1
|
Slater NM, Melzer TR, Myall DJ, Anderson TJ, Dalrymple-Alford JC. Cholinergic Basal Forebrain Integrity and Cognition in Parkinson's Disease: A Reappraisal of Magnetic Resonance Imaging Evidence. Mov Disord 2024. [PMID: 39360864 DOI: 10.1002/mds.30023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 10/05/2024] Open
Abstract
Cognitive impairment is a well-recognized and debilitating symptom of Parkinson's disease (PD). Degradation in the cortical cholinergic system is thought to be a key contributor. Both postmortem and in vivo cholinergic positron emission tomography (PET) studies have provided valuable evidence of cholinergic system changes in PD, which are pronounced in PD dementia (PDD). A growing body of literature has employed magnetic resonance imaging (MRI), a noninvasive, more cost-effective alternative to PET, to examine cholinergic system structural changes in PD. This review provides a comprehensive discussion of the methodologies and findings of studies that have focused on the relationship between cholinergic basal forebrain (cBF) integrity, based on T1- and diffusion-weighted MRI, and cognitive function in PD. Nucleus basalis of Meynert (Ch4) volume has been consistently reduced in cognitively impaired PD samples and has shown potential utility as a prognostic indicator for future cognitive decline. However, the extent of structural changes in Ch4, especially in early stages of cognitive decline in PD, remains unclear. In addition, evidence for structural change in anterior cBF regions in PD has not been well established. This review underscores the importance of continued cross-sectional and longitudinal research to elucidate the role of cholinergic dysfunction in the cognitive manifestations of PD. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Nicola M Slater
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Tracy R Melzer
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Daniel J Myall
- New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Tim J Anderson
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
- Department of Neurology, Christchurch Hospital, Te Whatu Ora Waitaha Canterbury, Christchurch, New Zealand
| | - John C Dalrymple-Alford
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
2
|
Tullo S, Miranda AS, Del Cid-Pellitero E, Lim MP, Gallino D, Attaran A, Patel R, Novikov V, Park M, Beraldo FH, Luo W, Shlaifer I, Durcan TM, Bussey TJ, Saksida LM, Fon EA, Prado VF, Prado MAM, Chakravarty MM. Neuroanatomical and cognitive biomarkers of alpha-synuclein propagation in a mouse model of synucleinopathy prior to onset of motor symptoms. J Neurochem 2024; 168:1546-1564. [PMID: 37804203 DOI: 10.1111/jnc.15967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 10/09/2023]
Abstract
Significant evidence suggests that misfolded alpha-synuclein (aSyn), a major component of Lewy bodies, propagates in a prion-like manner contributing to disease progression in Parkinson's disease (PD) and other synucleinopathies. In fact, timed inoculation of M83 hemizygous mice with recombinant human aSyn preformed fibrils (PFF) has shown symptomatic deficits after substantial spreading of pathogenic alpha-synuclein, as detected by markers for the phosphorylation of S129 of aSyn. However, whether accumulated toxicity impact human-relevant cognitive and structural neuroanatomical measures is not fully understood. Here we performed a single unilateral striatal PFF injection in M83 hemizygous mice, and using two assays with translational potential, ex vivo magnetic resonance imaging (MRI) and touchscreen testing, we examined the combined neuroanatomical and behavioral impact of aSyn propagation. In PFF-injected mice, we observed widespread atrophy in bilateral regions that project to or receive input from the injection site using MRI. We also identified early deficits in reversal learning prior to the emergence of motor symptoms. Our findings highlight a network of regions with related cellular correlates of pathology that follow the progression of aSyn spreading, and that affect brain areas relevant for reversal learning. Our experiments suggest that M83 hemizygous mice injected with human PFF provides a model to understand how misfolded aSyn affects human-relevant pre-clinical measures and suggest that these pre-clinical biomarkers could be used to detect early toxicity of aSyn and provide better translational measures between mice and human disease.
Collapse
Affiliation(s)
- Stephanie Tullo
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Computational Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, McGill University, Verdun, Quebec, Canada
| | - Aline S Miranda
- Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
- Departamento de Morfologia, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Esther Del Cid-Pellitero
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Mei Peng Lim
- Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Daniel Gallino
- Computational Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, McGill University, Verdun, Quebec, Canada
| | - Anoosha Attaran
- Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Raihaan Patel
- Computational Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, McGill University, Verdun, Quebec, Canada
- Department of Biological & Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Vladislav Novikov
- Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Megan Park
- Computational Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, McGill University, Verdun, Quebec, Canada
| | - Flavio H Beraldo
- Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Wen Luo
- Early Drug Discovery Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Irina Shlaifer
- Early Drug Discovery Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Thomas M Durcan
- Early Drug Discovery Unit, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Timothy J Bussey
- Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Lisa M Saksida
- Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Edward A Fon
- McGill Parkinson Program, Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Vania F Prado
- Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - Marco A M Prado
- Robarts Research Institute, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
- Department of Anatomy & Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - M Mallar Chakravarty
- Computational Brain Anatomy (CoBrA) Laboratory, Cerebral Imaging Center, Douglas Mental Health University Institute, McGill University, Verdun, Quebec, Canada
- Department of Biological & Biomedical Engineering, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
3
|
Zhang X, Wang M, Lee SY, Yue Y, Chen Z, Zhang Y, Wang L, Guan Q, Fan W, Shen T. Cholinergic nucleus degeneration and its association with gait impairment in Parkinson's disease. J Neuroeng Rehabil 2024; 21:120. [PMID: 39026279 PMCID: PMC11256459 DOI: 10.1186/s12984-024-01417-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/04/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND The contribution of cholinergic degeneration to gait disturbance in Parkinson's disease (PD) is increasingly recognized, yet its relationship with dopaminergic-resistant gait parameters has been poorly investigated. We investigated the association between comprehensive gait parameters and cholinergic nucleus degeneration in PD. METHODS This cross-sectional study enrolled 84 PD patients and 69 controls. All subjects underwent brain structural magnetic resonance imaging to assess the gray matter density (GMD) and volume (GMV) of the cholinergic nuclei (Ch123/Ch4). Gait parameters under single-task (ST) and dual-task (DT) walking tests were acquired using sensor wearables in PD group. We compared cholinergic nucleus morphology and gait performance between groups and examined their association. RESULTS PD patients exhibited significantly decreased GMD and GMV of the left Ch4 compared to controls after reaching HY stage > 2. Significant correlations were observed between multiple gait parameters and bilateral Ch123/Ch4. After multiple testing correction, the Ch123/Ch4 degeneration was significantly associated with shorter stride length, lower gait velocity, longer stance phase, smaller ankle toe-off and heel-strike angles under both ST and DT condition. For PD patients with HY stage 1-2, there were no significant degeneration of Ch123/4, and only right side Ch123/Ch4 were corrected with the gait parameters. However, as the disease progressed to HY stage > 2, bilateral Ch123/Ch4 nuclei showed correlations with gait performance, with more extensive significant correlations were observed in the right side. CONCLUSIONS Our study demonstrated the progressive association between cholinergic nuclei degeneration and gait impairment across different stages of PD, and highlighting the potential lateralization of the cholinergic nuclei's impact on gait impairment. These findings offer insights for the design and implementation of future clinical trials investigating cholinergic treatments as a promising approach to address gait impairments in PD.
Collapse
Affiliation(s)
- Xiaodan Zhang
- Department of Neurology, Ningbo NO.2 Hospital, NO.6 Building, 41 Xibei Street, Haishu District, Ningbo, Zhejiang Province, China
- Department of Emergency Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Mateng Wang
- Department of General Surgery, Yinzhou NO.2 Hospital, Ningbo, Zhejiang Province, China
| | - Shi Yeow Lee
- Department of Emergency Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Yumei Yue
- Department of Neurology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Zhaoying Chen
- Department of Neurology, Ningbo NO.2 Hospital, NO.6 Building, 41 Xibei Street, Haishu District, Ningbo, Zhejiang Province, China
| | - Yilin Zhang
- Department of Emergency Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lulu Wang
- Department of Neurology, Ningbo NO.2 Hospital, NO.6 Building, 41 Xibei Street, Haishu District, Ningbo, Zhejiang Province, China
| | - Qiongfeng Guan
- Department of Neurology, Ningbo NO.2 Hospital, NO.6 Building, 41 Xibei Street, Haishu District, Ningbo, Zhejiang Province, China
| | - Weinv Fan
- Department of Neurology, Ningbo NO.2 Hospital, NO.6 Building, 41 Xibei Street, Haishu District, Ningbo, Zhejiang Province, China.
| | - Ting Shen
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Marques A, Macias E, Pereira B, Durand E, Chassain C, Vidal T, Defebvre L, Carriere N, Fraix V, Moro E, Thobois S, Metereau E, Mangone G, Vidailhet M, Corvol JC, Lehéricy S, Menjot de Champfleur N, Geny C, Spampinato U, Meissner WG, Frismand S, Schmitt E, Doé de Maindreville A, Portefaix C, Remy P, Fénelon G, Houeto JL, Colin O, Rascol O, Peran P, Bonny JM, Fantini ML, Durif F. Volumetric changes and clinical trajectories in Parkinson's disease: a prospective multicentric study. J Neurol 2023; 270:6033-6043. [PMID: 37648911 DOI: 10.1007/s00415-023-11947-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/15/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
BACKGROUND Longitudinal measures of structural brain changes using MRI in relation to clinical features and progression patterns in PD have been assessed in previous studies, but few were conducted in well-defined and large cohorts, including prospective clinical assessments of both motor and non-motor symptoms. OBJECTIVE We aimed to identify brain volumetric changes characterizing PD patients, and determine whether regional brain volumetric characteristics at baseline can predict motor, psycho-behavioral and cognitive evolution at one year in a prospective cohort of PD patients. METHODS In this multicentric 1 year longitudinal study, PD patients and healthy controls from the MPI-R2* cohort were assessed for demographical, clinical and brain volumetric characteristics. Distinct subgroups of PD patients according to motor, cognitive and psycho-behavioral evolution were identified at the end of follow-up. RESULTS One hundred and fifty PD patients and 73 control subjects were included in our analysis. Over one year, there was no significant difference in volume variations between PD and control subjects, regardless of the brain region considered. However, we observed a reduction in posterior cingulate cortex volume at baseline in PD patients with motor deterioration at one year (p = 0.017). We also observed a bilateral reduction of the volume of the amygdala (p = 0.015 and p = 0.041) and hippocampus (p = 0.015 and p = 0.053) at baseline in patients with psycho-behavioral deterioration, regardless of age, dopaminergic treatment and center. CONCLUSION Brain volumetric characteristics at baseline may predict clinical trajectories at 1 year in PD as posterior cingulate cortex atrophy was associated with motor decline, while amygdala and hippocampus atrophy were associated with psycho-behavioral decline.
Collapse
Affiliation(s)
- Ana Marques
- University Clermont Auvergne, CNRS, Clermont Auvergne INP, IGCNC, Institute Pascal, Clermont-Ferrand, France.
- Neurology Department and NS-PARK/FCRIN Network, Clermont-Ferrand University Hospital, Clermont-Ferrand, France.
- Neurology Department, Parkinson Expert Center, CHRU Gabriel Montpied, 63000, Clermont-Ferrand, France.
| | - Elise Macias
- University Clermont Auvergne, CNRS, Clermont Auvergne INP, IGCNC, Institute Pascal, Clermont-Ferrand, France
- Neurology Department and NS-PARK/FCRIN Network, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Bruno Pereira
- Clermont-Ferrand University Hospital, Biostatistics Unit (DRCI), Clermont-Ferrand, France
| | - Elodie Durand
- University Clermont Auvergne, CNRS, Clermont Auvergne INP, IGCNC, Institute Pascal, Clermont-Ferrand, France
- Neurology Department and NS-PARK/FCRIN Network, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Carine Chassain
- University Clermont Auvergne, CNRS, Clermont Auvergne INP, IGCNC, Institute Pascal, Clermont-Ferrand, France
- Neurology Department and NS-PARK/FCRIN Network, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Tiphaine Vidal
- University Clermont Auvergne, CNRS, Clermont Auvergne INP, IGCNC, Institute Pascal, Clermont-Ferrand, France
- Neurology Department and NS-PARK/FCRIN Network, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Luc Defebvre
- Department of Movement Disorder and NS-PARK/FCRIN Network, Inserm 1172, University of Lille, Lille, France
| | - Nicolas Carriere
- Department of Movement Disorder and NS-PARK/FCRIN Network, Inserm 1172, University of Lille, Lille, France
| | - Valerie Fraix
- Université Grenoble Alpes, CHU de Grenoble, Service de Neurologie, Grenoble Institute of Neuroscience, and NS-PARK/FCRIN Network, Grenoble, France
| | - Elena Moro
- Université Grenoble Alpes, CHU de Grenoble, Service de Neurologie, Grenoble Institute of Neuroscience, and NS-PARK/FCRIN Network, Grenoble, France
| | - Stéphane Thobois
- CNRS, Institut des Sciences Cognitives Marc Jeannerod, UMR 5229 CNRS, Lyon, France
- Université Claude Bernard, Lyon I, Lyon, France
- Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C and NS-PARK/FCRIN Network, Lyon, France
| | - Elise Metereau
- CNRS, Institut des Sciences Cognitives Marc Jeannerod, UMR 5229 CNRS, Lyon, France
- Université Claude Bernard, Lyon I, Lyon, France
- Hospices Civils de Lyon, Hôpital Neurologique Pierre Wertheimer, Service de Neurologie C and NS-PARK/FCRIN Network, Lyon, France
| | - Graziella Mangone
- Département de Neurologie and NS-PARK/FCRIN Network, Sorbonne Université; Institut du Cerveau-ICM, Assistance Publique Hôpitaux de Paris; Inserm 1127, CNRS 7225, CIC Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France
| | - Marie Vidailhet
- Département de Neurologie and NS-PARK/FCRIN Network, Sorbonne Université; Institut du Cerveau-ICM, Assistance Publique Hôpitaux de Paris; Inserm 1127, CNRS 7225, CIC Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jean-Christophe Corvol
- Département de Neurologie and NS-PARK/FCRIN Network, Sorbonne Université; Institut du Cerveau-ICM, Assistance Publique Hôpitaux de Paris; Inserm 1127, CNRS 7225, CIC Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France
| | - Stéphane Lehéricy
- Département de Neuroradiologie and NS-PARK/FCRIN Network, Sorbonne Université; Institut du Cerveau-ICM, Assistance Publique Hôpitaux de Paris; Inserm 1127, CNRS 7225; Hôpital Pitié-Salpêtrière, Paris, France
| | - Nicolas Menjot de Champfleur
- Department of Neuroradiology, Montpellier University Hospital Center, Gui de Chauliac Hospital, Montpellier, France
- I2FH, Institut d'Imagerie Fonctionnelle Humaine, Hôpital Gui de Chauliac, CHRU de Montpellier, Montpellier, France
| | - Christian Geny
- Department of Geriatrics and NS-PARK/FCRIN Network, Montpellier University Hospital, Montpellier University, Montpellier, France
| | - Umberto Spampinato
- Service de Neurologie-Maladies Neurodégénératives and NS-PARK/FCRIN Network, CHU Bordeaux, 33000, Bordeaux, France
- INCIA-UMR 5287, Team P3TN, CNRS/Université de Bordeaux, Bordeaux, France
| | - Wassilios G Meissner
- Service de Neurologie-Maladies Neurodégénératives and NS-PARK/FCRIN Network, CHU Bordeaux, 33000, Bordeaux, France
- Univ. Bordeaux, CNRS, IMN, UMR 5293, Bordeaux, 33000, Bordeaux, France
- Dept. Medicine, University of Otago, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Solène Frismand
- Department of Neurology and NS-PARK/FCRIN Network, Nancy University Hospital Center, Nancy, France
| | - Emmanuelle Schmitt
- Department of Neuroradiology, Nancy University Hospital Center, Nancy, France
| | | | - Christophe Portefaix
- Department of Radiology, Hôpital Maison Blanche, Reims, France
- CReSTIC Laboratory, University of Reims Champagne-Ardenne, Reims, France
| | - Philippe Remy
- Centre Expert Parkinson and NS-PARK/FCRIN Network, CHU Henri Mondor; AP-HP et Equipe Neuropsychologie Interventionnelle, INSERM-IMRB, Faculté de Santé, Université Paris-Est Créteil et Ecole Normale Supérieure Paris Sorbonne Université, Créteil, France
| | - Gilles Fénelon
- Centre Expert Parkinson and NS-PARK/FCRIN Network, CHU Henri Mondor; AP-HP et Equipe Neuropsychologie Interventionnelle, INSERM-IMRB, Faculté de Santé, Université Paris-Est Créteil et Ecole Normale Supérieure Paris Sorbonne Université, Créteil, France
| | - Jean Luc Houeto
- INSERM, CHU de Poitiers, Université de Poitiers, Centre d'Investigation Clinique CIC1402; Service de Neurologie and NS-PARK/FCRIN Network, Poitiers, France
- CHU-Centre Expert Parkinson de Limoges, Limoges, France
| | - Olivier Colin
- INSERM, CHU de Poitiers, Université de Poitiers, Centre d'Investigation Clinique CIC1402; Service de Neurologie and NS-PARK/FCRIN Network, CH Brive la Gaillarde, Poitiers, France
| | - Olivier Rascol
- Centre Expert Parkinson, Départements de Pharmacologie Clinique et Neurosciences, Centre d'Investigation Clinique CIC 1436, UMR 1214 TONIC, NeuroToul and NS-PARK/FCRIN Network, INSERM, CHU de Toulouse et Université de Toulouse3, Toulouse, France
| | - Patrice Peran
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, INSERM, UPS, Toulouse, France
| | - Jean-Marie Bonny
- INRAE, UR QuaPA, 63122, Saint-Genès-Champanelle, France
- Nuclear Magnetic Resonance Facility for Agronomy, Food and Health, AgroResonance, INRAE, 2018, Saint-Genès-Champanelle, France
| | - Maria Livia Fantini
- University Clermont Auvergne, CNRS, Clermont Auvergne INP, IGCNC, Institute Pascal, Clermont-Ferrand, France
- Neurology Department and NS-PARK/FCRIN Network, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| | - Franck Durif
- University Clermont Auvergne, CNRS, Clermont Auvergne INP, IGCNC, Institute Pascal, Clermont-Ferrand, France
- Neurology Department and NS-PARK/FCRIN Network, Clermont-Ferrand University Hospital, Clermont-Ferrand, France
| |
Collapse
|
5
|
Ay U, Yıldırım Z, Erdogdu E, Kiçik A, Ozturk-Isik E, Demiralp T, Gurvit H. Shrinkage of olfactory amygdala connotes cognitive impairment in patients with Parkinson's disease. Cogn Neurodyn 2023; 17:1309-1320. [PMID: 37786655 PMCID: PMC10542039 DOI: 10.1007/s11571-022-09887-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 09/04/2022] [Accepted: 09/14/2022] [Indexed: 11/03/2022] Open
Abstract
During the caudo-rostral progression of Lewy pathology, the amygdala is involved relatively early in Parkinson's disease (PD). However, lesser is known about the volumetric differences at the amygdala subdivisions, although the evidence mainly implicates the olfactory amygdala. We aimed to investigate the volumetric differences between the amygdala's nuclear and sectoral subdivisions in the PD cognitive impairment continuum compared to healthy controls (HC). The volumes of nine nuclei of the amygdala were estimated with FreeSurfer (nuclear parcellation-NP) from T1-weighted images of PD patients with normal cognition (PD-CN), PD with mild cognitive impairment (PD-MCI), PD with dementia (PD-D), and HC. The appropriate nuclei were then merged to obtain three sectors of the amygdala (sectoral parcellation-SP). The nuclear and sectoral volumes were compared among the four groups and between the hyposmic and normosmic PD patients. There was a significant difference in the total amygdala volume among the four groups. In terms of nuclei, the bilateral cortico-amygdaloid transition area (CAT) and sectors superficial cortex-like region (sCLR) volumes of PD-MCI and PD-D were less than those of the PD-CN and HC. A linear discriminant analysis revealed that left CAT and left sCLR volumes classified the PD-CN and cognitively impaired PD (PD-CI: PD-MCI plus PD-D) with 90.7% accuracy according to NP and 85.2% accuracy to SP. Similarly, left CAT and sCLR volumes correctly identified the hyposmic and normosmic PD with 64.8% and 61.1% accuracies. Notably, the left olfactory amygdala volume successfully discriminated cognitive impairment in PD and could be used as neuroimaging-based support for PD-CI diagnosis. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09887-y.
Collapse
Affiliation(s)
- Ulaş Ay
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Turkey
- Neuroimaging Unit, Hulusi Behcet Life Sciences Research Laboratory, Istanbul University, 34093 Istanbul, Turkey
- Graduate School of Health Sciences, Istanbul University, 34126 Istanbul, Turkey
| | - Zerrin Yıldırım
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Turkey
- Neuroimaging Unit, Hulusi Behcet Life Sciences Research Laboratory, Istanbul University, 34093 Istanbul, Turkey
- Department of Neurology, Bagcilar Education and Research Hospital, 34200 Istanbul, Turkey
| | - Emel Erdogdu
- Neuroimaging Unit, Hulusi Behcet Life Sciences Research Laboratory, Istanbul University, 34093 Istanbul, Turkey
- Department of Psychology, Faculty of Arts and Sciences, Isik University, 34980 Istanbul, Turkey
| | - Ani Kiçik
- Neuroimaging Unit, Hulusi Behcet Life Sciences Research Laboratory, Istanbul University, 34093 Istanbul, Turkey
- Department of Physiology, Faculty of Medicine, Demiroglu Bilim University, 34394 Istanbul, Turkey
| | - Esin Ozturk-Isik
- Institute of Biomedical Engineering, Bogazici University, 34684 Istanbul, Turkey
| | - Tamer Demiralp
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Turkey
| | - Hakan Gurvit
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Turkey
| |
Collapse
|
6
|
Li KR, Wu AG, Tang Y, He XP, Yu CL, Wu JM, Hu GQ, Yu L. The Key Role of Magnetic Resonance Imaging in the Detection of Neurodegenerative Diseases-Associated Biomarkers: A Review. Mol Neurobiol 2022; 59:5935-5954. [PMID: 35829831 DOI: 10.1007/s12035-022-02944-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/28/2022] [Indexed: 11/30/2022]
Abstract
Neurodegenerative diseases (NDs), including chronic disease such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis, and acute diseases like traumatic brain injury and ischemic stroke are characterized by progressive degeneration, brain tissue damage and loss of neurons, accompanied by behavioral and cognitive dysfunctions. So far, there are no complete cures for NDs; thus, early and timely diagnoses are essential and beneficial to patients' treatment. Magnetic resonance imaging (MRI) has become one of the advanced medical imaging techniques widely used in the clinical examination of NDs due to its non-invasive diagnostic value. In this review, research published in English in current decade from PubMed electronic database on the use of MRI to detect specific biomarkers of NDs was collected, summarized, and discussed, which provides valuable suggestions for the early diagnosis, prevention, and treatment of NDs in the clinic.
Collapse
Affiliation(s)
- Ke-Ru Li
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
- Department of Radiology, Chongqing University Fuling Hospital, Chongqing, 408000, China
| | - An-Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Yong Tang
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
| | - Xiao-Peng He
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chong-Lin Yu
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jian-Ming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Guang-Qiang Hu
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, 646000, China.
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China.
- Department of Chemistry, School of Preclinical Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
7
|
Baglio F, Pirastru A, Bergsland N, Cazzoli M, Tavazzi E. Neuroplasticity mediated by motor rehabilitation in Parkinson's disease: a systematic review on structural and functional MRI markers. Rev Neurosci 2021; 33:213-226. [PMID: 34461010 DOI: 10.1515/revneuro-2021-0064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/30/2021] [Indexed: 01/06/2023]
Abstract
Parkinson's disease (PD) is the second most common neurological disease affecting the elderly population. Pharmacological and surgical interventions usually employed for PD treatment show transient effectiveness and are associated with the insurgence of side effects. Therefore, motor rehabilitation has been proposed as a promising supplement in the treatment of PD, reducing the global burden of the disease and improving patients quality of life. The present systematic review aimed to critically analyse the literature concerning MRI markers of brain functional and structural response to motor rehabilitation in PD. Fourteen out of 1313 studies were selected according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses criteria. Despite the limited number of retrieved studies coupled with their heterogeneity prevent ultimate conclusions from being drawn, motor rehabilitation seems to have beneficial effects on PD as measured both with clinical outcomes and MRI derived indices. Interestingly, consistent results seem to indicate that motor rehabilitation acts via a dual mechanism of strengthening cortico-subcortical pathways, restoring movements automaticity, or activating compensatory networks such as the fronto-parietal one. The employment of more advanced and quantitative MRI methods is warranted to establish and validate standardized metrics capable of reliably determining the changes induced by rehabilitative intervention.
Collapse
Affiliation(s)
- Francesca Baglio
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, via Capecelatro 66, 20148Milan, Italy
| | - Alice Pirastru
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, via Capecelatro 66, 20148Milan, Italy
| | - Niels Bergsland
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, via Capecelatro 66, 20148Milan, Italy.,Department of Neurology, Buffalo Neuroimaging Analysis Center, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 100 High Street, Buffalo, NY14203, USA
| | - Marta Cazzoli
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, via Capecelatro 66, 20148Milan, Italy
| | - Eleonora Tavazzi
- IRCCS, Fondazione Don Carlo Gnocchi ONLUS, via Capecelatro 66, 20148Milan, Italy.,Department of Neurology, Buffalo Neuroimaging Analysis Center, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 100 High Street, Buffalo, NY14203, USA
| |
Collapse
|
8
|
Roh H, Kang J, Koh SB, Kim JH. Hippocampal volume is related to olfactory impairment in Parkinson's disease. J Neuroimaging 2021; 31:1176-1183. [PMID: 34355455 DOI: 10.1111/jon.12911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/05/2021] [Accepted: 07/11/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Recent evidence has suggested that hyposmia in patients with Parkinson's disease (PD) may be due to impaired central processing. Furthermore, the hippocampus has been regarded as a critical structure linking olfactory impairment and cognitive impairment in PD patients. This study aimed to identify significant structural alterations of the hippocampus in PD patients with hyposmia, and to determine whether these structural changes are significantly associated with olfactory impairment severity. METHODS Eighteen idiopathic PD patients with hyposmia and 18 age- and sex-matched PD patients without hyposmia were enrolled. Hippocampal volume and its subfields were measured using FreeSurfer software and compared between hyposmic and normosmic PD patients. We also compared hippocampal substructures' volumes and correlated the hippocampal volumes with hyposmia severity. RESULTS PD patients with hyposmia had significantly smaller hippocampal volumes. Among the three components of the hippocampus, the hippocampal body showed a markedly lower volume, which correlated significantly with the cross-cultural smell identification test score that represents olfactory function status. Hippocampal subfield analysis showed that substructures (subiculum, molecular layer) that constitute the hippocampal body showed the most significant volume difference. CONCLUSIONS We suggest that atrophy of the bilateral hippocampus implies underlying problems in the central olfaction process in PD patients. In particular, the hippocampus might not only play a critical role in olfaction but could also be important for elucidating possible mechanisms of broad nonmotor symptoms in PD patients.
Collapse
Affiliation(s)
- Haewon Roh
- Department of Neurosurgery, Guro Hospital, Korea University Medical Center, Seoul, Republic of Korea
| | - June Kang
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - Seong-Beom Koh
- Department of Neurology, Guro Hospital, Korea University Medical Center, Seoul, Republic of Korea
| | - Jong Hyun Kim
- Department of Neurosurgery, Guro Hospital, Korea University Medical Center, Seoul, Republic of Korea
| |
Collapse
|
9
|
Charroud C, Turella L. Subcortical grey matter changes associated with motor symptoms evaluated by the Unified Parkinson's disease Rating Scale (part III): A longitudinal study in Parkinson's disease. NEUROIMAGE-CLINICAL 2021; 31:102745. [PMID: 34225020 PMCID: PMC8264213 DOI: 10.1016/j.nicl.2021.102745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/26/2021] [Accepted: 06/23/2021] [Indexed: 01/18/2023]
Abstract
Decreased grey matter volume over time suggests a subcortical alteration in PD. Decreased volume in the thalamus may be related to the decline in motor skills. Increased volume in the pallidum may contribute to motor impairment. Structural changes in line with the model of basal ganglia-thalamocortical circuits. VBM and volumetry might capture complementary aspects of structural changes in PD.
Parkinson disease (PD) is characterized by motor deficits related to structural changes in the basal ganglia-thalamocortical circuits. However, it is still unclear the exact nature of the association between grey matter alterations and motor symptoms. Therefore, the aim of our investigation was to identify the subcortical modifications associated with motor symptoms of PD over time - adopting voxel-based morphometry (VBM) and automated volumetry methods. We selected fifty subjects with PD from the Parkinson’s Progression Markers Initiative (PPMI) database, who performed an MRI session at two time points: at baseline (i.e. at maximum 2 years after clinical diagnosis of PD) and after 48 months. Motor symptoms were assessed using the part III of the Unified Parkinson’s Disease Rating Scale at the two time points. Our VBM and volumetric analyses showed a general atrophy in all subcortical regions when comparing baseline with 48 months. These findings confirmed previous observations indicating a subcortical alteration over time in PD. Furthermore, our findings supported the idea that a reduced volume in the thalamus and an increased volume in pallidum may be related to the decline in motor skills. These structural modifications are in accordance with the functional model of the basal ganglia-thalamocortical circuits controlling movements. Moreover, VBM and volumetry provided partially overlapping results, suggesting that these methods might capture complementary aspects of brain degeneration in PD.
Collapse
Affiliation(s)
- Céline Charroud
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto (TN), Italy.
| | - Luca Turella
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto (TN), Italy
| |
Collapse
|
10
|
Saeed U, Lang AE, Masellis M. Neuroimaging Advances in Parkinson's Disease and Atypical Parkinsonian Syndromes. Front Neurol 2020; 11:572976. [PMID: 33178113 PMCID: PMC7593544 DOI: 10.3389/fneur.2020.572976] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson's disease (PD) and atypical Parkinsonian syndromes are progressive heterogeneous neurodegenerative diseases that share clinical characteristic of parkinsonism as a common feature, but are considered distinct clinicopathological disorders. Based on the predominant protein aggregates observed within the brain, these disorders are categorized as, (1) α-synucleinopathies, which include PD and other Lewy body spectrum disorders as well as multiple system atrophy, and (2) tauopathies, which comprise progressive supranuclear palsy and corticobasal degeneration. Although, great strides have been made in neurodegenerative disease research since the first medical description of PD in 1817 by James Parkinson, these disorders remain a major diagnostic and treatment challenge. A valid diagnosis at early disease stages is of paramount importance, as it can help accommodate differential prognostic and disease management approaches, enable the elucidation of reliable clinicopathological relationships ideally at prodromal stages, as well as facilitate the evaluation of novel therapeutics in clinical trials. However, the pursuit for early diagnosis in PD and atypical Parkinsonian syndromes is hindered by substantial clinical and pathological heterogeneity, which can influence disease presentation and progression. Therefore, reliable neuroimaging biomarkers are required in order to enhance diagnostic certainty and ensure more informed diagnostic decisions. In this article, an updated presentation of well-established and emerging neuroimaging biomarkers are reviewed from the following modalities: (1) structural magnetic resonance imaging (MRI), (2) diffusion-weighted and diffusion tensor MRI, (3) resting-state and task-based functional MRI, (4) proton magnetic resonance spectroscopy, (5) transcranial B-mode sonography for measuring substantia nigra and lentiform nucleus echogenicity, (6) single photon emission computed tomography for assessing the dopaminergic system and cerebral perfusion, and (7) positron emission tomography for quantifying nigrostriatal functions, glucose metabolism, amyloid, tau and α-synuclein molecular imaging, as well as neuroinflammation. Multiple biomarkers obtained from different neuroimaging modalities can provide distinct yet corroborative information on the underlying neurodegenerative processes. This integrative "multimodal approach" may prove superior to single modality-based methods. Indeed, owing to the international, multi-centered, collaborative research initiatives as well as refinements in neuroimaging technology that are currently underway, the upcoming decades will mark a pivotal and exciting era of further advancements in this field of neuroscience.
Collapse
Affiliation(s)
- Usman Saeed
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Anthony E Lang
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,Edmond J Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Mario Masellis
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada.,Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON, Canada.,L.C. Campbell Cognitive Neurology Research Unit, Sunnybrook Health Sciences Center, Toronto, ON, Canada.,Cognitive and Movement Disorders Clinic, Sunnybrook Health Sciences Center, Toronto, ON, Canada
| |
Collapse
|