1
|
Ohki T, Chao ZC, Takei Y, Kato Y, Sunaga M, Suto T, Tagawa M, Fukuda M. Multivariate sharp-wave ripples in schizophrenia during awake state. Psychiatry Clin Neurosci 2024; 78:507-516. [PMID: 38923051 PMCID: PMC11488617 DOI: 10.1111/pcn.13702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 04/03/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
AIMS Schizophrenia (SZ) is a brain disorder characterized by psychotic symptoms and cognitive dysfunction. Recently, irregularities in sharp-wave ripples (SPW-Rs) have been reported in SZ. As SPW-Rs play a critical role in memory, their irregularities can cause psychotic symptoms and cognitive dysfunction in patients with SZ. In this study, we investigated the SPW-Rs in human SZ. METHODS We measured whole-brain activity using magnetoencephalography (MEG) in patients with SZ (n = 20) and sex- and age-matched healthy participants (n = 20) during open-eye rest. We identified SPW-Rs and analyzed their occurrence and time-frequency traits. Furthermore, we developed a novel multivariate analysis method, termed "ripple-gedMEG" to extract the global features of SPW-Rs. We also examined the association between SPW-Rs and brain state transitions. The outcomes of these analyses were modeled to predict the positive and negative syndrome scale (PANSS) scores of SZ. RESULTS We found that SPW-Rs in the SZ (1) occurred more frequently, (2) the delay of the coupling phase (3) appeared in different brain areas, (4) consisted of a less organized spatiotemporal pattern, and (5) were less involved in brain state transitions. Finally, some of the neural features associated with the SPW-Rs were found to be PANSS-positive, a pathological indicator of SZ. These results suggest that widespread but disorganized SPW-Rs underlies the symptoms of SZ. CONCLUSION We identified irregularities in SPW-Rs in SZ and confirmed that their alternations were strongly associated with SZ neuropathology. These results suggest a new direction for human SZ research.
Collapse
Affiliation(s)
- Takefumi Ohki
- International Research Center for Neurointelligence (WPI‐IRCN), The University of Tokyo Institutes for Advanced StudyThe University of TokyoTokyoJapan
- Department of Psychiatry and NeuroscienceGunma University Graduate School of MedicineMaebashiJapan
| | - Zenas C. Chao
- International Research Center for Neurointelligence (WPI‐IRCN), The University of Tokyo Institutes for Advanced StudyThe University of TokyoTokyoJapan
| | - Yuichi Takei
- Department of Psychiatry and NeuroscienceGunma University Graduate School of MedicineMaebashiJapan
| | - Yutaka Kato
- Department of Psychiatry and NeuroscienceGunma University Graduate School of MedicineMaebashiJapan
- Tsutsuji Mental HospitalTatebayashiJapan
| | - Masakazu Sunaga
- Department of Psychiatry and NeuroscienceGunma University Graduate School of MedicineMaebashiJapan
| | - Tomohiro Suto
- Gunma Prefectural Psychiatric Medical CenterIsesakiJapan
| | - Minami Tagawa
- Department of Psychiatry and NeuroscienceGunma University Graduate School of MedicineMaebashiJapan
- Gunma Prefectural Psychiatric Medical CenterIsesakiJapan
| | - Masato Fukuda
- Department of Psychiatry and NeuroscienceGunma University Graduate School of MedicineMaebashiJapan
| |
Collapse
|
2
|
Ye H, Chen C, Weiss SA, Wang S. Pathological and Physiological High-frequency Oscillations on Electroencephalography in Patients with Epilepsy. Neurosci Bull 2024; 40:609-620. [PMID: 37999861 PMCID: PMC11127900 DOI: 10.1007/s12264-023-01150-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/28/2023] [Indexed: 11/25/2023] Open
Abstract
High-frequency oscillations (HFOs) encompass ripples (80 Hz-200 Hz) and fast ripples (200 Hz-600 Hz), serving as a promising biomarker for localizing the epileptogenic zone in epilepsy. Spontaneous fast ripples are always pathological, while ripples may be physiological or pathological. Distinguishing physiological from pathological ripples is important not only for designating epileptogenic brain regions, but also for investigations that study ripples in the context of memory encoding, consolidation, and recall in patients with epilepsy. Many studies have sought to identify distinguishing features between pathological and physiological ripples over the past two decades. Physiological and pathological ripples differ with respect to their spatial location, cellular mechanisms, morphology, and coupling with background electroencephalographic activity. Retrospective studies have demonstrated that differentiating between pathological and physiological ripples can improve surgical outcome prediction. In this review, we summarize the characteristics, differences, and applications of pathological and physiological HFOs and discuss strategies for their clinical translation.
Collapse
Affiliation(s)
- Hongyi Ye
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Cong Chen
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Shennan A Weiss
- Department of Neurology, State University of New York Downstate, Brooklyn, NY, 11203, USA
- Department of Physiology and Pharmacology, State University of New York Downstate, Brooklyn, NY, 11203, USA
- Department of Neurology, New York City Health + Hospitals/Kings County, Brooklyn, NY, 11203, USA
| | - Shuang Wang
- Department of Neurology, Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
3
|
Kunz L, Staresina BP, Reinacher PC, Brandt A, Guth TA, Schulze-Bonhage A, Jacobs J. Ripple-locked coactivity of stimulus-specific neurons and human associative memory. Nat Neurosci 2024; 27:587-599. [PMID: 38366143 PMCID: PMC10917673 DOI: 10.1038/s41593-023-01550-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 12/11/2023] [Indexed: 02/18/2024]
Abstract
Associative memory enables the encoding and retrieval of relations between different stimuli. To better understand its neural basis, we investigated whether associative memory involves temporally correlated spiking of medial temporal lobe (MTL) neurons that exhibit stimulus-specific tuning. Using single-neuron recordings from patients with epilepsy performing an associative object-location memory task, we identified the object-specific and place-specific neurons that represented the separate elements of each memory. When patients encoded and retrieved particular memories, the relevant object-specific and place-specific neurons activated together during hippocampal ripples. This ripple-locked coactivity of stimulus-specific neurons emerged over time as the patients' associative learning progressed. Between encoding and retrieval, the ripple-locked timing of coactivity shifted, suggesting flexibility in the interaction between MTL neurons and hippocampal ripples according to behavioral demands. Our results are consistent with a cellular account of associative memory, in which hippocampal ripples coordinate the activity of specialized cellular populations to facilitate links between stimuli.
Collapse
Affiliation(s)
- Lukas Kunz
- Department of Epileptology, University Hospital Bonn, Bonn, Germany.
- Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Bernhard P Staresina
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Peter C Reinacher
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Fraunhofer Institute for Laser Technology, Aachen, Germany
| | - Armin Brandt
- Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tim A Guth
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
- Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Schulze-Bonhage
- Epilepsy Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
4
|
Steinmetz PN. Simulation of background neuronal activity and noise in human intracranial microwire recordings. J Neurosci Methods 2024; 402:110017. [PMID: 38036184 DOI: 10.1016/j.jneumeth.2023.110017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/30/2023] [Accepted: 11/18/2023] [Indexed: 12/02/2023]
Abstract
BACKGROUND Human intracranial microwire recordings allow measurement of neuronal activity in human subjects at a fine temporal and spatial scale. The recorded extracellular potentials represent a mixture of action potentials from nearby neurons, local field potentials, and other noise sources. Signal processing of these recordings is used to separate the activity of putative single neurons from other background and noise. To better understand the separation of single neuron activity, one approach is to simulate the signals produced by neurons firing action potentials combined with background activity and noise. NEW METHOD This paper characterizes the background activity and noise in human intracranial microwire recordings and presents an accurate and efficient method of simulation using an infinite impulse response filter to color white noise. RESULTS AND COMPARISON This method reproduces the power spectral density of the background activity and noise over a frequency range of 1-5000 Hz and is over 200 times faster than previously used methods. It thus facilitates large scale studies of variation of noise sources, field potentials, and processing parameters. It performs equivalently in terms of spike sorting to simulation using white noise. Another advantage is that the simulated signals are known to arise from a pseudorandom number generator and cannot be the result of detecting simulated background spiking activity. CONCLUSIONS This approach provides a rapid and accurate method of simulating background noise and neural activity in human intracranial microwire recordings. It is suitable for use in large scale simulations to study spike sorting in this type of recording.
Collapse
|
5
|
Ueda T, Iimura Y, Mitsuhashi T, Suzuki H, Miao Y, Nishioka K, Tamrakar S, Matsui R, Tanaka T, Otsubo H, Sugano H, Kondo A. Chronological changes in phase-amplitude coupling during epileptic seizures in temporal lobe epilepsy. Clin Neurophysiol 2023; 148:44-51. [PMID: 36796285 DOI: 10.1016/j.clinph.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/25/2022] [Accepted: 01/19/2023] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To analyze chronological changes in phase-amplitude coupling (PAC) and verify whether PAC analysis can diagnose epileptogenic zones during seizures. METHODS We analyzed 30 seizures in 10 patients with mesial temporal lobe epilepsy who had ictal discharges with preictal spiking followed by low-voltage fast activity patterns on intracranial electroencephalography. We used the amplitude of two high-frequency bands (ripples: 80-200 Hz, fast ripples: 200-300 Hz) and the phase of three slow wave bands (0.5-1 Hz, 3-4 Hz, and 4-8 Hz) for modulation index (MI) calculation from 2 minutes before seizure onset to seizure termination. We evaluated the accuracy of epileptogenic zone detection by MI, in which a combination of MI was better for diagnosis and analyzed patterns of chronological changes in MI during seizures. RESULTS MIRipples/3-4 Hz and MIRipples/4-8 Hz in the hippocampus were significantly higher than those in the peripheral regions from seizure onset. Corresponding to the phase on intracranial electroencephalography, MIRipples/3-4 Hz decreased once and subsequently increased again. MIRipples/4-8 Hz showed continuously high values. CONCLUSIONS Continuous measurement of MIRipples/3-4 Hz and MIRipples/4-8 Hz could help identify epileptogenic zones. SIGNIFICANCE PAC analysis of ictal epileptic discharges can help epileptogenic zone identification.
Collapse
Affiliation(s)
- Tetsuya Ueda
- Department of Neurosurgery, Epilepsy Center, Juntendo University, Tokyo, Japan.
| | - Yasushi Iimura
- Department of Neurosurgery, Epilepsy Center, Juntendo University, Tokyo, Japan.
| | - Takumi Mitsuhashi
- Department of Neurosurgery, Epilepsy Center, Juntendo University, Tokyo, Japan.
| | - Hiroharu Suzuki
- Department of Neurosurgery, Epilepsy Center, Juntendo University, Tokyo, Japan.
| | - Yao Miao
- Department of Electronic and Information Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan.
| | - Kazuki Nishioka
- Department of Neurosurgery, Epilepsy Center, Juntendo University, Tokyo, Japan.
| | - Samantha Tamrakar
- Department of Neurosurgery, Epilepsy Center, Juntendo University, Tokyo, Japan.
| | - Ryousuke Matsui
- Department of Electronic and Information Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan.
| | - Toshihisa Tanaka
- Department of Electronic and Information Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan.
| | - Hiroshi Otsubo
- Department of Neurosurgery, Epilepsy Center, Juntendo University, Tokyo, Japan; Division of Neurology, The Hospital for Sick Children, Toronto, ON, Canada.
| | - Hidenori Sugano
- Department of Neurosurgery, Epilepsy Center, Juntendo University, Tokyo, Japan.
| | - Akihide Kondo
- Department of Neurosurgery, Epilepsy Center, Juntendo University, Tokyo, Japan.
| |
Collapse
|
6
|
Kitchigina V, Shubina L. Oscillations in the dentate gyrus as a tool for the performance of the hippocampal functions: Healthy and epileptic brain. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110759. [PMID: 37003419 DOI: 10.1016/j.pnpbp.2023.110759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
The dentate gyrus (DG) is part of the hippocampal formation and is essential for important cognitive processes such as navigation and memory. The oscillatory activity of the DG network is believed to play a critical role in cognition. DG circuits generate theta, beta, and gamma rhythms, which participate in the specific information processing performed by DG neurons. In the temporal lobe epilepsy (TLE), cognitive abilities are impaired, which may be due to drastic alterations in the DG structure and network activity during epileptogenesis. The theta rhythm and theta coherence are especially vulnerable in dentate circuits; disturbances in DG theta oscillations and their coherence may be responsible for general cognitive impairments observed during epileptogenesis. Some researchers suggested that the vulnerability of DG mossy cells is a key factor in the genesis of TLE, but others did not support this hypothesis. The aim of the review is not only to present the current state of the art in this field of research but to help pave the way for future investigations by highlighting the gaps in our knowledge to completely appreciate the role of DG rhythms in brain functions. Disturbances in oscillatory activity of the DG during TLE development may be a diagnostic marker in the treatment of this disease.
Collapse
Affiliation(s)
- Valentina Kitchigina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia.
| | - Liubov Shubina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| |
Collapse
|
7
|
Choubdar H, Mahdavi M, Rostami Z, Zabeh E, Gillies MJ, Green AL, Aziz TZ, Lashgari R. Neural oscillatory characteristics of feedback-associated activity in globus pallidus interna. Sci Rep 2023; 13:4141. [PMID: 36914686 PMCID: PMC10011395 DOI: 10.1038/s41598-023-30832-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/02/2023] [Indexed: 03/14/2023] Open
Abstract
Neural oscillatory activities in basal ganglia have prominent roles in cognitive processes. However, the characteristics of oscillatory activities during cognitive tasks have not been extensively explored in human Globus Pallidus internus (GPi). This study aimed to compare oscillatory characteristics of GPi between dystonia and Parkinson's Disease (PD). A dystonia and a PD patient performed the Intra-Extra-Dimension shift (IED) task during both on and off-medication states. During the IED task, patients had to correctly choose between two visual stimuli containing shapes or lines based on a hidden rule via trial and error. Immediate auditory and visual feedback was provided upon the choice to inform participants if they chose correctly. Bilateral GPi Local Field Potentials (LFP) activity was recorded via externalized DBS leads. Transient high gamma activity (~ 100-150 Hz) was observed immediately after feedback in the dystonia patient. Moreover, these bursts were phase synchronous between left and right GPi with an antiphase clustering of phase differences. In contrast, no synchronous high gamma activity was detected in the PD patient with or without dopamine administration. The off-med PD patient also displayed enhanced low frequency clusters, which were ameliorated by medication. The current study provides a rare report of antiphase homotopic synchrony in human GPi, potentially related to incorporating and processing feedback information. The absence of these activities in off and on-med PD patient indicates the potential presence of impaired medication independent feedback processing circuits. Together, these findings suggest a potential role for GPi's synchronized activity in shaping feedback processing mechanisms required in cognitive tasks.
Collapse
Affiliation(s)
- Hadi Choubdar
- Institute of Medical Science and Technology (IMSAT), Shahid Beheshti University, Tehran, Iran.,Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Mahdi Mahdavi
- Institute of Medical Science and Technology (IMSAT), Shahid Beheshti University, Tehran, Iran.,Department of Physiology, McGill University, Montreal, QC, Canada
| | - Zahra Rostami
- Institute of Medical Science and Technology (IMSAT), Shahid Beheshti University, Tehran, Iran.,Department of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Erfan Zabeh
- Department of Biomedical Engineering, Columbia University, Columbia, USA
| | - Martin J Gillies
- Nuffield Department of Surgical Sciences, West Wing, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Alexander L Green
- Nuffield Department of Surgical Sciences, West Wing, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.,Nuffield Department of Clinical Neuroscience, West Wing, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Tipu Z Aziz
- Nuffield Department of Surgical Sciences, West Wing, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK.,Nuffield Department of Clinical Neuroscience, West Wing, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Reza Lashgari
- Institute of Medical Science and Technology (IMSAT), Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
8
|
Lévesque M, Wang S, Macey-Dare ADB, Salami P, Avoli M. Evolution of interictal activity in models of mesial temporal lobe epilepsy. Neurobiol Dis 2023; 180:106065. [PMID: 36907521 DOI: 10.1016/j.nbd.2023.106065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
Interictal activity and seizures are the hallmarks of focal epileptic disorders (which include mesial temporal lobe epilepsy, MTLE) in humans and in animal models. Interictal activity, which is recorded with cortical and intracerebral EEG recordings, comprises spikes, sharp waves and high-frequency oscillations, and has been used in clinical practice to identify the epileptic zone. However, its relation with seizures remains debated. Moreover, it is unclear whether specific EEG changes in interictal activity occur during the time preceding the appearance of spontaneous seizures. This period, which is termed "latent", has been studied in rodent models of MTLE in which spontaneous seizures start to occur following an initial insult (most often a status epilepticus induced by convulsive drugs such as kainic acid or pilocarpine) and may mirror epileptogenesis, i.e., the process leading the brain to develop an enduring predisposition to seizure generation. Here, we will address this topic by reviewing experimental studies performed in MTLE models. Specifically, we will review data highlighting the dynamic changes in interictal spiking activity and high-frequency oscillations occurring during the latent period, and how optogenetic stimulation of specific cell populations can modulate them in the pilocarpine model. These findings indicate that interictal activity: (i) is heterogeneous in its EEG patterns and thus, presumably, in its underlying neuronal mechanisms; and (ii) can pinpoint to the epileptogenic processes occurring in focal epileptic disorders in animal models and, perhaps, in epileptic patients.
Collapse
Affiliation(s)
- Maxime Lévesque
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montreal, H3A 2B4, QC, Canada.
| | - Siyan Wang
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montreal, H3A 2B4, QC, Canada
| | - Anežka D B Macey-Dare
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montreal, H3A 2B4, QC, Canada; Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Pariya Salami
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montreal, H3A 2B4, QC, Canada; Department of Neurology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St., Boston, MA 02114, USA
| | - Massimo Avoli
- Montreal Neurological Institute-Hospital and Departments of Neurology & Neurosurgery, McGill University, 3801 Rue University, Montreal, H3A 2B4, QC, Canada; Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, H3G 1Y6, QC, Canada
| |
Collapse
|
9
|
Weiss SA, Sheybani L, Seenarine N, Fried I, Wu C, Sharan A, Engel J, Sperling MR, Nir Y, Staba RJ. Delta oscillation coupled propagating fast ripples precede epileptiform discharges in patients with focal epilepsy. Neurobiol Dis 2022; 175:105928. [DOI: 10.1016/j.nbd.2022.105928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022] Open
|
10
|
Liu AA, Henin S, Abbaspoor S, Bragin A, Buffalo EA, Farrell JS, Foster DJ, Frank LM, Gedankien T, Gotman J, Guidera JA, Hoffman KL, Jacobs J, Kahana MJ, Li L, Liao Z, Lin JJ, Losonczy A, Malach R, van der Meer MA, McClain K, McNaughton BL, Norman Y, Navas-Olive A, de la Prida LM, Rueckemann JW, Sakon JJ, Skelin I, Soltesz I, Staresina BP, Weiss SA, Wilson MA, Zaghloul KA, Zugaro M, Buzsáki G. A consensus statement on detection of hippocampal sharp wave ripples and differentiation from other fast oscillations. Nat Commun 2022; 13:6000. [PMID: 36224194 PMCID: PMC9556539 DOI: 10.1038/s41467-022-33536-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 09/21/2022] [Indexed: 02/05/2023] Open
Abstract
Decades of rodent research have established the role of hippocampal sharp wave ripples (SPW-Rs) in consolidating and guiding experience. More recently, intracranial recordings in humans have suggested their role in episodic and semantic memory. Yet, common standards for recording, detection, and reporting do not exist. Here, we outline the methodological challenges involved in detecting ripple events and offer practical recommendations to improve separation from other high-frequency oscillations. We argue that shared experimental, detection, and reporting standards will provide a solid foundation for future translational discovery.
Collapse
Affiliation(s)
- Anli A Liu
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA
| | - Simon Henin
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Saman Abbaspoor
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Anatol Bragin
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Elizabeth A Buffalo
- Department of Physiology and Biophysics, Washington National Primate Center, University of Washington, Seattle, WA, USA
| | - Jordan S Farrell
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - David J Foster
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Loren M Frank
- Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Tamara Gedankien
- Department of Biomedical Engineering, Department of Neurological Surgery, Columbia University, New York, NY, USA
| | - Jean Gotman
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Jennifer A Guidera
- Kavli Institute for Fundamental Neuroscience, Center for Integrative Neuroscience and Department of Physiology, University of California San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, Department of Bioengineering, University of California, San Francisco, San Francisco, CA, USA
| | - Kari L Hoffman
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Joshua Jacobs
- Department of Biomedical Engineering, Department of Neurological Surgery, Columbia University, New York, NY, USA
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lin Li
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Zhenrui Liao
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Jack J Lin
- Department of Neurology, Center for Mind and Brain, University of California Davis, Oakland, CA, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Rafael Malach
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Kathryn McClain
- Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA
| | - Bruce L McNaughton
- The Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Yitzhak Norman
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | | | | | - Jon W Rueckemann
- Department of Physiology and Biophysics, Washington National Primate Center, University of Washington, Seattle, WA, USA
| | - John J Sakon
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ivan Skelin
- Department of Neurology, Center for Mind and Brain, University of California Davis, Oakland, CA, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Bernhard P Staresina
- Department of Experimental Psychology, Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Shennan A Weiss
- Brookdale Hospital Medical Center, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Matthew A Wilson
- Department of Brain and Cognitive Sciences and Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, MD, USA
| | - Michaël Zugaro
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France
| | - György Buzsáki
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA.
- Neuroscience Institute, NYU Langone Medical Center, New York, NY, USA.
| |
Collapse
|
11
|
Sleep and Epilepsy. Neurol Clin 2022; 40:769-783. [DOI: 10.1016/j.ncl.2022.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Bruder JC, Wagner K, Lachner-Piza D, Klotz KA, Schulze-Bonhage A, Jacobs J. Mesial-Temporal Epileptic Ripples Correlate With Verbal Memory Impairment. Front Neurol 2022; 13:876024. [PMID: 35720106 PMCID: PMC9204013 DOI: 10.3389/fneur.2022.876024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/05/2022] [Indexed: 12/03/2022] Open
Abstract
Rationale High frequency oscillations (HFO; ripples = 80–200, fast ripples 200–500 Hz) are promising epileptic biomarkers in patients with epilepsy. However, especially in temporal epilepsies differentiation of epileptic and physiological HFO activity still remains a challenge. Physiological sleep-spindle-ripple formations are known to play a role in slow-wave-sleep memory consolidation. This study aimed to find out if higher rates of mesial-temporal spindle-ripples correlate with good memory performance in epilepsy patients and if surgical removal of spindle-ripple-generating brain tissue correlates with a decline in memory performance. In contrast, we hypothesized that higher rates of overall ripples or ripples associated with interictal epileptic spikes correlate with poor memory performance. Methods Patients with epilepsy implanted with electrodes in mesial-temporal structures, neuropsychological memory testing and subsequent epilepsy surgery were included. Ripples and epileptic spikes were automatically detected in intracranial EEG and sleep-spindles in scalp EEG. The coupling of ripples to spindles was automatically analyzed. Mesial-temporal spindle-ripple rates in the speech-dominant-hemisphere (left in all patients) were correlated with verbal memory test results, whereas ripple rates in the non-speech-dominant hemisphere were correlated with non-verbal memory test performance, using Spearman correlation). Results Intracranial EEG and memory test results from 25 patients could be included. All ripple rates were significantly higher in seizure onset zone channels (p < 0.001). Patients with pre-surgical verbal memory impairment had significantly higher overall ripple rates in left mesial-temporal channels than patients with intact verbal memory (Mann–Whitney-U-Test: p = 0.039). Spearman correlations showed highly significant negative correlations of the pre-surgical verbal memory performance with left mesial-temporal spike associated ripples (rs = −0.458; p = 0.007) and overall ripples (rs = −0.475; p = 0.006). All three ripple types in right-sided mesial-temporal channels did not correlate with pre-surgical nonverbal memory. No correlation for the difference between post- and pre-surgical memory and pre-surgical spindle-ripple rates was seen in patients with left-sided temporal or mesial-temporal surgery. Discussion This study fails to establish a clear link between memory performance and spindle ripples. This highly suggests that spindle-ripples are only a small portion of physiological ripples contributing to memory performance. More importantly, this study indicates that spindle-ripples do not necessarily compromise the predictive value of ripples in patients with temporal epilepsy. The majority of ripples were clearly linked to areas with poor memory function.
Collapse
Affiliation(s)
- Jonas Christian Bruder
- Clinic of Neuropediatrics and Muscle Disorders, Freiburg University Medical Center, Breisgau, Germany
- *Correspondence: Jonas Christian Bruder
| | - Kathrin Wagner
- Abteilung Epileptologie Epilepsiezentrum, Klinik Für Neurochirurgie, Universitätsklinikum Freiburg, Breisgau, Germany
| | - Daniel Lachner-Piza
- Clinic of Neuropediatrics and Muscle Disorders, Freiburg University Medical Center, Breisgau, Germany
| | - Kerstin Alexandra Klotz
- Clinic of Neuropediatrics and Muscle Disorders, Freiburg University Medical Center, Breisgau, Germany
| | - Andreas Schulze-Bonhage
- Abteilung Epileptologie Epilepsiezentrum, Klinik Für Neurochirurgie, Universitätsklinikum Freiburg, Breisgau, Germany
| | - Julia Jacobs
- Clinic of Neuropediatrics and Muscle Disorders, Freiburg University Medical Center, Breisgau, Germany
| |
Collapse
|
13
|
Fujita Y, Yanagisawa T, Fukuma R, Ura N, Oshino S, Kishima H. Abnormal phase-amplitude coupling characterizes the interictal state in epilepsy. J Neural Eng 2022; 19. [PMID: 35385832 DOI: 10.1088/1741-2552/ac64c4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/05/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Diagnosing epilepsy still requires visual interpretation of electroencephalography and magnetoencephalography (MEG) by specialists, which prevents quantification and standardization of diagnosis. Previous studies proposed automated diagnosis by combining various features from electroencephalography and MEG, such as relative power (Power) and functional connectivity. However, the usefulness of interictal phase-amplitude coupling (PAC) in diagnosing epilepsy is still unknown. We hypothesized that resting-state PAC would be different for patients with epilepsy in the interictal state and for healthy participants such that it would improve discrimination between the groups. METHODS We obtained resting-state MEG and magnetic resonance imaging in 90 patients with epilepsy during their preoperative evaluation and in 90 healthy participants. We used the cortical currents estimated from MEG and magnetic resonance imaging to calculate Power in the δ (1-3 Hz), θ (4-7 Hz), α (8-13 Hz), β (13-30 Hz), low γ (35-55 Hz), and high γ (65-90 Hz) bands and functional connectivity in the θ band. PAC was evaluated using the synchronization index (SI) for eight frequency band pairs: the phases of δ, θ, α, and β and the amplitudes of low and high γ. First, we compared the mean SI values for the patients with epilepsy and the healthy participants. Then, using features such as PAC, Power, functional connectivity, and features extracted by deep learning individually or combined, we tested whether PAC improves discrimination accuracy for the two groups. RESULTS The mean SI values were significantly different for the patients with epilepsy and the healthy participants. The SI value difference was highest for θ/low γ in the temporal lobe. Discrimination accuracy was the highest, at 90%, using the combination of PAC and deep learning. SIGNIFICANCE Abnormal PAC characterized the patients with epilepsy in the interictal state compared with the healthy participants, potentially improving the discrimination of epilepsy.
Collapse
Affiliation(s)
- Yuya Fujita
- Institute for Advanced co-creation studies, Osaka University, 2-2 Yamadaoka Suita Osaka Japan, Suita, 565-0871, JAPAN
| | - Takufumi Yanagisawa
- Institute for Advanced co-creation studies, Osaka University, 2-2 Yamadaoka Suita Osaka Japan, Suita, 565-0871, JAPAN
| | - Ryohei Fukuma
- Institute for Advanced co-creation studies, Osaka University, 2-2 Yamadaoka Suita Osaka Japan, Suita, 565-0871, JAPAN
| | - Natsuko Ura
- Institute for Advanced co-creation studies, Osaka University, 2-2 Yamadaoka Suita Osaka Japan, Suita, 565-0871, JAPAN
| | - Satoru Oshino
- Department of Neurosurgery, Osaka University Faculty of Medicine Graduate School of Medicine, 2-2 Yamadaoka, suita, Osaka, Japan, Osaka University Graduate School of Medicine, Dept of Neurosurgery, Osaka, Osaka, 5670871, JAPAN
| | - Haruhiko Kishima
- Department of neurosurgery, Osaka University, 2-2, Yamadaoka, Suita, Suita, Osaka, 5650871, JAPAN
| |
Collapse
|
14
|
Santana‐Gomez CE, Engel J, Staba R. Drug-resistant epilepsy and the hypothesis of intrinsic severity: What about the high-frequency oscillations? Epilepsia Open 2021; 7 Suppl 1:S59-S67. [PMID: 34861102 PMCID: PMC9340307 DOI: 10.1002/epi4.12565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 11/19/2022] Open
Abstract
Drug‐resistant epilepsy (DRE) affects approximately one‐third of the patients with epilepsy. Based on experimental findings from animal models and brain tissue from patients with DRE, different hypotheses have been proposed to explain the cause(s) of drug resistance. One is the intrinsic severity hypothesis that posits that drug resistance is an inherent property of epilepsy related to disease severity. Seizure frequency is one measure of epilepsy severity, but frequency alone is an incomplete measure of severity and does not fully explain basic research and clinical studies on drug resistance; thus, other measures of epilepsy severity are needed. One such measure could be pathological high‐frequency oscillations (HFOs), which are believed to reflect the neuronal disturbances responsible for the development of epilepsy and the generation of spontaneous seizures. In this manuscript, we will briefly review the intrinsic severity hypothesis, describe basic and clinical research on HFOs in the epileptic brain, and based on this evidence discuss whether HFOs could be a clinical measure of epilepsy severity. Understanding the mechanisms of DRE is critical for producing breakthroughs in the development and testing of novel strategies for treatment.
Collapse
Affiliation(s)
| | - Jerome Engel
- Department of NeurologyDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
- Brain Research InstituteDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
- Department of NeurobiologyDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
- Department of Psychiatry and Biobehavioral SciencesDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Richard Staba
- Department of NeurologyDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| |
Collapse
|
15
|
Sun Y, Ren G, Ren J, Wang Q. High-frequency oscillations detected by electroencephalography as biomarkers to evaluate treatment outcome, mirror pathological severity and predict susceptibility to epilepsy. ACTA EPILEPTOLOGICA 2021. [DOI: 10.1186/s42494-021-00063-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractHigh-frequency oscillations (HFOs) in the electroencephalography (EEG) have been extensively investigated as a potential biomarker of epileptogenic zones. The understanding of the role of HFOs in epilepsy has been advanced considerably over the past decade, and the use of scalp EEG facilitates recordings of HFOs. HFOs were initially applied in large scale in epilepsy surgery and are now being utilized in other applications. In this review, we summarize applications of HFOs in 3 subtopics: (1) HFOs as biomarkers to evaluate epilepsy treatment outcome; (2) HFOs as biomarkers to measure seizure propensity; (3) HFOs as biomarkers to reflect the pathological severity of epilepsy. Nevertheless, knowledge regarding the above clinical applications of HFOs remains limited at present. Further validation through prospective studies is required for its reliable application in the clinical management of individual epileptic patients.
Collapse
|
16
|
Weiss SA, Staba RJ, Sharan A, Wu C, Rubinstein D, Das S, Waldman Z, Orosz I, Worrell G, Engel J, Sperling MR. Accuracy of high-frequency oscillations recorded intraoperatively for classification of epileptogenic regions. Sci Rep 2021; 11:21388. [PMID: 34725412 PMCID: PMC8560764 DOI: 10.1038/s41598-021-00894-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 10/19/2021] [Indexed: 11/10/2022] Open
Abstract
To see whether acute intraoperative recordings using stereo EEG (SEEG) electrodes can replace prolonged interictal intracranial EEG (iEEG) recording, making the process more efficient and safer, 10 min of iEEG were recorded following electrode implantation in 16 anesthetized patients, and 1-2 days later during non-rapid eye movement (REM) sleep. Ripples on oscillations (RonO, 80-250 Hz), ripples on spikes (RonS), sharp-spikes, fast RonO (fRonO, 250-600 Hz), and fast RonS (fRonS) were semi-automatically detected. HFO power and frequency were compared between the conditions using a generalized linear mixed-effects model. HFO rates were compared using a two-way repeated measures ANOVA with anesthesia type and SOZ as factors. A receiver-operating characteristic (ROC) curve analysis quantified seizure onset zone (SOZ) classification accuracy, and the scalar product was used to assess spatial reliability. Resection of contacts with the highest rate of events was compared with outcome. During sleep, all HFOs, except fRonO, were larger in amplitude compared to intraoperatively (p < 0.01). HFO frequency was also affected (p < 0.01). Anesthesia selection affected HFO and sharp-spike rates. In both conditions combined, sharp-spikes and all HFO subtypes were increased in the SOZ (p < 0.01). However, the increases were larger during the sleep recordings (p < 0.05). The area under the ROC curves for SOZ classification were significantly smaller for intraoperative sharp-spikes, fRonO, and fRonS rates (p < 0.05). HFOs and spikes were only significantly spatially reliable for a subset of the patients (p < 0.05). A failure to resect fRonO areas in the sleep recordings trended the most sensitive and accurate for predicting failure. In summary, HFO morphology is altered by anesthesia. Intraoperative SEEG recordings exhibit increased rates of HFOs in the SOZ, but their spatial distribution can differ from sleep recordings. Recording these biomarkers during non-REM sleep offers a more accurate delineation of the SOZ and possibly the epileptogenic zone.
Collapse
Affiliation(s)
- Shennan A Weiss
- Department of Neurology, State University of New York Downstate, Brooklyn, NY, 11203, USA.,Department of Physiology and Pharmacology, State University of New York Downstate, Brooklyn, NY, 11203, USA.,Department of Neurology, New York City Health + Hospitals/Kings County, Brooklyn, NY, USA
| | - Richard J Staba
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Ashwini Sharan
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Chengyuan Wu
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Daniel Rubinstein
- Department of Neurology and Neuroscience, Thomas Jefferson University, 901 Walnut St. Suite 400, Philadelphia, PA, 19107, USA
| | - Sandhitsu Das
- Penn Image Computing & Science Lab, University of Pennsylvania, Philadelphia, PA, 19143, USA
| | - Zachary Waldman
- Department of Neurology and Neuroscience, Thomas Jefferson University, 901 Walnut St. Suite 400, Philadelphia, PA, 19107, USA
| | - Iren Orosz
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Gregory Worrell
- Department of Neurology, Mayo Systems Electrophysiology Laboratory (MSEL), Rochester, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jerome Engel
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.,Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.,Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA.,Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Michael R Sperling
- Department of Neurology and Neuroscience, Thomas Jefferson University, 901 Walnut St. Suite 400, Philadelphia, PA, 19107, USA.
| |
Collapse
|
17
|
Abstract
Sleep is a complex brain state with fundamental relevance for cognitive functions, synaptic plasticity, brain resilience, and autonomic balance. Sleep pathologies may interfere with cerebral circuit organization, leading to negative consequences and favoring the development of neurologic disorders. Conversely, the latter can interfere with sleep functions. Accordingly, assessment of sleep quality is always recommended in the diagnosis of patients with neurologic disorders and during neurorehabilitation programs. This review investigates the complex interplay between sleep and brain pathologies, focusing on diseases in which the association with sleep disturbances is commonly overlooked and whereby major benefits may derive from their proper management.
Collapse
Affiliation(s)
- Carlotta Mutti
- Sleep Disorders Center, Department of Medicine and Surgery, Neurology Unit, University of Parma, Via Gramsci 14, Parma 43126, Italy
| | - Francesco Rausa
- Sleep Disorders Center, Department of Medicine and Surgery, Neurology Unit, University of Parma, Via Gramsci 14, Parma 43126, Italy
| | - Liborio Parrino
- Sleep Disorders Center, Department of Medicine and Surgery, Neurology Unit, University of Parma, Via Gramsci 14, Parma 43126, Italy.
| |
Collapse
|
18
|
Agudelo Valencia P, van Klink NEC, van 't Klooster MA, Zweiphenning WJEM, Swampillai B, van Eijsden P, Gebbink T, van Zandvoort MJE, Zijlmans M. Are HFOs in the Intra-operative ECoG Related to Hippocampal Sclerosis, Volume and IQ? Front Neurol 2021; 12:645925. [PMID: 33841312 PMCID: PMC8024640 DOI: 10.3389/fneur.2021.645925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/02/2021] [Indexed: 11/13/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is the most common form of refractory focal epilepsy and is often associated with hippocampal sclerosis (HS) and cognitive disturbances. Over the last decade, high frequency oscillations (HFOs) in the intraoperative electrocorticography (ioECoG) have been proposed to be biomarkers for the delineation of epileptic tissue but hippocampal ripples have also been associated with memory consolidation. Healthy hippocampi can show prolonged ripple activity in stereo- EEG. We aimed to identify how the HFO rates [ripples (80–250 Hz, fast ripples (250–500 Hz); prolonged ripples (80–250 Hz, 200–500 ms)] in the pre-resection ioECoG over subtemporal area (hippocampus) and lateral temporal neocortex relate to presence of hippocampal sclerosis, the hippocampal volume quantified on MRI and the severity of cognitive impairment in TLE patients. Volumetric measurement of hippocampal subregions was performed in 47 patients with TLE, who underwent ioECoG. Ripples, prolonged ripples, and fast ripples were visually marked and rates of HFOs were calculated. The intellectual quotient (IQ) before resection was determined. There was a trend toward higher rates of ripples and fast ripples in subtemporal electrodes vs. the lateral neocortex (ripples: 2.1 vs. 1.3/min; fast ripples: 0.9 vs. 0.2/min). Patients with HS showed higher rates of subtemporal fast ripples than other patients (Z = −2.51, p = 0.012). Prolonged ripples were only found in the lateral temporal neocortex. The normalized ratio (smallest/largest) of hippocampal volume was correlated to pre-resection IQ (r = 0.45, p = 0.015). There was no correlation between HFO rates and hippocampal volumes or HFO rates and IQ. To conclude, intra-operative fast ripples were a marker for HS, but ripples and fast ripples were not linearly correlated with either the amount of hippocampal atrophy, nor for pre-surgical IQ.
Collapse
Affiliation(s)
- Paula Agudelo Valencia
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Utrecht, Utrecht, Netherlands
| | - Nicole E C van Klink
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Utrecht, Utrecht, Netherlands
| | - Maryse A van 't Klooster
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Utrecht, Utrecht, Netherlands
| | - Willemiek J E M Zweiphenning
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Utrecht, Utrecht, Netherlands
| | - Banu Swampillai
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Utrecht, Utrecht, Netherlands
| | - Pieter van Eijsden
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Utrecht, Utrecht, Netherlands
| | - Tineke Gebbink
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Utrecht, Utrecht, Netherlands
| | - Martine J E van Zandvoort
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Utrecht, Utrecht, Netherlands
| | - Maeike Zijlmans
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, University Utrecht, Utrecht, Netherlands.,Stiching Epilepsie Instellingen Nederland (SEIN), Heemstede, Netherlands
| | | |
Collapse
|
19
|
Grigg-Damberger M, Foldvary-Schaefer N. Bidirectional relationships of sleep and epilepsy in adults with epilepsy. Epilepsy Behav 2021; 116:107735. [PMID: 33561767 DOI: 10.1016/j.yebeh.2020.107735] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 11/15/2020] [Accepted: 12/19/2020] [Indexed: 12/14/2022]
Abstract
This targeted review addresses the best accepted and most intriguing recent observations on the complex relationships between sleep and epilepsy. Ten to 15% of all epilepsies are sleep-related. Included in these is sleep-related hypermotor epilepsy, renamed from nocturnal frontal lobe epilepsy by a 2016 consensus conference since 30% of cases are extra-frontal, seizures are related to sleep rather than clock time, and the predominant semiology is hypermotor. Stereo-EEG is providing crucial insights into network activation in sleep-related epilepsies and definition of the epileptogenic zone. Pathologic high-frequency oscillations, a promising biomarker for identifying the epileptogenic zone, are most frequent in NREM sleep, lowest in wakefulness and REM sleep, similar to interictal epileptiform discharges (IEDs). Most sleep-related seizures are followed by awakening or arousal and IEDs cause arousals and increase after arousals, likely contributing to sleep/wake complaints. Sleep/wake disorders are 2-3 times more common in adults with epilepsy than the general population; these comorbidities are associated with poorer quality of life and may impact seizure control. Treatment of sleep apnea reduces seizures in many cases. An emerging area of research is in circadian biology and epilepsy. Over 90% of people with epilepsy have seizures with circadian periodicity, in part related to sleep itself, and the majority of SUDEP cases occur in sleep. Recognizing these bidirectional relationships is important for patient and caregiver education and counseling and optimizing epilepsy outcomes.
Collapse
Affiliation(s)
| | - Nancy Foldvary-Schaefer
- Sleep Disorders and Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
20
|
Boran E, Stieglitz L, Sarnthein J. Epileptic High-Frequency Oscillations in Intracranial EEG Are Not Confounded by Cognitive Tasks. Front Hum Neurosci 2021; 15:613125. [PMID: 33746723 PMCID: PMC7971186 DOI: 10.3389/fnhum.2021.613125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/27/2021] [Indexed: 11/13/2022] Open
Abstract
Rationale: High-frequency oscillations (HFOs) in intracranial EEG (iEEG) are used to delineate the epileptogenic zone during presurgical diagnostic assessment in patients with epilepsy. HFOs are historically divided into ripples (80-250 Hz), fast ripples (FR, >250 Hz), and their co-occurrence (FRandR). In a previous study, we had validated the rate of FRandRs during deep sleep to predict seizure outcome. Here, we ask whether epileptic FRandRs might be confounded by physiological FRandRs that are unrelated to epilepsy. Methods: We recorded iEEG in the medial temporal lobe MTL (hippocampus, entorhinal cortex, and amygdala) in 17 patients while they performed cognitive tasks. The three cognitive tasks addressed verbal working memory, visual working memory, and emotional processing. In our previous studies, these tasks activated the MTL. We re-analyzed the data of these studies with the automated detector that focuses on the co-occurrence of ripples and FRs (FRandR). Results: For each task, we identified those channels in which the HFO rate was modulated during the task condition compared to the control condition. However, the number of these channels did not exceed the chance level. Interestingly, even during wakefulness, the HFO rate was higher for channels within the seizure onset zone (SOZ) than for channels outside the SOZ. Conclusion: Our prospective definition of an epileptic HFO, the FRandR, is not confounded by physiological HFOs that might be elicited by our cognitive tasks. This is reassuring for the clinical use of FRandR as a biomarker of the EZ.
Collapse
Affiliation(s)
- Ece Boran
- Klinik für Neurochirurgie, Universitäts Spital und Universität Zürich, Zurich, Switzerland
| | - Lennart Stieglitz
- Klinik für Neurochirurgie, Universitäts Spital und Universität Zürich, Zurich, Switzerland
| | - Johannes Sarnthein
- Klinik für Neurochirurgie, Universitäts Spital und Universität Zürich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Chen Z, Maturana MI, Burkitt AN, Cook MJ, Grayden DB. High-Frequency Oscillations in Epilepsy: What Have We Learned and What Needs to be Addressed. Neurology 2021; 96:439-448. [PMID: 33408149 DOI: 10.1212/wnl.0000000000011465] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/10/2020] [Indexed: 11/15/2022] Open
Abstract
For the past 2 decades, high-frequency oscillations (HFOs) have been enthusiastically studied by the epilepsy community. Emerging evidence shows that HFOs harbor great promise to delineate epileptogenic brain areas and possibly predict the likelihood of seizures. Investigations into HFOs in clinical epilepsy have advanced from small retrospective studies relying on visual identification and correlation analysis to larger prospective assessments using automatic detection and prediction strategies. Although most studies have yielded promising results, some have revealed significant obstacles to clinical application of HFOs, thus raising debate about the reliability and practicality of HFOs as clinical biomarkers. In this review, we give an overview of the current state of HFO research and pinpoint the conceptual and methodological issues that have hampered HFO translation. We highlight recent insights gained from long-term data, high-density recordings, and multicenter collaborations and discuss the open questions that need to be addressed in future research.
Collapse
Affiliation(s)
- Zhuying Chen
- From the Department of Biomedical Engineering (Z.C., A.N.B., M.J.C., D.B.G.), The University of Melbourne and Department of Medicine (Z.C., M.I.M., M.J.C., D.B.G.), St Vincent's Hospital, The University of Melbourne; Seer Medical (M.I.M.), Melbourne; and Graeme Clark Institute (M.J.C.), The University of Melbourne, VIC, Australia.
| | - Matias I Maturana
- From the Department of Biomedical Engineering (Z.C., A.N.B., M.J.C., D.B.G.), The University of Melbourne and Department of Medicine (Z.C., M.I.M., M.J.C., D.B.G.), St Vincent's Hospital, The University of Melbourne; Seer Medical (M.I.M.), Melbourne; and Graeme Clark Institute (M.J.C.), The University of Melbourne, VIC, Australia
| | - Anthony N Burkitt
- From the Department of Biomedical Engineering (Z.C., A.N.B., M.J.C., D.B.G.), The University of Melbourne and Department of Medicine (Z.C., M.I.M., M.J.C., D.B.G.), St Vincent's Hospital, The University of Melbourne; Seer Medical (M.I.M.), Melbourne; and Graeme Clark Institute (M.J.C.), The University of Melbourne, VIC, Australia
| | - Mark J Cook
- From the Department of Biomedical Engineering (Z.C., A.N.B., M.J.C., D.B.G.), The University of Melbourne and Department of Medicine (Z.C., M.I.M., M.J.C., D.B.G.), St Vincent's Hospital, The University of Melbourne; Seer Medical (M.I.M.), Melbourne; and Graeme Clark Institute (M.J.C.), The University of Melbourne, VIC, Australia
| | - David B Grayden
- From the Department of Biomedical Engineering (Z.C., A.N.B., M.J.C., D.B.G.), The University of Melbourne and Department of Medicine (Z.C., M.I.M., M.J.C., D.B.G.), St Vincent's Hospital, The University of Melbourne; Seer Medical (M.I.M.), Melbourne; and Graeme Clark Institute (M.J.C.), The University of Melbourne, VIC, Australia
| |
Collapse
|