M, Vlachos A, von Gall C, Tundo-Lavalle F. Effects of the Light/Dark Phase and Constant Light on Spatial Working Memory and Spine Plasticity in the Mouse Hippocampus. Cells 2023; 12:1758. [PMID: 37443792 PMCID: PMC10340644 DOI: 10.3390/cells12131758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Circadian rhythms in behavior and physiology such as rest/activity and hormones are driven by an internal clock and persist in the absence of rhythmic environmental cues. However, the period and phase of the internal clock are entrained by the environmental light/dark cycle. Consequently, aberrant lighting conditions, which are increasing in modern society, have a strong impact on rhythmic body and brain functions. Mice were exposed to three different lighting conditions, 12 h light/12 h dark cycle (LD), constant darkness (DD), and constant light (LL), to study the effects of the light/dark cycle and aberrant lighting on the hippocampus, a critical structure for temporal and spatial memory formation and navigation. Locomotor activity and plasma corticosterone levels were analyzed as readouts for circadian rhythms. Spatial working memory via Y-maze, spine morphology of Golgi-Cox-stained hippocampi, and plasticity of excitatory synapses, measured by number and size of synaptopodin and GluR1-immunreactive clusters, were analyzed. Our results indicate that the light/dark cycle drives diurnal differences in synaptic plasticity in hippocampus. Moreover, spatial working memory, spine density, and size and number of synaptopodin and GluR1 clusters were reduced in LL, while corticosterone levels were increased. This indicates that acute constant light affects hippocampal function and synaptic plasticity.
Collapse
Affiliation(s)
- Jane K. Schröder
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany; (J.K.S.); (L.A.-H.); (A.A.H.A.); (T.C.C.); (J.H.); (F.R.A.); (M.A.); (F.T.-L.)
- Department of Pediatric Hematology and Oncology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Laila Abdel-Hafiz
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany; (J.K.S.); (L.A.-H.); (A.A.H.A.); (T.C.C.); (J.H.); (F.R.A.); (M.A.); (F.T.-L.)
| | - Amira A. H. Ali
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany; (J.K.S.); (L.A.-H.); (A.A.H.A.); (T.C.C.); (J.H.); (F.R.A.); (M.A.); (F.T.-L.)
- Department of Human Anatomy and Embryology, Faculty of Medicine, Mansoura University, El-Gomhoria St. 1, Mansoura 35516, Egypt
| | - Teresa C. Cousin
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany; (J.K.S.); (L.A.-H.); (A.A.H.A.); (T.C.C.); (J.H.); (F.R.A.); (M.A.); (F.T.-L.)
| | - Johanna Hallenberger
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany; (J.K.S.); (L.A.-H.); (A.A.H.A.); (T.C.C.); (J.H.); (F.R.A.); (M.A.); (F.T.-L.)
| | - Filipe Rodrigues Almeida
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany; (J.K.S.); (L.A.-H.); (A.A.H.A.); (T.C.C.); (J.H.); (F.R.A.); (M.A.); (F.T.-L.)
| | - Max Anstötz
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany; (J.K.S.); (L.A.-H.); (A.A.H.A.); (T.C.C.); (J.H.); (F.R.A.); (M.A.); (F.T.-L.)
| | - Maximilian Lenz
- Institute of Neuroanatomy and Cell Biology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany;
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
| | - Charlotte von Gall
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany; (J.K.S.); (L.A.-H.); (A.A.H.A.); (T.C.C.); (J.H.); (F.R.A.); (M.A.); (F.T.-L.)
| | - Federica Tundo-Lavalle
- Institute of Anatomy II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225 Düsseldorf, Germany; (J.K.S.); (L.A.-H.); (A.A.H.A.); (T.C.C.); (J.H.); (F.R.A.); (M.A.); (F.T.-L.)
| |
Collapse
|
8
|
Haghjoo S, Hedayati Ch M, Rostampour M, Khakpour-Taleghani B. Red-light radiation: does it enhance memory by increasing hippocampal LRP-1 and TRPA-1 genes expression? Int J Radiat Biol 2023; 99:329-339. [PMID: 35446172 DOI: 10.1080/09553002.2022.2069300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Despite the extensive efforts to treat the leading cause of neurodegenerative diseases (ND), a little progress has been reported. Red light might affect ND through many specific mechanisms. The purpose of this investigation is to explore the effect of red light on the expression of low-density lipoprotein receptor-1 (LRP-1) and transient receptor potential ankyrin-1 (TRPA-1) gene in the hippocampus, and the serum melatonin level (SML) of the lipopolysaccharide (LPS)-induced neuro-inflammated rats. MATERIALS AND METHODS Red-light therapy was implemented using a wavelength 630 nm under different light conditions and the passive avoidance (PA) and Y-Maze tests were employed to assess memory performance. To evaluate the LRP-1 and TRPA-1 genes expression, quantitive real-time polymerase chain reaction was performed. To measure the SML, ELISA was performed before and after the red-light radiation. RESULTS LPS caused memory impairment in both behavioral tests. Red-light therapy improved PA memory in all light conditions (p < .001). However, in Y-maze, only the red-light radiation during light and dark cycles, improved memory (p < .01 and p < .001, respectively). In addition, red-light radiation caused significant increase in SML (p < .05). The LRP-1 and TRPA-1 genes expression increased significantly during the dark phase in the red light radiated group compared to non-radiated group (p < .001). CONCLUSIONS Taken together, the results suggest that red-light therapy can reduce the complications of memory impairment in rats. This study has found that red-light therapy demonstrates higher effect during the period of dark phase compared to light phase. No doubt, further experimental studies would help us to establish a greater degree of accuracy on this matter.
Collapse
Affiliation(s)
- Saereh Haghjoo
- School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mojtaba Hedayati Ch
- Department of Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Rostampour
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Behrooz Khakpour-Taleghani
- Neuroscience Research Center, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.,Department of Physiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
9
|
Kaur T, Shih HC, Huang AC, Shyu BC. Modulation of melatonin to the thalamic lesion-induced pain and comorbid sleep disturbance in the animal model of the central post-stroke hemorrhage. Mol Pain 2022; 18:17448069221127180. [PMID: 36065903 PMCID: PMC9483952 DOI: 10.1177/17448069221127180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The devastating chronic central post stroke pain is associated with variety of
comorbidities. Disrupted sleep is a severe comorbidity, causing an increase in
the suicide rate, due to CPSP’s pain symptom. Melatonin is a well-known jet-lag
compound, which helps in entrainment of sleep cycle. Accordingly, whether
melatonin as a therapeutic measurement for the regulation of sleep disturbance
related to central post stroke pain remains unclear. Exogenous melatonin
administration entrained the disrupted 24 h circadian cycle, more effectively
after 2 and 3 week of administration. The effect of melatonin was persisted on
4th week too, when melatonin administration was discontinued. Also, melatonin
ameliorated the pain due to distorted sleep-activity behavior after melatonin
administration for 3 weeks. The low levels of melatonin in blood plasma due to
CPSP were restored after 3 weeks of melatonin administration. After 30 mg/kg
melatonin administrations for 3 weeks, all the disrupted resting and activity
behaviors were reduced during light and dark periods. The results suggested that
melatonin significantly ameliorated CPSP’s pain symptoms and comorbid sleep
disturbance showing in activity behavior.
Collapse
Affiliation(s)
- Tavleen Kaur
- Neuroscience71563Institute of Biomedical Sciences Academia Sinica
| | | | | | - Bai Chuang Shyu
- Neuroscience71563Institute of Biomedical Sciences Academia Sinica
| |
Collapse
|
10
|
Baishnikova IV, Ilyina TN, Khizhkin EA, Ilyukha VA. Prolonged Light Deprivation Modulates the Age-Related Changes in α-Tocopherol Level in Rats. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022050271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Benevento M, Hökfelt T, Harkany T. Ontogenetic rules for the molecular diversification of hypothalamic neurons. Nat Rev Neurosci 2022; 23:611-627. [PMID: 35906427 DOI: 10.1038/s41583-022-00615-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2022] [Indexed: 11/09/2022]
Abstract
The hypothalamus is an evolutionarily conserved endocrine interface that, among other roles, links central homeostatic control to adaptive bodily responses by releasing hormones and neuropeptides from its many neuronal subtypes. In its preoptic, anterior, tuberal and mammillary subdivisions, a kaleidoscope of magnocellular and parvocellular neuroendocrine command neurons, local-circuit neurons, and neurons that project to extrahypothalamic areas are intermingled in partially overlapping patches of nuclei. Molecular fingerprinting has produced data of unprecedented mass and depth to distinguish and even to predict the synaptic and endocrine competences, connectivity and stimulus selectivity of many neuronal modalities. These new insights support eminent studies from the past century but challenge others on the molecular rules that shape the developmental segregation of hypothalamic neuronal subtypes and their use of morphogenic cues for terminal differentiation. Here, we integrate single-cell RNA sequencing studies with those of mouse genetics and endocrinology to describe key stages of hypothalamus development, including local neurogenesis, the direct terminal differentiation of glutamatergic neurons, transition cascades for GABAergic and GABAergic cell-derived dopamine cells, waves of local neuronal migration, and sequential enrichment in neuropeptides and hormones. We particularly emphasize how transcription factors determine neuronal identity and, consequently, circuit architecture, and whether their deviations triggered by environmental factors and hormones provoke neuroendocrine illnesses.
Collapse
Affiliation(s)
- Marco Benevento
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Tomas Hökfelt
- Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, Solna, Sweden
| | - Tibor Harkany
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, Vienna, Austria. .,Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, Solna, Sweden.
| |
Collapse
|
12
|
Abdelmissih S, Sayed WM, Rashed LA, Kamel MM, Eshra MA, Attallah MI, El-Naggar RAR. The extent of involvement of ouabain, hippocampal expression of Na+/K+-ATPase, and corticosterone/melatonin receptors ratio in modifying stress-induced behavior differs according to the stressor in context. Braz J Med Biol Res 2022; 55:e11938. [PMID: 35857994 PMCID: PMC9296128 DOI: 10.1590/1414-431x2022e11938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/18/2022] [Indexed: 11/21/2022] Open
Abstract
The aim of this study was to assess the effect of two types of stressors,
regarding the extent of involvement of ouabain (OUA), hippocampal
sodium/potassium ATPase (NKA) expression, and the hippocampal
corticosterone receptors (CR)/melatonin receptors
(MR) expression ratio, on the behavioral and cardiovascular
responses and on the hippocampal cornu ammonis zone 3 (CA3) and dentate gyrus
(DG). Thirty adult male Wistar albino rats aged 7-8 months were exposed to
either chronic immobilization or a disturbed dark/light cycle and treated with
either ouabain or vehicle. In the immobilized group, in the absence of
hippocampal corticosterone (CORT) changes, rats were non-responsive to stress,
despite experiencing increased pulse rate, downregulated hippocampal
sodium/potassium pump, and enhanced hippocampal CR/MR
expression ratio. Prolonged darkness precipitated a reduced upright attack
posture, with elevated CORT against hippocampal MR
downregulation. Both immobilization and, to a lesser extent, prolonged darkness
stress resulted in histopathological and ultrastructural neurodegenerative
changes in the hippocampus. OUA administration did not change the behavioral
resilience in restrained rats, despite persistence of the underlying biochemical
derangements, added to decreased CORT. On the contrary, with exposure to short
photoperiods, OUA reverted the behavior towards a combative reduction of
inactivity, with unvaried CR/MR and CORT, while ameliorating
hippocampal neuro-regeneration, with co-existing NKA and
MR repressions. Therefore, the extent of OUA, hippocampal
NKA expression, and CR/MR expression, and
subsequent behavioral and cardiac responses and hippocampal histopathology,
differ according to the type of stressor, whether immobilization or prolonged
darkness.
Collapse
Affiliation(s)
- S Abdelmissih
- Department of Medical Pharmacology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - W M Sayed
- Department of Anatomy and Embryology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - L A Rashed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - M M Kamel
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt.,Department of Basic Medical Science, Faculty of Medicine, King Salman International University, South Sinai, Egypt
| | - M A Eshra
- Department of Physiology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - M I Attallah
- Department of Medical Pharmacology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, Cairo, Egypt
| | - R A-R El-Naggar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr University for Science and Technology, Giza, Egypt
| |
Collapse
|
13
|
McKinney MM, Dupont WD, Corson KJ, Wallace JM, Jones CP. Physiologic and Behavioral Effects in Mice Anesthetized with Isoflurane in a Red-tinted or a Traditional Translucent Chamber. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2022; 61:322-332. [PMID: 35840316 PMCID: PMC9674017 DOI: 10.30802/aalas-jaalas-22-000011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Isoflurane has been characterized as a distressing agent for rodents, causing both physiologic and behavioral effects. Using a "darkened home cage" has been recommended during CO₂ administration for rodent euthanasia; this is arguably a similar animal experience to anesthetic induction with isoflurane. Based on the premise that rodents perceive red light as darkness via the primary optic tract, we compared physiologic and behavioral markers of stress in 2 inbred strains of mice (C57BL/6J and BALB/cJ) anesthetized with isoflurane in either a red-tinted (dark) induction chamber or a traditional translucent induction chamber. Physiologic stress was assessed based on plasma levels of norepinephrine, epinephrine, and corticosterone. Stress-related behaviors (rearing, face wiping, and jumping) were recorded on video and scored from initiation of induction to loss of consciousness. No significant correlations were found between chamber type and physiologic stress hormones. As compared with the translucent chamber, stress-related behaviors were more frequent in the red-tinted chamber, including: 1) significantly higher rearing frequencies in BALB/cJ mice; 2) higher behavioral stress scores in BALB/cJ and male C57BL/6J mice; and 3) more face wiping behavior when considering all mice combined. These findings suggest that mice do not experience significant alleviation of physiologic indices of stress when anesthetized in a red-tinted induction chamber. Furthermore, isoflurane induction in the red-tinted chamber appeared to increase the expression of stress-related behaviors, particularly in BALB/cJ mice. Based on our findings and a growing body of literature on the unintended effects of red light, we do not recommend using red-tinted chambers for induction of anesthesia in mice.
Collapse
Affiliation(s)
- Michael M McKinney
- Department of Pathology, Immunology, and
Microbiology,,Divison of Animal Care, and,Corresponding author.
| | - William D Dupont
- Department of Biostatistics, Vanderbilt University
Medical Center, Nashville, Tennessee
| | | | - Jeanne M Wallace
- Department of Pathology, Immunology, and
Microbiology,,Divison of Animal Care, and
| | - Carissa P Jones
- Department of Pathology, Immunology, and
Microbiology,,Divison of Animal Care, and
| |
Collapse
|
14
|
Zhu Y, Jung J, Anilkumar S, Ethiraj S, Madira S, Tran NA, Mullis DM, Casey KM, Walsh SK, Stark CJ, Venkatesh A, Boakye A, Wang H, Woo YJ. A novel photosynthetic biologic topical gel for enhanced localized hyperoxygenation augments wound healing in peripheral artery disease. Sci Rep 2022; 12:10028. [PMID: 35705660 PMCID: PMC9200759 DOI: 10.1038/s41598-022-14085-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 02/15/2022] [Indexed: 11/26/2022] Open
Abstract
Peripheral artery disease and the associated ischemic wounds are substantial causes of global morbidity and mortality, affecting over 200 million people worldwide. Although advancements have been made in preventive, pharmacologic, and surgical strategies to treat this disease, ischemic wounds, a consequence of end-stage peripheral artery disease, remain a significant clinical and economic challenge. Synechococcus elongatus is a cyanobacterium that grows photoautotrophically and converts carbon dioxide and water into oxygen. We present a novel topical biologic gel containing S. elongatus that provides oxygen via photosynthesis to augment wound healing by rescuing ischemic tissues caused by peripheral artery disease. By using light rather than blood as a source of energy, our novel topical therapy significantly accelerated wound healing in two rodent ischemic wound models. This novel topical gel can be directly translated to clinical practice by using a localized, portable light source without interfering with patients' daily activities, demonstrating potential to generate a paradigm shift in treating ischemic wounds from peripheral artery disease. Its novelty, low production cost, and ease of clinical translatability can potentially impact the clinical care for millions of patients suffering from peripheral arterial disease.
Collapse
Affiliation(s)
- Yuanjia Zhu
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Jinsuh Jung
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Shreya Anilkumar
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Sidarth Ethiraj
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Sarah Madira
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Nicholas A Tran
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Danielle M Mullis
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Kerriann M Casey
- Department of Comparative Medicine, Stanford University, Stanford, CA, USA
| | - Sabrina K Walsh
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Charles J Stark
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Akshay Venkatesh
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Alexander Boakye
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Department of Cardiothoracic Surgery, Falk Cardiovascular Research Center, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA.
| |
Collapse
|
15
|
Cao F, Ralph MR, Stinchcombe AR. A Phenomenological Mouse Circadian Pacemaker Model. J Biol Rhythms 2022; 37:329-342. [PMID: 35485260 PMCID: PMC9160958 DOI: 10.1177/07487304221085455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mathematical models have been used extensively in chronobiology to explore characteristics of biological clocks. In particular, for human circadian studies, the Kronauer model has been modified multiple times to describe rhythm production and responses to sensory input. This phenomenological model comprises a single set of parameters which can simulate circadian responses in humans under a variety of environmental conditions. However, corresponding models for nocturnal rodents commonly used in circadian rhythm studies are not available and may require new parameter values for different species and even strains. Moreover, due to a considerable variation in experimental data collected from mice of the same strain, within and across laboratories, a range of valid parameters is essential. This study develops a Kronauer-like model for mice by re-fitting relevant parameters to published phase response curve and period data using total least squares. Local parameter sensitivity analysis and parameter distributions determine the parameter ranges that give a near-identical model and data distribution of periods. However, the model required further parameter adjustments to match characteristics of other mouse strains, implying that the model itself detects changes in the core processes of rhythm generation and control. The model is a useful tool to understand and interpret future mouse circadian clock experiments.
Collapse
Affiliation(s)
- Federico Cao
- Department of Mathematics, University of Toronto, Toronto, ON, Canada
| | - Martin R Ralph
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
16
|
Hetman M, Slomnicki L, Hodges E, Ohri SS, Whittemore SR. Role of circadian rhythms in pathogenesis of acute CNS injuries: Insights from experimental studies. Exp Neurol 2022; 353:114080. [DOI: 10.1016/j.expneurol.2022.114080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 11/16/2022]
|
17
|
Constantino DB, Xavier NB, Levandovski R, Roenneberg T, Hidalgo MP, Pilz LK. Relationship Between Circadian Strain, Light Exposure, and Body Mass Index in Rural and Urban Quilombola Communities. Front Physiol 2022; 12:773969. [PMID: 35153809 PMCID: PMC8826472 DOI: 10.3389/fphys.2021.773969] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/04/2021] [Indexed: 01/22/2023] Open
Abstract
Industrialization has greatly changed human lifestyle; work and leisure activities have been moved indoors, and artificial light has been used to illuminate the night. As cyclic environmental cues such as light and feeding become weak and/or irregular, endogenous circadian systems are increasingly being disrupted. These disruptions are associated with metabolic dysfunction, possibly contributing to increased rates of overweight and obesity worldwide. Here, we aimed to investigate how activity-rest rhythms, patterns of light exposure, and levels of urbanization may be associated with body mass index (BMI) in a sample of rural and urban Quilombola communities in southern Brazil. These are characterized as remaining social groups who resisted the slavery regime that prevailed in Brazil. Quilombola communities were classified into five groups according to their stage of urbanization: from rural areas with no access to electricity to highly urbanized communities. We collected anthropometric data to calculate BMI, which was categorized as follows: from ≥ 18.5 kg/m2 to < 25 kg/m2 = normal weight; from ≥ 25 kg/m2 to < 30 kg/m2 = overweight; and ≥ 30 kg/m2 = obese. Subjects were asked about their sleep routines and light exposure on workdays and work-free days using the Munich Chronotype Questionnaire (N = 244 included). In addition, we analyzed actimetry data from 121 participants with seven consecutive days of recordings. Living in more urbanized areas and higher intradaily variability (IV) of activity-rest rhythms were associated with an increased risk of belonging to the overweight or obese group, when controlling for age and sex. These findings are consistent with preclinical data and point to potential strategies in obesity prevention and promotion of healthy metabolic profiles.
Collapse
Affiliation(s)
- Débora Barroggi Constantino
- Laboratório de Cronobiologia e Sono, Hospital de Clínicas de Porto Alegre (HCPA)/Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Psychiatry and Behavioral Sciences Program (PPG) em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Nicoli Bertuol Xavier
- Laboratório de Cronobiologia e Sono, Hospital de Clínicas de Porto Alegre (HCPA)/Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Psychiatry and Behavioral Sciences Program (PPG) em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Rosa Levandovski
- Psychiatry and Behavioral Sciences Program (PPG) Avaliação e Produção de Tecnologias para o Sistema Único de Saúde (SUS), Grupo Hospitalar Conceição (GHC), Porto Alegre, Brazil.,Psychiatry and Behavioral Sciences Program (PPG) Saúde Coletiva, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Till Roenneberg
- Institute of Medical Psychology - Ludwig Maximilian University (LMU), Munich, Germany
| | - Maria Paz Hidalgo
- Laboratório de Cronobiologia e Sono, Hospital de Clínicas de Porto Alegre (HCPA)/Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Psychiatry and Behavioral Sciences Program (PPG) em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Luísa K Pilz
- Laboratório de Cronobiologia e Sono, Hospital de Clínicas de Porto Alegre (HCPA)/Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Psychiatry and Behavioral Sciences Program (PPG) em Psiquiatria e Ciências do Comportamento, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
18
|
Namgyal D, Chandan K, Ali S, Ahmad A, Hashim MJ, Sarwat M. Aberrant Lighting Causes Anxiety-like Behavior in Mice but Curcumin Ameliorates the Symptoms. Animals (Basel) 2021; 11:ani11092590. [PMID: 34573555 PMCID: PMC8466876 DOI: 10.3390/ani11092590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 01/11/2023] Open
Abstract
Simple Summary In the present study, we exposed mice to aberrant lighting system and noticed anxiety-like behavior. These symptoms were ameliorated by oral administration of curcumin. The study was carried out on the animals for three weeks in dim light at night (dLAN) and complete darkness (DD), monitoring the body weight, daily food intake, anxiety-like behavior, and expression of the period (PER1) gene. The exposure to dim light at night was found to significantly enhance the anxiety-like behavior and increased the body weight possibly through altered metabolism in mice. In contrast, exposure to DD caused increased anxiety but no significant difference in the body weight. Moreover, the expression of the PER1 gene involved in sleep was also found to be decreased in the aberrant light conditions (dLAN and DD). Although the treatment of curcumin had no effect on the body weight, it had ameliorated the anxiety-like behavior possibly by modulating the expression of the PER1 gene. Thus, the alteration in the light/dark cycle has negative influences on body weight, affecting even the emotional quotient. This study identifies the risk factors associated with aberrant lighting conditions in laboratory animal and ameliorative effects of curcumin. Abstract In the modern research field, laboratory animals are constantly kept under artificial lighting conditions. However, recent studies have shown the effect of artificial light on animal behavior and metabolism. In the present study on mice, following three weeks of housing in dim light at night (dLAN; 5lux) and complete darkness (DD; 0lux), we monitored the effect on body weight, daily food intake, anxiety-like behavior by employing the open field test, and expression of the period (PER1) gene. We also studied the effect of oral administration of different concentrations of curcumin (50, 100, and 150 mg/kg) for three weeks in the same mice and monitored these parameters. The exposure to dLAN had significantly increased the anxiety-like behavior and body weight possibly through the altered metabolism in mice, whereas exposure to DD caused increased anxiety but no significant difference in weight gain. Moreover, the expression of the PER1 gene involved in sleep was also found to be decreased in the aberrant light conditions (dLAN and DD). Although the treatment of curcumin had no effect on body weight, it ameliorated the anxiety-like behavior possibly by modulating the expression of the PER1 gene. Thus, alteration in the light/dark cycle had a negative effect on laboratory animals on the body weight and emotions of animals. The present study identifies the risk factors associated with artificial lighting systems on the behavior of laboratory animals and the ameliorative effects of curcumin, with a focus on anxiety-like behavior.
Collapse
Affiliation(s)
- Dhondup Namgyal
- Amity Institute of Neuropsychology and Neuroscience, Amity University, Noida 201303, India;
- Amity Institute of Pharmacy, Amity University, Noida 201303, India;
| | - Kumari Chandan
- Amity Institute of Pharmacy, Amity University, Noida 201303, India;
| | - Sher Ali
- School of Basic Sciences and Research, Department of Life Sciences, Sharda University, Greater Noida 201310, India;
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Maha J. Hashim
- Department of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK;
| | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University, Noida 201303, India;
- Correspondence:
| |
Collapse
|
19
|
Chronic lead exposure alters photic entrainment of locomotor activity rhythm and neuronal photoactivation in the suprachiasmatic nucleus of the adult rat. J Chem Neuroanat 2021; 117:101991. [PMID: 34182089 DOI: 10.1016/j.jchemneu.2021.101991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/06/2021] [Accepted: 06/14/2021] [Indexed: 11/21/2022]
Abstract
Chronic lead (Pb) exposure affects the circadian physiological processes regulated by suprachiasmatic nucleus (SCN), which is synchronized (entrainment) by light. Disorders in the entrainment capacity of an organism alter its performance to interact with the environment, thus affecting its health status. The objectives of the present study were to evaluate whether chronic early Pb exposure affects the entrainment of the circadian rhythm of locomotor activity by light and to explore the possible mechanisms involved. Adult male Wistar rats, control and chronically exposed to Pb (320 ppm) in drinking water from gestation to adult age, were used. Assessment of the metal level showed a significant increase of Pb in the blood, hypothalamus and prefrontal cortex of the experimental rats. Continuous registrations of locomotor activity (12 h:12 h light-dark cycle) depicted that Pb induces important delay of this activity when the light was turned off. The Pb exposed animals entrained faster with a photoperiod delay of 6 h, (lights on at 13:00 h), and maintained the significant delay in the onset of activity at lights out. In continuous darkness, the animals were exposed to a light pulse at circadian time 23. This resulted in a significant decrease of photo-stimulated neurons (immunoreactivity to c-Fos) in the SCN of the metal-exposed animals. These results show that chronic early Pb exposure alters the photic entrainment of the rhythm of locomotor activity, which is evidenced by a significant decrease in both the number of photo-stimulated neurons and neuronal population (Nissl stain) of the SCN.
Collapse
|
20
|
Pernold K, Rullman E, Ulfhake B. Major oscillations in spontaneous home-cage activity in C57BL/6 mice housed under constant conditions. Sci Rep 2021; 11:4961. [PMID: 33654141 PMCID: PMC7925671 DOI: 10.1038/s41598-021-84141-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 02/10/2021] [Indexed: 01/31/2023] Open
Abstract
The mouse is the most important mammalian model in life science research and the behavior of the mouse is a key read-out of experimental interventions and genetic manipulations. To serve this purpose a solid understanding of the mouse normal behavior is a prerequisite. Using 14-19 months of cumulative 24/7 home-cage activity recorded with a non-intrusive technique, evidence is here provided for a highly significant circannual oscillation in spontaneous activity (1-2 SD of the mean, on average 65% higher during peak of highs than lows; P = 7E-50) of male and female C57BL/6 mice held under constant conditions. The periodicity of this hitherto not recognized oscillation is in the range of 2-4 months (average estimate was 97 days across cohorts of cages). It off-sets responses to environmental stimuli and co-varies with the feeding behavior but does not significantly alter the preference for being active during the dark hours. The absence of coordination of this rhythmicity between cages with mice or seasons of the year suggest that the oscillation of physical activity is generated by a free-running intrinsic oscillator devoid of external timer. Due to the magnitude of this rhythmic variation it may be a serious confounder in experiments on mice if left unrecognized.
Collapse
Affiliation(s)
- Karin Pernold
- grid.465198.7Division Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Solna, Sweden
| | - Eric Rullman
- grid.465198.7Division Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Solna, Sweden
| | - Brun Ulfhake
- grid.465198.7Division Clinical Physiology, Department of Laboratory Medicine, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
21
|
Alamilla J, Ramiro-Cortés Y, Mejía-López A, Chavez JL, Rivera DO, Felipe V, Aguilar-Roblero R. Altered Light Sensitivity of Circadian Clock in Shank3 +/- Mouse. Front Neurosci 2021; 15:604165. [PMID: 33679297 PMCID: PMC7930753 DOI: 10.3389/fnins.2021.604165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/12/2021] [Indexed: 11/13/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by impairment in communication and social interaction, repetitive or stereotypical behaviors, altered sensory perception, and sleep disorders. In general, the causes of ASD remain unknown, but in Phelan-McDermid syndrome, it is known that the disorder is related to the haploinsufficiency of the Shank3 gene. We used an autism model with compromised glutamatergic signaling, the Shank3+/- mouse, to study the circadian rhythm architecture of locomotion behavior and its entrainment to light. We also analyzed the synapse between the retinohypothalamic tract (RHT) and the suprachiasmatic nucleus (SCN), employing tract tracing and immunohistochemical techniques. We found that Shank3+/- mice were not impaired in the SCN circadian clock, as indicated by a lack of differences between groups in the circadian architecture in entrained animals to either long or short photoperiods. Circadian rhythm periodicity (tau) was unaltered between genotypes in constant darkness (DD, dim red light). Similar results were obtained in the re-entrainment to shifts in the light-dark cycle and in the entrainment to a skeleton photoperiod from DD. However, Shank3+/- mice showed larger phase responses to light pulses, both delays and advances, and rhythm disorganization induced by constant bright light. Immunohistochemical analyses indicated no differences in the RHT projection to the SCN or the number of SCN neurons expressing the N-methyl-D-aspartate (NMDA) receptor subunit NR2A, whereas the Shank3+/- animals showed decreased c-Fos induction by brief light pulses at CT14, but increased number of vasoactive intestinal polypeptide (VIP)-positive neurons. These results indicate alterations in light sensitivity in Shank3+/- mice. Further studies are necessary to understand the mechanisms involved in such increased light sensitivity, probably involving VIP neurons.
Collapse
Affiliation(s)
- Javier Alamilla
- Centro Universitario de Investigaciones Biomédicas, Consejo Nacional de Ciencia y Tecnología (CONACYT)-Universidad de Colima, Colima, Mexico
| | - Yazmín Ramiro-Cortés
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Adriana Mejía-López
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - José-Luis Chavez
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Dulce Olivia Rivera
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Víctor Felipe
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| | - Raúl Aguilar-Roblero
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico
| |
Collapse
|
22
|
Walbeek TJ, Harrison EM, Gorman MR, Glickman GL. Naturalistic Intensities of Light at Night: A Review of the Potent Effects of Very Dim Light on Circadian Responses and Considerations for Translational Research. Front Neurol 2021; 12:625334. [PMID: 33597916 PMCID: PMC7882611 DOI: 10.3389/fneur.2021.625334] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 01/06/2021] [Indexed: 12/16/2022] Open
Abstract
In this review, we discuss the remarkable potency and potential applications of a form of light that is often overlooked in a circadian context: naturalistic levels of dim light at night (nLAN), equivalent to intensities produced by the moon and stars. It is often assumed that such low levels of light do not produce circadian responses typically associated with brighter light levels. A solid understanding of the impacts of very low light levels is complicated further by the broad use of the somewhat ambiguous term “dim light,” which has been used to describe light levels ranging seven orders of magnitude. Here, we lay out the argument that nLAN exerts potent circadian effects on numerous mammalian species, and that given conservation of anatomy and function, the efficacy of light in this range in humans warrants further investigation. We also provide recommendations for the field of chronobiological research, including minimum requirements for the measurement and reporting of light, standardization of terminology (specifically as it pertains to “dim” light), and ideas for reconsidering old data and designing new studies.
Collapse
Affiliation(s)
- Thijs J Walbeek
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, United States.,Oregon Institute of Occupational Health Sciences, Oregon Health and Science University, Portland, OR, United States
| | - Elizabeth M Harrison
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, United States
| | - Michael R Gorman
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, United States.,Department of Psychology, University of California, San Diego, San Diego, CA, United States
| | - Gena L Glickman
- Center for Circadian Biology, University of California, San Diego, La Jolla, CA, United States.,Departments of Psychiatry and Neuroscience, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
23
|
Namgyal D, Chandan K, Sultan A, Aftab M, Ali S, Mehta R, El-Serehy HA, Al-Misned FA, Sarwat M. Dim Light at Night Induced Neurodegeneration and Ameliorative Effect of Curcumin. Cells 2020; 9:cells9092093. [PMID: 32933226 PMCID: PMC7565558 DOI: 10.3390/cells9092093] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/28/2020] [Accepted: 09/05/2020] [Indexed: 12/16/2022] Open
Abstract
It is a well-known fact that following a proper routine light/dark or diurnal rhythm controls almost all biological processes. With the introduction of modern lighting and artificial illumination systems, continuous exposure to light at night may lead to the disruption of diurnal rhythm. However, the effect of light during the night on brain anatomy, physiology, and human body functions is less explored and poorly understood. In this study, we have evaluated the effect of exposure to dim light (5 lux) at night (dLAN) on Swiss Albino mice over a duration of three consecutive weeks. Results have revealed that exposure to dLAN led to an impairment of cognitive and non-cognitive behaviour, oxidative stress–mediated elevation of lipid peroxidation, and reduction of superoxide dismutase and catalase activity. It also led to the downregulation of hippocampal proteins (BDNF, Synapsin II and DCX) at both protein and mRNA level. Additionally, there was downregulation of CREB and SIRT1 mRNAs and neurodegeneration-associated miRNA21a-5p and miRNA34a-5p. The pyramidal and cortical neurons started showing pyknotic and chromatolysis characteristics. However, a dose of curcumin administered to the mice positively modulated these parameters in our experimental animals. We proposed the modulatory role of curcumin in addressing the deleterious effects of dLAN.
Collapse
Affiliation(s)
- Dhondup Namgyal
- Amity Institute of Neuropsychology and Neuroscience, Amity University, Noida UP 201303, India; (D.N.); (R.M.)
- Amity Institute of Pharmacy, Amity University, Noida UP 201303, India;
| | - Kumari Chandan
- Amity Institute of Pharmacy, Amity University, Noida UP 201303, India;
| | - Armiya Sultan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Mehreen Aftab
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida UP 201303, India;
| | - Sher Ali
- School of Basic Sciences and Research, Department of Life Sciences, Sharda University, Greater Noida, Uttar Pradesh 201310, India;
| | - Rachna Mehta
- Amity Institute of Neuropsychology and Neuroscience, Amity University, Noida UP 201303, India; (D.N.); (R.M.)
| | - Hamed A. El-Serehy
- Department of Zoology, College of Science, King Saud University, Riyadh l1451, Saudi Arabia; (H.A.E.-S.); (F.A.A.-M.)
| | - Fahad A. Al-Misned
- Department of Zoology, College of Science, King Saud University, Riyadh l1451, Saudi Arabia; (H.A.E.-S.); (F.A.A.-M.)
| | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University, Noida UP 201303, India;
- Correspondence: Correspondence: ; Tel.: +91-12-0439-2472
| |
Collapse
|
24
|
Differential Effects of Constant Light and Dim Light at Night on the Circadian Control of Metabolism and Behavior. Int J Mol Sci 2020; 21:ijms21155478. [PMID: 32751870 PMCID: PMC7432546 DOI: 10.3390/ijms21155478] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023] Open
Abstract
The disruption of circadian rhythms by environmental conditions can induce alterations in body homeostasis, from behavior to metabolism. The light:dark cycle is the most reliable environmental agent, which entrains circadian rhythms, although its credibility has decreased because of the extensive use of artificial light at night. Light pollution can compromise performance and health, but underlying mechanisms are not fully understood. The present review assesses the consequences induced by constant light (LL) in comparison with dim light at night (dLAN) on the circadian control of metabolism and behavior in rodents, since such an approach can identify the key mechanisms of chronodisruption. Data suggest that the effects of LL are more pronounced compared to dLAN and are directly related to the light level and duration of exposure. Dim LAN reduces nocturnal melatonin levels, similarly to LL, but the consequences on the rhythms of corticosterone and behavioral traits are not uniform and an improved quantification of the disrupted rhythms is needed. Metabolism is under strong circadian control and its disruption can lead to various pathologies. Moreover, metabolism is not only an output, but some metabolites and peripheral signal molecules can feedback on the circadian clockwork and either stabilize or amplify its desynchronization.
Collapse
|
25
|
Amano T, Ripperger JA, Albrecht U. Changing the light schedule in late pregnancy alters birth timing in mice. Theriogenology 2020; 154:212-222. [PMID: 32650187 DOI: 10.1016/j.theriogenology.2020.05.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 05/11/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022]
Abstract
In rats, birth timing is affected by changes in the light schedule until the middle of the pregnancy period. This phenomenon can be used to control birth timing in the animal industry and/or clinical fields. However, changes in the light schedule until the middle of the pregnancy period can damage the fetus by affecting the development of the major organs. Thus, we compared birth timing in mice kept under a 12-h light/12-h darkness schedule (L/D) throughout pregnancy with that of mice kept under a light schedule that changed from L/D to constant light (L/L) or constant darkness (D/D) from day 17.5 of pregnancy, the latter phase of the pregnancy period. On average, the pregnancy period was longer in D/D mice (19.9 days) than L/L or L/D mice (19.5 and 19.3 days, respectively, P < 0.05), confirming that light schedule affects birth timing. The average number of newborns was the same in L/L, L/D, and D/D mice (7.5, 7.8, and 7.9, respectively), but the average newborn weight of L/L mice (1.3 g) was lower than that of L/D and D/D mice (both 1.4 g, P < 0.05), indicating that constant light has detrimental effects on fetus growth. However, the percentage of dead newborns was the same between L/L, L/D, and D/D mice (11.1, 10.6, and 3.6%, respectively). The serum progesterone level on day 18.5 of pregnancy in L/D mice was 42.8 ng/ml, lower (P < 0.05) than that of D/D mice (65.3 ng/ml), suggesting that light schedule affects luteolysis. The average pregnancy period of mice lacking a circadian clock kept under D/D conditions from day 17.5 of pregnancy (KO D/D) (20.3 days) was delayed compared with wild-type (WT) D/D mice (P < 0.05). However, the average number of newborns, percentage of births with dead pups, and weight per newborn of KO D/D mice (7.6, 3.6%, and 1.4 g, respectively) were the same as WT mice kept under D/D conditions. A direct effect of the circadian clock on the mechanism(s) regulating birth timing was questionable, as the lighter average weight per KO fetus (0.6 g) versus WT fetus (0.7 g) on day 17.5 of pregnancy might have caused the delay in birth. The range of birth timing in KO D/D mice was the same as that of WT D/D mice, indicating that the circadian clock does not concentrate births at one time.
Collapse
Affiliation(s)
- Tomoko Amano
- College of Agriculture, Food and Environment Sciences, Department of Sustainable Agriculture, Laboratory of Animal Genetics, Rakuno Gakuen University, 582 Midorimachi Bunkyodai, Ebetsu, Hokkaido, 069-8501, Japan.
| | - Jürgen A Ripperger
- Department of Biology/Unit of Biochemistry, Faculty of Sciences, University of Fribourg, Chemin du Musée 5, CH-1700, Fribourg, Switzerland
| | - Urs Albrecht
- Department of Biology/Unit of Biochemistry, Faculty of Sciences, University of Fribourg, Chemin du Musée 5, CH-1700, Fribourg, Switzerland
| |
Collapse
|
26
|
Long-term exposure to constant light induces dementia, oxidative stress and promotes aggregation of sub-pathological Aβ42 in Wistar rats. Pharmacol Biochem Behav 2020; 192:172892. [DOI: 10.1016/j.pbb.2020.172892] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 03/02/2020] [Accepted: 03/02/2020] [Indexed: 12/17/2022]
|