1
|
Reddy NA, Clements RG, Brooks JCW, Bright MG. Simultaneous cortical, subcortical, and brainstem mapping of sensory activation. Cereb Cortex 2024; 34:bhae273. [PMID: 38940832 PMCID: PMC11212354 DOI: 10.1093/cercor/bhae273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024] Open
Abstract
Nonpainful tactile sensory stimuli are processed in the cortex, subcortex, and brainstem. Recent functional magnetic resonance imaging studies have highlighted the value of whole-brain, systems-level investigation for examining sensory processing. However, whole-brain functional magnetic resonance imaging studies are uncommon, in part due to challenges with signal to noise when studying the brainstem. Furthermore, differentiation of small sensory brainstem structures such as the cuneate and gracile nuclei necessitates high-resolution imaging. To address this gap in systems-level sensory investigation, we employed a whole-brain, multi-echo functional magnetic resonance imaging acquisition at 3T with multi-echo independent component analysis denoising and brainstem-specific modeling to enable detection of activation across the entire sensory system. In healthy participants, we examined patterns of activity in response to nonpainful brushing of the right hand, left hand, and right foot (n = 10 per location), and found the expected lateralization, with distinct cortical and subcortical responses for upper and lower limb stimulation. At the brainstem level, we differentiated the adjacent cuneate and gracile nuclei, corresponding to hand and foot stimulation respectively. Our findings demonstrate that simultaneous cortical, subcortical, and brainstem mapping at 3T could be a key tool to understand the sensory system in both healthy individuals and clinical cohorts with sensory deficits.
Collapse
Affiliation(s)
- Neha A Reddy
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL 60208, United States
| | - Rebecca G Clements
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL 60208, United States
| | - Jonathan C W Brooks
- School of Psychology, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Molly G Bright
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL 60208, United States
| |
Collapse
|
2
|
Song Y, Shahdadian S, Armstrong E, Brock E, Conrad SE, Acord S, Johnson YR, Marks W, Papadelis C. Spatiotemporal dynamics of cortical somatosensory network in typically developing children. Cereb Cortex 2024; 34:bhae230. [PMID: 38836408 PMCID: PMC11151116 DOI: 10.1093/cercor/bhae230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024] Open
Abstract
Sense of touch is essential for our interactions with external objects and fine control of hand actions. Despite extensive research on human somatosensory processing, it is still elusive how involved brain regions interact as a dynamic network in processing tactile information. Few studies probed temporal dynamics of somatosensory information flow and reported inconsistent results. Here, we examined cortical somatosensory processing through magnetic source imaging and cortico-cortical coupling dynamics. We recorded magnetoencephalography signals from typically developing children during unilateral pneumatic stimulation. Neural activities underlying somatosensory evoked fields were mapped with dynamic statistical parametric mapping, assessed with spatiotemporal activation analysis, and modeled by Granger causality. Unilateral pneumatic stimulation evoked prominent and consistent activations in the contralateral primary and secondary somatosensory areas but weaker and less consistent activations in the ipsilateral primary and secondary somatosensory areas. Activations in the contralateral primary motor cortex and supramarginal gyrus were also consistently observed. Spatiotemporal activation and Granger causality analysis revealed initial serial information flow from contralateral primary to supramarginal gyrus, contralateral primary motor cortex, and contralateral secondary and later dynamic and parallel information flows between the consistently activated contralateral cortical areas. Our study reveals the spatiotemporal dynamics of cortical somatosensory processing in the normal developing brain.
Collapse
Affiliation(s)
- Yanlong Song
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children’s Health Care System, 1500 Cooper St., Fort Worth, TX 76104, United States
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd., Arlington, TX 76010, United States
- Departments of Physical Medicine and Rehabilitation and Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, United States
| | - Sadra Shahdadian
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children’s Health Care System, 1500 Cooper St., Fort Worth, TX 76104, United States
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd., Arlington, TX 76010, United States
| | - Eryn Armstrong
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children’s Health Care System, 1500 Cooper St., Fort Worth, TX 76104, United States
| | - Emily Brock
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children’s Health Care System, 1500 Cooper St., Fort Worth, TX 76104, United States
| | - Shannon E Conrad
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children’s Health Care System, 1500 Cooper St., Fort Worth, TX 76104, United States
| | - Stephanie Acord
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children’s Health Care System, 1500 Cooper St., Fort Worth, TX 76104, United States
| | - Yvette R Johnson
- NEST Developmental Follow-up Center, Neonatology, Cook Children’s Health Care System, 1521 Cooper St., Fort Worth, TX 76104, United States
- Department of Pediatrics, Burnett School of Medicine, Texas Christian University, TCU Box 297085, Fort Worth, TX 76129, United States
| | - Warren Marks
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children’s Health Care System, 1500 Cooper St., Fort Worth, TX 76104, United States
| | - Christos Papadelis
- Neuroscience Research Center, Jane and John Justin Institute for Mind Health, Cook Children’s Health Care System, 1500 Cooper St., Fort Worth, TX 76104, United States
- Department of Bioengineering, University of Texas at Arlington, 500 UTA Blvd., Arlington, TX 76010, United States
- Department of Pediatrics, Burnett School of Medicine, Texas Christian University, TCU Box 297085, Fort Worth, TX 76129, United States
| |
Collapse
|
3
|
KalantaryArdebily N, Feldbush AC, Gurari N. MR-Compatible Tactile Stimulator System: Application for Individuals with Brain Injuries. RESEARCH SQUARE 2024:rs.3.rs-3943267. [PMID: 38410479 PMCID: PMC10896382 DOI: 10.21203/rs.3.rs-3943267/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Accurate perception of tactile information is essential for performing activities of daily living and learning new sensorimotor skills like writing. Deficits in perceiving tactile stimuli are associated with severity in physical disability. The mechanisms contributing to tactile deficits in individuals with brain injuries remain poorly understood in part due to insufficient assessment methods. Here, we provide a tactile stimulator system for studying the neural mechanisms contributing to tactile deficits in individuals with brain injuries during functional magnetic resonance imaging (fMRI). This tactile stimulator system consists of a pneumatically-controlled inflatable and deflatable balloon that interfaces with a digit of the hand to provide small forces. The magnitude of the applied force is delivered and controlled by modifying the air pressure in the balloon. The tactile simulator provides an 8 mm diameter tactile stimulus. The device's interface at the finger is compact, allowing it to be used with individuals who have a closed-fist posture following brain injury such as stroke or cerebral palsy. The tactile stimulator contains no metallic components and can be used in MRI research. The tactile stimulator system can repeatedly apply a force between 1 N and 2.4 N. This tactile stimulator system addresses limitations in past fMRI methodologies for assessing tactile perception by providing precise and repeatable force stimuli to a small area of the finger. Custom software automates the application of the force stimuli and permits synchronization with acquired fMRI data. This system can be used in subsequent testing to investigate deficits in sensory functioning in those with brain injuries.
Collapse
Affiliation(s)
| | - Anna C. Feldbush
- Neuroscience, Virginia Tech, Blacksburg, Virginia, United States
| | - Netta Gurari
- Engineering Mechanics, Virginia Tech, Blacksburg, Virginia, United States
- Neuroscience, Virginia Tech, Blacksburg, Virginia, United States
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia, United States
| |
Collapse
|
4
|
Wang Q, Mei Y, Tao Y, Ao J, Zhang Z, Yuan J, Hong X, Zeng F, Jin Z. Functional connectivity characteristics of the brain network involved in prickle perception of single fiber stimulation. Skin Res Technol 2024; 30:e13626. [PMID: 38385847 PMCID: PMC10883244 DOI: 10.1111/srt.13626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/02/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND The complex network connections, information transmission and organization play key roles in brain cognition on sensory stimulation. Previous studies showed that several brain regions of somatosensory, motor, emotional, cognitive, etc. are linked to fabric-evoked prickle. But the functional connectivity characteristics of the brain network involved in prickle perception is still unclear. MATERIALS AND METHODS In the present study, resting state fMRI (functional magnetic resonance imaging) with functional connectivity analysis was adopted to build the initial brain functional network, and task fMRI with psychophysiological interaction analysis was employed to investigate modulation features of prickling task to functional connections in the brain network. RESULTS The results showed that, in resting state, six groups or sub-networks can be identified in the prickle network, and when the subjects performed the prickling task, functional connectivity strength between some seed regions (e.g., somatosensory regions and precuneus, emotional regions and the prefrontal cortex, etc.) in the network increased. CONCLUSION Combining resting-state fMRI with task fMRI is a feasible and promising method to study functional connectivity characteristics of the brain network involved in prickle perception. It is inferred that the "itch" ingredient of prickle sensation was transmitted from somatosensory cortices to precuneus, and emotional attribute (e.g., pain) from somatosensory cortices to the prefrontal cortex and at last to emotional regions.
Collapse
Affiliation(s)
- Qicai Wang
- College of Textile Science and Engineering (International Institute of Silk), Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yonghao Mei
- College of Textile Science and Engineering (International Institute of Silk), Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuan Tao
- High Fashion Womenswear Institute, Hangzhou Vocational and Technical College, Hangzhou, Zhejiang, China
| | - Jiayu Ao
- College of Textile Science and Engineering (International Institute of Silk), Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zhongwei Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jie Yuan
- Clothing Engineering Research Center of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xinghua Hong
- College of Textile Science and Engineering (International Institute of Silk), Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fangmeng Zeng
- College of Textile Science and Engineering (International Institute of Silk), Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| | - Zimin Jin
- College of Textile Science and Engineering (International Institute of Silk), Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
5
|
Peng K, Karunakaran KD, Green S, Borsook D. Machines, mathematics, and modules: the potential to provide real-time metrics for pain under anesthesia. NEUROPHOTONICS 2024; 11:010701. [PMID: 38389718 PMCID: PMC10883389 DOI: 10.1117/1.nph.11.1.010701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/08/2024] [Accepted: 01/16/2024] [Indexed: 02/24/2024]
Abstract
The brain-based assessments under anesthesia have provided the ability to evaluate pain/nociception during surgery and the potential to prevent long-term evolution of chronic pain. Prior studies have shown that the functional near-infrared spectroscopy (fNIRS)-measured changes in cortical regions such as the primary somatosensory and the polar frontal cortices show consistent response to evoked and ongoing pain in awake, sedated, and anesthetized patients. We take this basic approach and integrate it into a potential framework that could provide real-time measures of pain/nociception during the peri-surgical period. This application could have significant implications for providing analgesia during surgery, a practice that currently lacks quantitative evidence to guide patient tailored pain management. Through a simple readout of "pain" or "no pain," the proposed system could diminish or eliminate levels of intraoperative, early post-operative, and potentially, the transition to chronic post-surgical pain. The system, when validated, could also be applied to measures of analgesic efficacy in the clinic.
Collapse
Affiliation(s)
- Ke Peng
- University of Manitoba, Department of Electrical and Computer Engineering, Price Faculty of Engineering, Winnipeg, Manitoba, Canada
| | - Keerthana Deepti Karunakaran
- Massachusetts General Hospital, Harvard Medical School, Department of Psychiatry, Boston, Massachusetts, United States
| | - Stephen Green
- Massachusetts Institute of Technology, Department of Mechanical Engineering, Boston, Massachusetts, United States
| | - David Borsook
- Massachusetts General Hospital, Harvard Medical School, Department of Psychiatry, Boston, Massachusetts, United States
- Massachusetts General Hospital, Harvard Medical School, Department of Radiology, Boston, Massachusetts, United States
| |
Collapse
|
6
|
Saenen L, Verheyden G, Orban de Xivry JJ. The differential effect of age on upper limb sensory processing, proprioception, and motor function. J Neurophysiol 2023; 130:1183-1193. [PMID: 37703491 DOI: 10.1152/jn.00364.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023] Open
Abstract
Sensory processing consists in the integration and interpretation of somatosensory information. It builds upon proprioception but is a distinct function requiring complex processing by the brain over time. Currently little is known about the effect of aging on sensory processing ability or the influence of other covariates such as motor function, proprioception, or cognition. In this study, we measured upper limb passive and active sensory processing, motor function, proprioception, and cognition in 40 healthy younger adults and 54 older adults. We analyzed age differences across all measures and evaluated the influence of covariates on sensory processing through regression. Our results showed larger effect sizes for age differences in sensory processing (r = 0.38) compared with motor function (r = 0.18-0.22) and proprioception (r = 0.10-0.27) but smaller than for cognition (r = 0.56-0.63). Aside from age, we found no evidence that sensory processing performance was related to motor function or proprioception, but active sensory processing was related to cognition (β = 0.30-0.42). In conclusion, sensory processing showed an age-related decline, whereas some proprioceptive and motor abilities were preserved across age.NEW & NOTEWORTHY Sensory processing consists in the integration and interpretation of sensory information by the brain over time and can be affected by lesion while proprioception remains intact. We investigated how sensory processing can be used to reproduce and identify shapes. We showed that the effect of age on sensory processing is more pronounced than its effect on proprioception or motor function. Age and cognition are related to sensory processing, not proprioception or motor function.
Collapse
Affiliation(s)
- Leen Saenen
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Geert Verheyden
- Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | - Jean-Jacques Orban de Xivry
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Senadheera I, Larssen BC, Mak-Yuen YYK, Steinfort S, Carey LM, Alahakoon D. Profiling Somatosensory Impairment after Stroke: Characterizing Common "Fingerprints" of Impairment Using Unsupervised Machine Learning-Based Cluster Analysis of Quantitative Measures of the Upper Limb. Brain Sci 2023; 13:1253. [PMID: 37759854 PMCID: PMC10526214 DOI: 10.3390/brainsci13091253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Altered somatosensory function is common among stroke survivors, yet is often poorly characterized. Methods of profiling somatosensation that illustrate the variability in impairment within and across different modalities remain limited. We aimed to characterize post-stroke somatosensation profiles ("fingerprints") of the upper limb using an unsupervised machine learning cluster analysis to capture hidden relationships between measures of touch, proprioception, and haptic object recognition. Raw data were pooled from six studies where multiple quantitative measures of upper limb somatosensation were collected from stroke survivors (n = 207) using the Tactile Discrimination Test (TDT), Wrist Position Sense Test (WPST) and functional Tactile Object Recognition Test (fTORT) on the contralesional and ipsilesional upper limbs. The Growing Self Organizing Map (GSOM) unsupervised machine learning algorithm was used to generate a topology-preserving two-dimensional mapping of the pooled data and then separate it into clusters. Signature profiles of somatosensory impairment across two modalities (TDT and WPST; n = 203) and three modalities (TDT, WPST, and fTORT; n = 141) were characterized for both hands. Distinct impairment subgroups were identified. The influence of background and clinical variables was also modelled. The study provided evidence of the utility of unsupervised cluster analysis that can profile stroke survivor signatures of somatosensory impairment, which may inform improved diagnosis and characterization of impairment patterns.
Collapse
Affiliation(s)
- Isuru Senadheera
- Centre for Data Analytics and Cognition, La Trobe Business School, La Trobe University, Melbourne, VIC 3086, Australia;
- Occupational Therapy, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC 3086, Australia; (B.C.L.); (Y.Y.K.M.-Y.); (S.S.); (L.M.C.)
| | - Beverley C. Larssen
- Occupational Therapy, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC 3086, Australia; (B.C.L.); (Y.Y.K.M.-Y.); (S.S.); (L.M.C.)
- Department of Physical Therapy, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Yvonne Y. K. Mak-Yuen
- Occupational Therapy, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC 3086, Australia; (B.C.L.); (Y.Y.K.M.-Y.); (S.S.); (L.M.C.)
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3086, Australia
- Department of Occupational Therapy, St. Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
| | - Sarah Steinfort
- Occupational Therapy, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC 3086, Australia; (B.C.L.); (Y.Y.K.M.-Y.); (S.S.); (L.M.C.)
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3086, Australia
| | - Leeanne M. Carey
- Occupational Therapy, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC 3086, Australia; (B.C.L.); (Y.Y.K.M.-Y.); (S.S.); (L.M.C.)
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3086, Australia
| | - Damminda Alahakoon
- Centre for Data Analytics and Cognition, La Trobe Business School, La Trobe University, Melbourne, VIC 3086, Australia;
| |
Collapse
|
8
|
Li CX, Tong F, Kempf D, Howell L, Zhang X. Longitudinal evaluation of the functional connectivity changes in the secondary somatosensory cortex (S2) of the monkey brain during acute stroke. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100097. [PMID: 37404949 PMCID: PMC10315998 DOI: 10.1016/j.crneur.2023.100097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 05/29/2023] [Accepted: 06/09/2023] [Indexed: 07/06/2023] Open
Abstract
Background Somatosensory deficits are frequently seen in acute stroke patients and may recover over time and affect functional outcome. However, the underlying mechanism of function recovery remains poorly understood. In the present study, progressive function alteration of the secondary somatosensory cortex (S2) and its relationship with regional perfusion and neurological outcome were examined using a monkey model of stroke. Methods and materials Rhesus monkeys (n = 4) were induced with permanent middle cerebral artery occlusion (pMCAo). Resting-state functional MRI, dynamic susceptibility contrast perfusion MRI, diffusion-weighted, T1 and T2 weighted images were collected before surgery and at 4-6, 48, and 96 h post stroke on a 3T scanner. Progressive changes of relative functional connectivity (FC), cerebral blood flow (CBF), and CBF/Tmax (Time to Maximum) of affected S2 regions were evaluated. Neurological deficits were assessed using the Spetzler approach. Results Ischemic lesion was evidently seen in the MCA territory including S2 in each monkey. Relative FC of injured S2 regions decreased substantially following stroke. Spetzler scores dropped substantially at 24 h post stroke but slightly recovered from Day 2 to Day 4. Relative FC progressively increased from 6 to 48 and 96 h post stroke and correlated significantly with relative CBFand CBF/Tmax changes. Conclusion The present study revealed the progressive alteration of function connectivity in S2 during acute stroke. The preliminary results suggested the function recovery might start couple days post occlusion and collateral circulation might play a key role in the recovery of somatosensory function after stroke insult. The relative function connectivity in S2 may provide additional information for prediction of functional outcome in stroke patients.
Collapse
Affiliation(s)
- Chun-Xia Li
- Emory National Primate Research Center, Emory University, Atlanta, 30329, Georgia
| | - Frank Tong
- Department of Radiology, Emory University School of Medicine, Atlanta, 30322, Georgia
| | - Doty Kempf
- Emory National Primate Research Center, Emory University, Atlanta, 30329, Georgia
| | - Leonard Howell
- Emory National Primate Research Center, Emory University, Atlanta, 30329, Georgia
| | - Xiaodong Zhang
- Emory National Primate Research Center, Emory University, Atlanta, 30329, Georgia
| |
Collapse
|
9
|
Jung C, Kim J, Park K. Cognitive and affective interaction with somatosensory afference in acupuncture-a specific brain response to compound stimulus. Front Hum Neurosci 2023; 17:1105703. [PMID: 37415858 PMCID: PMC10321409 DOI: 10.3389/fnhum.2023.1105703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
Introduction Acupuncture is a clinical intervention consisting of multiple stimulus components, including somatosensory stimulation and manipulation of therapeutic context. Existing findings in neuroscience consolidated cognitive modulation to somatosensory afferent process, which could differ from placebo mechanism in brain. Here, we aimed to identify intrinsic process of brain interactions induced by compound stimulus of acupuncture treatment. Methods To separately and comprehensively investigate somatosensory afferent and cognitive/affective processes in brain, we implemented a novel experimental protocol of contextual manipulation with somatosensory stimulation (real acupuncture: REAL) and only contextual manipulation (phantom acupuncture: PHNT) for fMRI scan, and conducted independent component (IC)-wise assessment with the concatenated fMRI data. Results By our double (experimentally and analytically) dissociation, two ICs (CA1: executive control, CA2: goal-directed sensory process) for cognitive/affective modulation (associated with both REAL and PHNT) and other two ICs (SA1: interoceptive attention and motor-reaction, SA2: somatosensory representation) for somatosensory afference (associated with only REAL) were identified. Moreover, coupling between SA1 and SA2 was associated with a decreased heart rate during stimulation, whereas CA1 was associated with a delayed heart rate decrease post-stimulation. Furthermore, partial correlation network for these components demonstrated a bi-directional interaction between CA1 and SA1/SA2, suggesting the cognitive modulation to somatosensory process. The expectation for the treatment negatively affected CA1 but positively affected SA1 in REAL, whereas the expectation positively affected CA1 in PHNT. Discussion These specific cognitive-somatosensory interaction in REAL were differed from vicarious sensation mechanism in PHNT; and might be associated with a characteristic of acupuncture, which induces voluntary attention for interoception. Our findings on brain interactions in acupuncture treatment elucidated the underlying brain mechanisms for compound stimulus of somatosensory afferent and therapeutic contextual manipulation, which might be a specific response to acupuncture.
Collapse
Affiliation(s)
- Changjin Jung
- Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin, Republic of Korea
- Division of KM Science Research, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Jieun Kim
- Division of KM Science Research, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Kyungmo Park
- Department of Biomedical Engineering, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
10
|
Matyas TA, Mak-Yuen YYK, Boelsen-Robinson TP, Carey LM. Calibration of Impairment Severity to Enable Comparison across Somatosensory Domains. Brain Sci 2023; 13:654. [PMID: 37190619 PMCID: PMC10137124 DOI: 10.3390/brainsci13040654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023] Open
Abstract
Comparison across somatosensory domains, important for clinical and scientific goals, requires prior calibration of impairment severity. Provided test score distributions are comparable across domains, valid comparisons of impairment can be made by reference to score locations in the corresponding distributions (percentile rank or standardized scores). However, this is often not the case. Test score distributions for tactile texture discrimination (n = 174), wrist joint proprioception (n = 112), and haptic object identification (n = 98) obtained from pooled samples of stroke survivors in rehabilitation settings were investigated. The distributions showed substantially different forms, undermining comparative calibration via percentile rank or standardized scores. An alternative approach is to establish comparable locations in the psychophysical score ranges spanning performance from just noticeably impaired to maximally impaired. Several simulation studies and a theoretical analysis were conducted to establish the score distributions expected from completely insensate responders for each domain. Estimates of extreme impairment values suggested by theory, simulation and observed samples were consistent. Using these estimates and previously discovered values for impairment thresholds in each test domain, comparable ranges of impairment from just noticeable to extreme impairment were found. These ranges enable the normalization of the three test scales for comparison in clinical and research settings.
Collapse
Affiliation(s)
- Thomas A. Matyas
- Occupational Therapy, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC 3086, Australia; (Y.Y.K.M.-Y.); (L.M.C.)
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Heidelberg, Melbourne, VIC 3084, Australia
| | - Yvonne Y. K. Mak-Yuen
- Occupational Therapy, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC 3086, Australia; (Y.Y.K.M.-Y.); (L.M.C.)
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Heidelberg, Melbourne, VIC 3084, Australia
- Department of Occupational Therapy, St Vincent’s Hospital Melbourne, Fitzroy, Melbourne, VIC 3065, Australia
| | - Tristan P. Boelsen-Robinson
- Occupational Therapy, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC 3086, Australia; (Y.Y.K.M.-Y.); (L.M.C.)
| | - Leeanne M. Carey
- Occupational Therapy, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, VIC 3086, Australia; (Y.Y.K.M.-Y.); (L.M.C.)
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Heidelberg, Melbourne, VIC 3084, Australia
| |
Collapse
|
11
|
Mak-Yuen YYK, Matyas TA, Carey LM. Characterizing Touch Discrimination Impairment from Pooled Stroke Samples Using the Tactile Discrimination Test: Updated Criteria for Interpretation and Brief Test Version for Use in Clinical Practice Settings. Brain Sci 2023; 13:533. [PMID: 37190498 PMCID: PMC10137035 DOI: 10.3390/brainsci13040533] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023] Open
Abstract
Somatosensory loss post-stroke is common, with touch sensation characteristically impaired. Yet, quantitative, standardized measures of touch discrimination available for clinical use are currently limited. We aimed to characterize touch impairment and re-establish the criterion of abnormality of the Tactile Discrimination Test (TDT) using pooled data and to determine the sensitivity and specificity of briefer test versions. Baseline data from stroke survivors (n = 207) and older neurologically healthy controls (n = 100) assessed on the TDT was extracted. Scores were re-analyzed to determine an updated criterion of impairment and the ability of brief test versions to detect impairment. Updated scoring using an area score was used to calculate the TDT percent maximum area (PMA) score. Touch impairment was common for the contralesional hand (83%) but also present in the ipsilesional hand (42%). The criterion of abnormality was established as 73.1 PMA across older adults and genders. High sensitivity and specificity were found for briefer versions of the TDT (25 vs. 50 trials; 12 or 15 vs. 25 trials), with sensitivity ranging between 91.8 and 96.4% and specificity between 72.5 and 95.0%. Conclusion: Updated criterion of abnormality and the high sensitivity and specificity of brief test versions support the use of the TDT in clinical practice settings.
Collapse
Affiliation(s)
- Yvonne Y. K. Mak-Yuen
- Occupational Therapy, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne 3086, Australia; (Y.Y.K.M.-Y.); (T.A.M.)
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne 3084, Australia
- Department of Occupational Therapy, St Vincent’s Hospital Melbourne, Melbourne 3065, Australia
| | - Thomas A. Matyas
- Occupational Therapy, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne 3086, Australia; (Y.Y.K.M.-Y.); (T.A.M.)
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne 3084, Australia
| | - Leeanne M. Carey
- Occupational Therapy, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne 3086, Australia; (Y.Y.K.M.-Y.); (T.A.M.)
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne 3084, Australia
| |
Collapse
|
12
|
Knijnenburg ACS, Steinbusch CVM, Janssen-Potten YJM, Defesche A, Vermeulen RJ. Neuro-imaging characteristics of sensory impairment in cerebral palsy; a systematic review. FRONTIERS IN REHABILITATION SCIENCES 2023; 4:1084746. [PMID: 37009398 PMCID: PMC10065191 DOI: 10.3389/fresc.2023.1084746] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023]
Abstract
BackgroundObjective: To identify and examine neural reorganization of the sensory network in terms of lesion type, somatotopic organization of the primary somatosensory area, and functional connectivity in relation to sensory function in children and young adults with cerebral palsy (CP).MethodsDesign: systematic review, Prospero registration ID 342570. Data sources: PubMed; Cochrane; Web of Science; Embase; CINAHL and PEDro from inception to March 13, 2021. Eligibility criteria: All types of original studies, concerning sensory connectivity in relation to sensory outcome in patients with spastic CP, <30 years of age. No publication status or date restrictions were applied. Data extraction and synthesis: Two authors independently determined the eligibility of studies. Quality assessment was performed by a third author. Neuro-imaging/neurophysiological techniques, sensory outcomes and patient characteristics were extracted.ResultsChildren and young adults with periventricular leucomalacia (PVL) lesions have significantly better hand function and sensation scores than patients with cortical-subcortical/middle cerebral artery (MCA) lesions. Ipsilesional reorganization of the S1 (primary somatosensory cortex) area appears to be the primary compensation mechanism after a unilateral early brain lesion, regardless of the timing of the lesion. Interhemispheric reorganization of the sensory system after early brain lesions is rare and, when it occurs, poorly effective. Diffusion tractography shows a positive correlation between the ascending sensory tract (AST) diffusivity metrics of the more affected hemisphere and sensory test outcomes.Discussion and conclusionsBecause of the large variability in study design, patient characteristics, neuroimaging/neurophysiological techniques and parameters as well as sensory assessment methods used, it is difficult to draw definite inferences on the relationship between the reorganization of the sensory network following early brain damage and sensory function in children and young adults with CP. In general, sensory function seems to be worse in cortical as opposed to white matter tract (PVL) lesions. International consensus on a clinically relevant sensory test battery is needed to enhance understanding of the intriguing compensatory mechanisms of sensory network following early brain damage and potential consequences for rehabilitation strategies.Systematic Review Registrationhttps://www.crd.york.ac.uk/prospero/.
Collapse
Affiliation(s)
- A. C. S. Knijnenburg
- Department of Neurology, Maastricht University Medical Centre+, Maastricht, Netherlands
- Research School MHeNS, Maastricht University, Maastricht, Netherlands
- Correspondence: A. C. S. Knijnenburg
| | - C. V. M. Steinbusch
- Research School MHeNS, Maastricht University, Maastricht, Netherlands
- Department of Rehabilitation Medicine, Adelante Rehabilitation Centre, Valkenburg, Netherlands
- Department of Rehabilitation Medicine, Maastricht University, Maastricht, Netherlands
| | - Y. J. M. Janssen-Potten
- Department of Rehabilitation Medicine, Adelante Rehabilitation Centre, Valkenburg, Netherlands
- Department of Rehabilitation Medicine, Maastricht University, Maastricht, Netherlands
- Research School CAPHRI, Maastricht University, Maastricht, Netherlands
- Department of Rehabilitation Medicine, Adelante Centre of Expertise in Rehabilitation and Audiology, Hoensbroek, Netherlands
| | - A. Defesche
- Department of Rehabilitation Medicine, Adelante Rehabilitation Centre, Valkenburg, Netherlands
| | - R. J. Vermeulen
- Department of Neurology, Maastricht University Medical Centre+, Maastricht, Netherlands
- Research School MHeNS, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
13
|
Criss CR, Lepley AS, Onate JA, Simon JE, France CR, Clark BC, Grooms DR. Neural Correlates of Self-Reported Knee Function in Individuals After Anterior Cruciate Ligament Reconstruction. Sports Health 2023; 15:52-60. [PMID: 35321615 PMCID: PMC9808834 DOI: 10.1177/19417381221079339] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Anterior cruciate ligament (ACL) rupture is a common knee injury among athletes and physically active adults. Despite surgical reconstruction and extensive rehabilitation, reinjuries are common and disability levels are high, even years after therapy and return to activity. Prolonged knee dysfunction may result in part from unresolved neuromuscular deficits of the surrounding joint musculature in response to injury. Indeed, "upstream" neurological adaptations occurring after injury may explain these persistent functional deficits. Despite evidence for injury consequences extending beyond the joint to the nervous system, the link between neurophysiological impairments and patient-reported measures of knee function remains unclear. HYPOTHESIS Patterns of brain activation for knee control are related to measures of patient-reported knee function in individuals after ACL reconstruction (ACL-R). STUDY DESIGN Cross-sectional study. LEVEL OF EVIDENCE Level 3. METHODS In this multicenter, cross-sectional study, participants with unilateral ACL-R (n = 25; 10 men, 15 women) underwent task-based functional magnetic resonance imaging testing. Participants performed repeated cycles of open-chain knee flexion/extension. Neural activation patterns during the movement task were quantified using blood oxygen level-dependent (BOLD) signals. Regions of interest were generated using the Juelich Histological Brain Atlas. Pearson product-moment correlations were used to determine the relationship between mean BOLD signal within each brain region and self-reported knee function level, as measured by the International Knee Documentation Committee index. Partial correlations were also calculated after controlling for time from surgery and sex. RESULTS Patient-reported knee function was positively and moderately correlated with the ipsilateral secondary somatosensory cortex (r = 0.57, P = 0.005) and the ipsilateral supplementary motor area (r = 0.51, P = 0.01). CONCLUSION Increased ipsilateral secondary sensorimotor cortical activity is related to higher perceived knee function. CLINICAL RELEVANCE Central nervous system mechanisms for knee control are related to subjective levels of knee function after ACL-R. Increased neural activity may reflect central neuroplastic strategies to preserve knee functionality after traumatic injury.
Collapse
Affiliation(s)
- Cody R. Criss
- Translational Biomedical Sciences,
Graduate College, Ohio University, Athens, Ohio
- Ohio Musculoskeletal & Neurological
Institute (OMNI), Ohio University, Athens, Ohio
- Cody R Criss, W283 Grover
Center, 1 Ohio University, Athens, OH 45701 (
) (Twitter: @criss_cody)
| | - Adam S. Lepley
- Exercise and Sport Science Initiative,
School of Kinesiology, University of Michigan, Ann Arbor, Michigan
| | - James A. Onate
- School of Health and Rehabilitation
Sciences, The Ohio State University, Columbus, Ohio
| | - Janet E. Simon
- Ohio Musculoskeletal & Neurological
Institute (OMNI), Ohio University, Athens, Ohio
- Division of Athletic Training, School
of Applied Health Sciences and Wellness, College of Health Sciences and Professions,
Ohio University, Athens, Ohio
| | - Christopher R. France
- Ohio Musculoskeletal & Neurological
Institute (OMNI), Ohio University, Athens, Ohio
- Department of Psychology, College of
Arts and Sciences, Ohio University, Athens, Ohio
| | - Brian C. Clark
- Ohio Musculoskeletal & Neurological
Institute (OMNI), Ohio University, Athens, Ohio
- Department of Biomedical Sciences,
Ohio University, Athens, Ohio
- Department of Geriatric Medicine, Ohio
University, Athens, Ohio
| | - Dustin R. Grooms
- Ohio Musculoskeletal & Neurological
Institute (OMNI), Ohio University, Athens, Ohio
- Division of Athletic Training, School
of Applied Health Sciences and Wellness, College of Health Sciences and Professions,
Ohio University, Athens, Ohio
- Division of Physical Therapy, School
of Rehabilitation and Communication Sciences, College of Health Sciences and
Professions, Ohio University, Athens, Ohio
| |
Collapse
|
14
|
Haslam BS, Butler DS, Cocks TS, Kim AS, Carey LM. Body Schema as Assessed by Upper Limb Left/Right Judgment Tasks Is Altered in Stroke: Implications for Motor Imagery Training. J Neurol Phys Ther 2023; 47:26-34. [PMID: 36534017 DOI: 10.1097/npt.0000000000000412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND AND PURPOSE Individuals with stroke often experience significant impairment of the upper limb. Rehabilitation interventions targeting the upper limb are typically associated with only small to moderate gains. The knowledge that body schema can be altered in other upper limb conditions has contributed to the development of tailored rehabilitation approaches. This study investigated whether individuals with stroke experienced alterations in body schema of the upper limb. If so, this knowledge may have implications for rehabilitation approaches such as motor imagery. METHODS An observational study performed online consisting of left/right judgment tasks assessed by response time and accuracy of: (i) left/right direction recognition; (ii) left/right shoulder laterality recognition; (iii) left/right hand laterality recognition; (iv) mental rotation of nonembodied objects. Comparisons were made between individuals with and without stroke. Secondary comparisons were made in the stroke population according to side of stroke and side of pain if experienced. RESULTS A total of 895 individuals (445 with stroke) participated. Individuals with stroke took longer for all tasks compared to those without stroke, and were less accurate in correctly identifying the laterality of shoulder (P < 0.001) and hand (P < 0.001) images, and the orientation of nonembodied objects (P < 0.001). Moreover, the differences observed in the hand and shoulder tasks were greater than what was observed for the control tasks of directional recognition and nonembodied mental rotation. No significant differences were found between left/right judgments of individuals with stroke according to stroke-affected side or side of pain. DISCUSSION AND CONCLUSIONS Left/right judgments of upper limb are frequently impaired after stroke, providing evidence of alterations in body schema. The knowledge that body schemas are altered in individuals with longstanding stroke may assist in the development of optimal, well-accepted motor imagery programs for the upper limb.Video Abstract available for more insights from the authors (see the Video, Supplemental Digital Content 1, available at: http://links.lww.com/JNPT/A394).
Collapse
Affiliation(s)
- Brendon S Haslam
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia (B.S.H., L.M.C.); Occupational Therapy, School of Allied Health, Human Services and Sport, La Trobe University, Melbourne, Australia (B.H.S., L.M.C.); School of Health Sciences, University of South Australia, Adelaide, Australia (D.S.B.); Neuro-Orthopaedic Institute, Adelaide, Australia (D.S.B., T.S.C.); and Department of Neurology, Weill Institute of Neurosciences, University of California, San Francisco (A.S.K.)
| | | | | | | | | |
Collapse
|
15
|
Liang X, Koh CL, Yeh CH, Goodin P, Lamp G, Connelly A, Carey LM. Predicting Post-Stroke Somatosensory Function from Resting-State Functional Connectivity: A Feasibility Study. Brain Sci 2021; 11:brainsci11111388. [PMID: 34827387 PMCID: PMC8615819 DOI: 10.3390/brainsci11111388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/07/2021] [Accepted: 10/18/2021] [Indexed: 12/02/2022] Open
Abstract
Accumulating evidence shows that brain functional deficits may be impacted by damage to remote brain regions. Recent advances in neuroimaging suggest that stroke impairment can be better predicted based on disruption to brain networks rather than from lesion locations or volumes only. Our aim was to explore the feasibility of predicting post-stroke somatosensory function from brain functional connectivity through the application of machine learning techniques. Somatosensory impairment was measured using the Tactile Discrimination Test. Functional connectivity was employed to model the global brain function. Behavioral measures and MRI were collected at the same timepoint. Two machine learning models (linear regression and support vector regression) were chosen to predict somatosensory impairment from disrupted networks. Along with two feature pools (i.e., low-order and high-order functional connectivity, or low-order functional connectivity only) engineered, four predictive models were built and evaluated in the present study. Forty-three chronic stroke survivors participated this study. Results showed that the regression model employing both low-order and high-order functional connectivity can predict outcomes based on correlation coefficient of r = 0.54 (p = 0.0002). A machine learning predictive approach, involving high- and low-order modelling, is feasible for the prediction of residual somatosensory function in stroke patients using functional brain networks.
Collapse
Affiliation(s)
- Xiaoyun Liang
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3084, Australia; (C.-L.K.); (P.G.); (G.L.); (L.M.C.)
- Victorian Infant Brain Studies (VIBeS) Group, Murdoch Children’s Research Institute, Melbourne, VIC 3052, Australia
- Correspondence:
| | - Chia-Lin Koh
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3084, Australia; (C.-L.K.); (P.G.); (G.L.); (L.M.C.)
- Department of Occupational Therapy, Social Work and Social Policy, School of Allied Health Human Services and Sport, La Trobe University, Melbourne, VIC 3086, Australia
- Department of Occupational Therapy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chun-Hung Yeh
- Imaging Division, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3084, Australia; (C.-H.Y.); (A.C.)
- Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan 33302, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital, Linkou Medical Center, Taoyuan 33305, Taiwan
| | - Peter Goodin
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3084, Australia; (C.-L.K.); (P.G.); (G.L.); (L.M.C.)
| | - Gemma Lamp
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3084, Australia; (C.-L.K.); (P.G.); (G.L.); (L.M.C.)
- Department of Psychology and Counselling, School of Psychology and Public Health, La Trobe University, Melbourne, VIC 3086, Australia
| | - Alan Connelly
- Imaging Division, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3084, Australia; (C.-H.Y.); (A.C.)
| | - Leeanne M. Carey
- Neurorehabilitation and Recovery, Florey Institute of Neuroscience and Mental Health, Melbourne, VIC 3084, Australia; (C.-L.K.); (P.G.); (G.L.); (L.M.C.)
- Department of Occupational Therapy, Social Work and Social Policy, School of Allied Health Human Services and Sport, La Trobe University, Melbourne, VIC 3086, Australia
| |
Collapse
|
16
|
Koh CL, Yeh CH, Liang X, Vidyasagar R, Seitz RJ, Nilsson M, Connelly A, Carey LM. Structural Connectivity Remote From Lesions Correlates With Somatosensory Outcome Poststroke. Stroke 2021; 52:2910-2920. [PMID: 34134504 DOI: 10.1161/strokeaha.120.031520] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Chia-Lin Koh
- Neurorehabilitation and Recovery (C.-L.K., X.L., R.V., R.J.S., L.M.C.), Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.,Occupational Therapy, School of Allied Health, Human Services and Sport, College of Science, Health, and Engineering, La Trobe University, Bundoora, Victoria, Australia (C.-L.K., M.N., L.M.C.).,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia (C.-L.K., C.-H.Y., X.L., R.V., M.N., A.C., L.M.C.).,Department of Occupational Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan (C.-L.K.)
| | - Chun-Hung Yeh
- Imaging Division (C.-H.Y., A.C.), Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia (C.-L.K., C.-H.Y., X.L., R.V., M.N., A.C., L.M.C.).,Institute for Radiological Research, Chang Gung University and Chang Gung Memorial Hospital, Taoyuan, Taiwan (C.-H.Y.).,Department of Child and Adolescent Psychiatry, Chang Gung Memorial Hospital, Taoyuan, Taiwan (C.-H.Y.)
| | - Xiaoyun Liang
- Neurorehabilitation and Recovery (C.-L.K., X.L., R.V., R.J.S., L.M.C.), Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia (C.-L.K., C.-H.Y., X.L., R.V., M.N., A.C., L.M.C.).,Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Victoria, Australia (X.L.)
| | - Rishma Vidyasagar
- Neurorehabilitation and Recovery (C.-L.K., X.L., R.V., R.J.S., L.M.C.), Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia (C.-L.K., C.-H.Y., X.L., R.V., M.N., A.C., L.M.C.)
| | - Rüdiger J Seitz
- Neurorehabilitation and Recovery (C.-L.K., X.L., R.V., R.J.S., L.M.C.), Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.,Department of Neurology, Center for Neurology and Neuropsychiatry, LVR-Klinikum Düsseldorf, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany (R.J.S.)
| | - Michael Nilsson
- Occupational Therapy, School of Allied Health, Human Services and Sport, College of Science, Health, and Engineering, La Trobe University, Bundoora, Victoria, Australia (C.-L.K., M.N., L.M.C.).,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia (C.-L.K., C.-H.Y., X.L., R.V., M.N., A.C., L.M.C.).,School of Biomedical Sciences and Pharmacy and Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Callaghan, NSW, Australia (M.N.)
| | - Alan Connelly
- Imaging Division (C.-H.Y., A.C.), Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia (C.-L.K., C.-H.Y., X.L., R.V., M.N., A.C., L.M.C.)
| | - Leeanne M Carey
- Neurorehabilitation and Recovery (C.-L.K., X.L., R.V., R.J.S., L.M.C.), Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.,Occupational Therapy, School of Allied Health, Human Services and Sport, College of Science, Health, and Engineering, La Trobe University, Bundoora, Victoria, Australia (C.-L.K., M.N., L.M.C.).,Florey Department of Neuroscience and Mental Health, The University of Melbourne, Victoria, Australia (C.-L.K., C.-H.Y., X.L., R.V., M.N., A.C., L.M.C.)
| |
Collapse
|
17
|
Cabanas-Valdés R, Calvo-Sanz J, Serra-Llobet P, Alcoba-Kait J, González-Rueda V, Rodríguez-Rubio PR. The Effectiveness of Massage Therapy for Improving Sequelae in Post-Stroke Survivors. A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094424. [PMID: 33919371 PMCID: PMC8122530 DOI: 10.3390/ijerph18094424] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/26/2022]
Abstract
Objective: To assess the effect of therapeutic massage for improving sequelae in stroke survivors. Methods: A systematic review of the nine medical databases from January 1961 to December 2020 was carried out. The bibliography was screened to identify randomized controlled clinical trials (RCTs). Two reviewers independently screened references, selected relevant studies, extracted data and assessed the risk of bias using the PEDro scale. The primary outcome was upper and lower limb motor function and spasticity. Results: A total of 3196 studies were identified and 18 RCT were finally included (1989 individuals). A meta-analysis of RCTs in the comparison of Chinese massage (Tuina) plus conventional physiotherapy versus conventional physiotherapy was performed. The mean difference (MD) in the subacute stage on upper limb motor-function using the Fugl Meyer Assessment was 2.75; (95% confidence interval (CI) from 0.97 to 4.53, p = 0.002, I2 = 36%). The MD on upper limb spasticity using modified Ashworth scale was −0.15; (95% CI from −0.24 to −0.06, p < 0.02, I2 = 0%).The MD on lower limb spasticity was −0.59; (95% CI from −0.78 to −0.40, p < 0.001, I2 = 0%) in the endpoint. Conclusions: Therapeutic massage, especially Tuina, in addition to conventional therapy is effective for improving motor function and for reducing spasticity in stroke survivors.
Collapse
Affiliation(s)
- Rosa Cabanas-Valdés
- Physiotherapy Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Barcelona, Spain; (P.S.-L.); (J.A.-K.); (V.G.-R.); (P.R.R.-R.)
- Correspondence:
| | - Jordi Calvo-Sanz
- Physiotherapy Department, School of Health Sciences, Tecno Campus, Mataró-Pompeu Fabra University (TCM-UPF), 08302 Barcelona, Spain;
- Hospital Asepeyo Sant Cugat del Vallès, 08174 Barcelona, Spain
| | - Pol Serra-Llobet
- Physiotherapy Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Barcelona, Spain; (P.S.-L.); (J.A.-K.); (V.G.-R.); (P.R.R.-R.)
| | - Joana Alcoba-Kait
- Physiotherapy Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Barcelona, Spain; (P.S.-L.); (J.A.-K.); (V.G.-R.); (P.R.R.-R.)
- CENAC, 08028 Barcelona, Spain
| | - Vanessa González-Rueda
- Physiotherapy Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Barcelona, Spain; (P.S.-L.); (J.A.-K.); (V.G.-R.); (P.R.R.-R.)
- Fundació Institut Universitari per a la Recerca a l’Atenció Primaria de Salut Jordi Gol i Gurina, 08007 Barcelona, Spain
| | - Pere Ramón Rodríguez-Rubio
- Physiotherapy Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Barcelona, Spain; (P.S.-L.); (J.A.-K.); (V.G.-R.); (P.R.R.-R.)
| |
Collapse
|
18
|
Arikan BE, Voudouris D, Voudouri-Gertz H, Sommer J, Fiehler K. Reach-relevant somatosensory signals modulate activity in the tactile suppression network. Neuroimage 2021; 236:118000. [PMID: 33864902 DOI: 10.1016/j.neuroimage.2021.118000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 02/26/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022] Open
Abstract
Somatosensory signals on a moving limb are typically suppressed. This results mainly from a predictive mechanism that generates an efference copy, and attenuates the predicted sensory consequences of that movement. Sensory feedback is, however, important for movement control. Behavioral studies show that the strength of suppression on a moving limb increases during somatosensory reaching, when reach-relevant somatosensory signals from the target limb can be additionally used to plan and guide the movement, leading to increased reliability of sensorimotor predictions. It is still unknown how this suppression is neurally implemented. In this fMRI study, participants reached to a somatosensory (static finger) or an external target (touch-screen) without vision. To probe suppression, participants detected brief vibrotactile stimuli on their moving finger shortly before reach onset. As expected, sensitivity to probes was reduced during reaching compared to baseline (resting), and this suppression was stronger during somatosensory than external reaching. BOLD activation associated with suppression was also modulated by the reach target: relative to baseline, processing of probes during somatosensory reaching led to distinct BOLD deactivations in somatosensory regions (postcentral gyrus, supramarginal gyrus-SMG) whereas probes during external reaching led to deactivations in the cerebellum. In line with the behavioral results, we also found additional deactivations during somatosensory relative to external reaching in the supplementary motor area, a region linked with sensorimotor prediction. Somatosensory reaching was also linked with increased functional connectivity between the left SMG and the right parietal operculum along with the right anterior insula. We show that somatosensory processing on a moving limb is reduced when additional reach-relevant feedback signals from the target limb contribute to the movement, by down-regulating activation in regions associated with predictive and feedback processing.
Collapse
Affiliation(s)
- Belkis Ezgi Arikan
- Experimental Psychology, Justus Liebig University Giessen, Otto-Behaghel Str. 10F, D-35394 Giessen, Germany.
| | - Dimitris Voudouris
- Experimental Psychology, Justus Liebig University Giessen, Otto-Behaghel Str. 10F, D-35394 Giessen, Germany
| | - Hanna Voudouri-Gertz
- Experimental Psychology, Justus Liebig University Giessen, Otto-Behaghel Str. 10F, D-35394 Giessen, Germany
| | - Jens Sommer
- Core Facility Brain Imaging, Faculty of Medicine, Philipps University Marburg, Rudolf-Bultmann-Str. 9, 35039 Marburg, Germany
| | - Katja Fiehler
- Experimental Psychology, Justus Liebig University Giessen, Otto-Behaghel Str. 10F, D-35394 Giessen, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus Liebig University, Giessen, Germany
| |
Collapse
|
19
|
Pundik S, Skelly M, McCabe J, Akbari H, Tatsuoka C, Plow EB. Does rTMS Targeting Contralesional S1 Enhance Upper Limb Somatosensory Function in Chronic Stroke? A Proof-of-Principle Study. Neurorehabil Neural Repair 2021; 35:233-246. [PMID: 33514270 DOI: 10.1177/1545968321989338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Somatosensory deficits are prevalent after stroke, but effective interventions are limited. Brain stimulation of the contralesional primary somatosensory cortex (S1) is a promising adjunct to peripherally administered rehabilitation therapies. OBJECTIVE To assess short-term effects of repetitive transcranial magnetic stimulation (rTMS) targeting contralesional (S1) of the upper extremity. METHODS Using a single-session randomized crossover design, stroke survivors with upper extremity somatosensory loss participated in 3 rTMS treatments targeting contralesional S1: Sham, 5 Hz, and 1 Hz. rTMS was delivered concurrently with peripheral of sensory electrical stimulation and vibration of the affected hand. Outcomes included 2-point discrimination (2PD), proprioception, vibration perception threshold, monofilament threshold (size), and somatosensory evoked potential (SEP). Measures were collected before, immediately after treatment, and 1 hour after treatment. Mixed models were fit to analyze the effects of the 3 interventions. RESULTS Subjects were 59.8 ± 8.1 years old and 45 ± 39 months poststroke. There was improvement in 2PD after 5-Hz rTMS for the stroke-affected (F(2, 76.163) = 3.5, P = .035) and unaffected arm (F(2, 192.786) = 10.6, P < .0001). Peak-to-peak SEP amplitudes were greater after 5-Hz rTMS for N33-P45 (F(2, 133.027) = 3.518, P = .032) and N45-P60 (F(2, 67.353) = 3.212, P = .047). Latencies shortened after 5-Hz rTMS for N20 (F(2, 69.64) = 3.37, P = .04), N60 (F(2, 47.343) = 4.375, P = .018), and P100 (F(2, 37.608) = 3.537, P = .039) peaks. There were no differences between changes immediately after the intervention and an hour later. CONCLUSIONS Short-term application of facilitatory high-frequency rTMS (5Hz) to contralesional S1 combined with peripheral somatosensory stimulation may promote somatosensory function. This intervention may serve as a useful adjunct in somatosensory rehabilitation after stroke.
Collapse
Affiliation(s)
- Svetlana Pundik
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA.,Case Western Reserve University, Cleveland, OH, USA
| | - Margaret Skelly
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Jessica McCabe
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Heba Akbari
- Case Western Reserve University, Cleveland, OH, USA
| | | | - Ela B Plow
- Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
20
|
Zhang N, Yuan X, Li Q, Wang Z, Gu X, Zang J, Ge R, Liu H, Fan Z, Bu L. The effects of age on brain cortical activation and functional connectivity during video game-based finger-to-thumb opposition movement: A functional near-infrared spectroscopy study. Neurosci Lett 2021; 746:135668. [PMID: 33497717 DOI: 10.1016/j.neulet.2021.135668] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/21/2020] [Accepted: 01/14/2021] [Indexed: 11/18/2022]
Abstract
OBJECTIVES This study aims to explore the age-related changes in cerebral cortex activation and functional connectivity (FC) during finger-to-thumb opposition movement based on video games (FTOMBVG). METHODS A electronic fingercot was developed for FTOMBVG. The oxygenated hemoglobin concentration (Delta [HbO]) signals, measured by functional near-infrared spectroscopy (fNIRS), were recorded from prefrontal cortex (PFC), motor cortex (MC) and occipital lobe (OL) of two groups of subjects (old and young). RESULTS The cognitive region of the old group showed bilateral activation, while the young group only showed unilateral activation. Both groups showed a wide range of bilateral activation in the motor region. The FC between cognitive region and motor region of the old group was enhanced considerably. CONCLUSION Changes in cerebral cortex activation and the FC of different brain regions in the old group help explain the decline in cognitive executive and motor control function in the old from the perspective of brain functional structure, and provide a theoretical reference for the prevention of neural diseases caused by aging.
Collapse
Affiliation(s)
- Nieqiang Zhang
- School of Mechanical Engineering, Shandong University, Jinan, 250061, China
| | - Xin Yuan
- School of Mechanical Engineering, Shandong University, Jinan, 250061, China
| | - Qinbiao Li
- School of Mechanical Engineering, Shandong University, Jinan, 250061, China
| | - Zilin Wang
- School of Mechanical Engineering, Shandong University, Jinan, 250061, China
| | - Xiaosong Gu
- School of Mechanical Engineering, Shandong University, Jinan, 250061, China
| | - Jiabin Zang
- School of Mechanical Engineering, Shandong University, Jinan, 250061, China
| | - Ruhong Ge
- School of Mechanical Engineering, Shandong University, Jinan, 250061, China
| | - Heshan Liu
- School of Mechanical Engineering, Shandong University, Jinan, 250061, China.
| | - Zhijun Fan
- School of Mechanical Engineering, Shandong University, Jinan, 250061, China.
| | - Lingguo Bu
- Joint SDU-NTU Centre for Artificial Intelligence Research (C-FAIR), Shandong University, Jinan 250101, China; School of Mechanical and Aerospace Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
21
|
Cléry JC, Hori Y, Schaeffer DJ, Gati JS, Pruszynski JA, Everling S. Whole brain mapping of somatosensory responses in awake marmosets investigated with ultra-high-field fMRI. J Neurophysiol 2020; 124:1900-1913. [PMID: 33112698 DOI: 10.1152/jn.00480.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The common marmoset (Callithrix jacchus) is a small-bodied New World primate that is becoming an important model to study brain functions. Despite several studies exploring the somatosensory system of marmosets, all results have come from anesthetized animals using invasive techniques and postmortem analyses. Here, we demonstrate the feasibility for getting high-quality and reproducible somatosensory mapping in awake marmosets with functional magnetic resonance imaging (fMRI). We acquired fMRI sequences in four animals, while they received tactile stimulation (via air-puffs), delivered to the face, arm, or leg. We found a topographic body representation with the leg representation in the most medial part, the face representation in the most lateral part, and the arm representation between leg and face representation within areas 3a, 3b, and 1/2. A similar sequence from leg to face from caudal to rostral sites was identified in areas S2 and PV. By generating functional connectivity maps of seeds defined in the primary and second somatosensory regions, we identified two clusters of tactile representation within the posterior and midcingulate cortex. However, unlike humans and macaques, no clear somatotopic maps were observed. At the subcortical level, we found a somatotopic body representation in the thalamus and, for the first time in marmosets, in the putamen. These maps have similar organizations, as those previously found in Old World macaque monkeys and humans, suggesting that these subcortical somatotopic organizations were already established before Old and New World primates diverged. Our results show the first whole brain mapping of somatosensory responses acquired in a noninvasive way in awake marmosets.NEW & NOTEWORTHY We used somatosensory stimulation combined with functional MRI (fMRI) in awake marmosets to reveal the topographic body representation in areas S1, S2, thalamus, and putamen. We showed the existence of a body representation organization within the thalamus and the cingulate cortex by computing functional connectivity maps from seeds defined in S1/S2, using resting-state fMRI data. This noninvasive approach will be essential for chronic studies by guiding invasive recording and manipulation techniques.
Collapse
Affiliation(s)
- Justine C Cléry
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Yuki Hori
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - David J Schaeffer
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Joseph S Gati
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - J Andrew Pruszynski
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
22
|
Pläschke RN, Patil KR, Cieslik EC, Nostro AD, Varikuti DP, Plachti A, Lösche P, Hoffstaedter F, Kalenscher T, Langner R, Eickhoff SB. Age differences in predicting working memory performance from network-based functional connectivity. Cortex 2020; 132:441-459. [PMID: 33065515 PMCID: PMC7778730 DOI: 10.1016/j.cortex.2020.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 06/27/2020] [Accepted: 08/23/2020] [Indexed: 01/14/2023]
Abstract
Deterioration in working memory capacity (WMC) has been associated with normal aging, but it remains unknown how age affects the relationship between WMC and connectivity within functional brain networks. We therefore examined the predictability of WMC from fMRI-based resting-state functional connectivity (RSFC) within eight meta-analytically defined functional brain networks and the connectome in young and old adults using relevance vector machine in a robust cross-validation scheme. Particular brain networks have been associated with mental functions linked to WMC to a varying degree and are associated with age-related differences in performance. Comparing prediction performance between the young and old sample revealed age-specific effects: In young adults, we found a general unpredictability of WMC from RSFC in networks subserving WM, cognitive action control, vigilant attention, theory-of-mind cognition, and semantic memory, whereas in older adults each network significantly predicted WMC. Moreover, both WM-related and WM-unrelated networks were differently predictive in older adults with low versus high WMC. These results indicate that the within-network functional coupling during task-free states is specifically related to individual task performance in advanced age, suggesting neural-level reorganization. In particular, our findings support the notion of a decreased segregation of functional brain networks, deterioration of network integrity within different networks and/or compensation by reorganization as factors driving associations between individual WMC and within-network RSFC in older adults. Thus, using multivariate pattern regression provided novel insights into age-related brain reorganization by linking cognitive capacity to brain network integrity.
Collapse
Affiliation(s)
- Rachel N Pläschke
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.
| | - Kaustubh R Patil
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Edna C Cieslik
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Alessandra D Nostro
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Deepthi P Varikuti
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Anna Plachti
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Patrick Lösche
- Leibniz Institute for International Educational Research (DIPF), Centre for Research on Human Development and Education, Frankfurt am Main, Germany
| | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Tobias Kalenscher
- Comparative Psychology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Robert Langner
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.
| |
Collapse
|
23
|
Lundblad LC, Olausson H, Wasling P, Jood K, Wysocka A, Hamilton JP, McIntyre S, Backlund Wasling H. Tactile direction discrimination in humans after stroke. Brain Commun 2020; 2:fcaa088. [PMID: 32954335 PMCID: PMC7472910 DOI: 10.1093/braincomms/fcaa088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 04/27/2020] [Accepted: 05/22/2020] [Indexed: 11/24/2022] Open
Abstract
Sensing movements across the skin surface is a complex task for the tactile sensory system, relying on sophisticated cortical processing. Functional MRI has shown that judgements of the direction of tactile stimuli moving across the skin are processed in distributed cortical areas in healthy humans. To further study which brain areas are important for tactile direction discrimination, we performed a lesion study, examining a group of patients with first-time stroke. We measured tactile direction discrimination in 44 patients, bilaterally on the dorsum of the hands and feet, within 2 weeks (acute), and again in 28 patients 3 months after stroke. The 3-month follow-up also included a structural MRI scan for lesion delineation. Fifty-nine healthy participants were examined for normative direction discrimination values. We found abnormal tactile direction discrimination in 29/44 patients in the acute phase, and in 21/28 3 months after stroke. Lesions that included the opercular parietal area 1 of the secondary somatosensory cortex, the dorsolateral prefrontal cortex or the insular cortex were always associated with abnormal tactile direction discrimination, consistent with previous functional MRI results. Abnormal tactile direction discrimination was also present with lesions including white matter and subcortical regions. We have thus delineated cortical, subcortical and white matter areas important for tactile direction discrimination function. The findings also suggest that tactile dysfunction is common following stroke.
Collapse
Affiliation(s)
- Linda C Lundblad
- Department of Clinical Neurophysiology, Sahlgrenska University Hospital, S-413 45 Gothenburg, Sweden
- Institute of Neuroscience and Physiology, University of Gothenburg, S-405 30 Gothenburg, Sweden
| | - Håkan Olausson
- Department of Clinical Neurophysiology, Sahlgrenska University Hospital, S-413 45 Gothenburg, Sweden
- Institute of Neuroscience and Physiology, University of Gothenburg, S-405 30 Gothenburg, Sweden
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, SE-581 83 Linköping, Sweden
| | - Pontus Wasling
- Institute of Neuroscience and Physiology, University of Gothenburg, S-405 30 Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, S-413 45 Gothenburg, Sweden
| | - Katarina Jood
- Institute of Neuroscience and Physiology, University of Gothenburg, S-405 30 Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, S-413 45 Gothenburg, Sweden
| | - Anna Wysocka
- Department of Neurology, Sahlgrenska University Hospital, S-413 45 Gothenburg, Sweden
| | - J Paul Hamilton
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, SE-581 83 Linköping, Sweden
| | - Sarah McIntyre
- Department of Biomedical and Clinical Sciences, Center for Social and Affective Neuroscience, Linköping University, SE-581 83 Linköping, Sweden
| | - Helena Backlund Wasling
- Institute of Neuroscience and Physiology, University of Gothenburg, S-405 30 Gothenburg, Sweden
| |
Collapse
|
24
|
Ding K, Dragomir A, Bose R, Osborn LE, Seet MS, Bezerianos A, Thakor NV. Towards machine to brain interfaces: sensory stimulation enhances sensorimotor dynamic functional connectivity in upper limb amputees. J Neural Eng 2020; 17:035002. [DOI: 10.1088/1741-2552/ab882d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
25
|
Jayakody O, Breslin M, Beare R, Blumen HM, Srikanth VK, Callisaya ML. Regional Associations of Cortical Thickness With Gait Variability—The Tasmanian Study of Cognition and Gait. J Gerontol A Biol Sci Med Sci 2020; 75:1537-1544. [DOI: 10.1093/gerona/glaa118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Indexed: 02/02/2023] Open
Abstract
Abstract
Background
Gait variability is a marker of cognitive decline. However, there is limited understanding of the cortical regions associated with gait variability. We examined associations between regional cortical thickness and gait variability in a population-based sample of older people without dementia.
Method
Participants (n = 350, mean age 71.9 ± 7.1) were randomly selected from the electoral roll. Variability in step time, step length, step width, and double support time (DST) were calculated as the standard deviation of each measure, obtained from the GAITRite walkway. Magnetic resonance imaging (MRI) scans were processed through FreeSurfer to obtain cortical thickness of 68 regions. Bayesian regression was used to determine regional associations of mean cortical thickness and thickness ratio (regional thickness/overall mean thickness) with gait variability.
Results
Smaller global cortical thickness was only associated with greater step width and step time variability. Smaller mean thickness in widespread regions important for sensory, cognitive, and motor functions were associated with greater step width and step time variability. In contrast, smaller thickness in a few frontal and temporal regions were associated with DST variability and the right cuneus was associated with step length variability. Smaller thickness ratio in frontal and temporal regions important for motor planning, execution, and sensory function and greater thickness ratio in the anterior cingulate was associated with greater variability in all measures.
Conclusions
Examining individual cortical regions is important in understanding the relationship between gray matter and gait variability. Cortical thickness ratio highlights that smaller regional thickness relative to global thickness may be important for the consistency of gait.
Collapse
Affiliation(s)
- Oshadi Jayakody
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Monique Breslin
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Richard Beare
- Peninsula Clinical School, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Developmental Imaging, Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Victoria, Australia
| | - Helena M Blumen
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York
| | - Velandai K Srikanth
- Peninsula Clinical School, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Departments of Medicine and Geriatric Medicine, Frankston Hospital, Peninsula Health, Melbourne, Victoria, Australia
| | - Michele L Callisaya
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
- Peninsula Clinical School, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
26
|
Kim J, Bülthoff I, Bülthoff HH. Cortical Representation of Tactile Stickiness Evoked by Skin Contact and Glove Contact. Front Integr Neurosci 2020; 14:19. [PMID: 32327980 PMCID: PMC7160846 DOI: 10.3389/fnint.2020.00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/23/2020] [Indexed: 11/13/2022] Open
Abstract
Even when we are wearing gloves, we can easily detect whether a surface that we are touching is sticky or not. However, we know little about the similarities between brain activations elicited by this glove contact and by direct contact with our bare skin. In this functional magnetic resonance imaging (fMRI) study, we investigated which brain regions represent stickiness intensity information obtained in both touch conditions, i.e., skin contact and glove contact. First, we searched for neural representations mediating stickiness for each touch condition separately and found regions responding to both mainly in the supramarginal gyrus and the secondary somatosensory cortex. Second, we explored whether surface stickiness is encoded in common neural patterns irrespective of how participants touched the sticky stimuli. Using a cross-condition decoding method, we tested whether the stickiness intensities could be decoded from fMRI signals evoked by skin contact using a classifier trained on the responses elicited by glove contact, and vice versa. Our results found shared neural encoding patterns in the bilateral angular gyri and the inferior frontal gyrus (IFG) and suggest that these areas represent stickiness intensity information regardless of how participants touched the sticky stimuli. Interestingly, we observed that neural encoding patterns of these areas were reflected in participants’ intensity ratings. This study revealed common and distinct brain activation patterns of tactile stickiness using two different touch conditions, which may broaden the understanding of neural mechanisms related to surface texture perception.
Collapse
Affiliation(s)
- Junsuk Kim
- Department of Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Department of Industrial ICT Engineering, Dong-Eui University, Busan, South Korea
| | - Isabelle Bülthoff
- Department of Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Heinrich H Bülthoff
- Department of Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
27
|
Kilteni K, Ehrsson HH. Functional Connectivity between the Cerebellum and Somatosensory Areas Implements the Attenuation of Self-Generated Touch. J Neurosci 2020; 40:894-906. [PMID: 31811029 PMCID: PMC6975290 DOI: 10.1523/jneurosci.1732-19.2019] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 11/25/2022] Open
Abstract
Since the early 1970s, numerous behavioral studies have shown that self-generated touch feels less intense and less ticklish than the same touch applied externally. Computational motor control theories have suggested that cerebellar internal models predict the somatosensory consequences of our movements and that these predictions attenuate the perception of the actual touch. Despite this influential theoretical framework, little is known about the neural basis of this predictive attenuation. This is due to the limited number of neuroimaging studies, the presence of conflicting results about the role and the location of cerebellar activity, and the lack of behavioral measures accompanying the neural findings. Here, we combined psychophysics with fMRI to detect the neural processes underlying somatosensory attenuation in male and female healthy human participants. Activity in bilateral secondary somatosensory areas was attenuated when the touch was presented during a self-generated movement (self-generated touch) than in the absence of movement (external touch). An additional attenuation effect was observed in the cerebellum that is ipsilateral to the passive limb receiving the touch. Importantly, we further found that the degree of functional connectivity between the ipsilateral cerebellum and the contralateral primary and bilateral secondary somatosensory areas was linearly and positively related to the degree of behaviorally assessed attenuation; that is, the more participants perceptually attenuated their self-generated touches, the stronger this corticocerebellar coupling. Collectively, these results suggest that the ipsilateral cerebellum is fundamental in predicting self-generated touch and that this structure implements somatosensory attenuation via its functional connectivity with somatosensory areas.SIGNIFICANCE STATEMENT When we touch our hand with the other, the resulting sensation feels less intense than when another person or a machine touches our hand with the same intensity. Early computational motor control theories have proposed that the cerebellum predicts and cancels the sensory consequences of our movements; however, the neural correlates of this cancelation remain unknown. By means of fMRI, we show that the more participants attenuate the perception of their self-generated touch, the stronger the functional connectivity between the cerebellum and the somatosensory cortical areas. This provides conclusive evidence about the role of the cerebellum in predicting the sensory feedback of our movements and in attenuating the associated percepts via its connections to early somatosensory areas.
Collapse
Affiliation(s)
| | - H Henrik Ehrsson
- Department of Neuroscience, Karolinska Institutet, 17165 Stockholm, Sweden
| |
Collapse
|
28
|
Li Q, Feng J, Guo J, Wang Z, Li P, Liu H, Fan Z. Effects of the multisensory rehabilitation product for home-based hand training after stroke on cortical activation by using NIRS methods. Neurosci Lett 2020; 717:134682. [DOI: 10.1016/j.neulet.2019.134682] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/07/2019] [Accepted: 12/07/2019] [Indexed: 01/19/2023]
|