1
|
Lee JY, Lim MCX, Koh RY, Tsen MT, Chye SM. Blood-based therapies to combat neurodegenerative diseases. Metab Brain Dis 2024; 39:985-1004. [PMID: 38842660 DOI: 10.1007/s11011-024-01368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 05/31/2024] [Indexed: 06/07/2024]
Abstract
Neurodegeneration, known as the progressive loss of neurons in terms of their structure and function, is the principal pathophysiological change found in the majority of brain-related disorders. Ageing has been considered the most well-established risk factor in most common neurodegenerative diseases, such as Parkinson's disease (PD) and Alzheimer's disease (AD). There is currently no effective treatment or cure for these diseases; the approved therapeutic options to date are only for palliative care. Ageing and neurodegenerative diseases are closely intertwined; reversing the aspects of brain ageing could theoretically mitigate age-related neurodegeneration. Ever since the regenerative properties of young blood on aged tissues came to light, substantial efforts have been focused on identifying and characterizing the circulating factors in the young and old systemic milieu that may attenuate or accentuate brain ageing and neurodegeneration. Later studies discovered the superiority of old plasma dilution in tissue rejuvenation, which is achieved through a molecular reset of the systemic proteome. These findings supported the use of therapeutic blood exchange for the treatment of degenerative diseases in older individuals. The first objective of this article is to explore the rejuvenating properties of blood-based therapies in the ageing brains and their therapeutic effects on AD. Then, we also look into the clinical applications, various limitations, and challenges associated with blood-based therapies for AD patients.
Collapse
Affiliation(s)
- Jia Yee Lee
- School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Mervyn Chen Xi Lim
- School of Health Science, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Rhun Yian Koh
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Min Tze Tsen
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- Division of Applied Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
2
|
González-Madrid A, Calfío C, González A, Lüttges V, Maccioni RB. Toward Prevention and Reduction of Alzheimer's Disease. J Alzheimers Dis 2023; 96:439-457. [PMID: 37807781 DOI: 10.3233/jad-230454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Different investigations lead to the urgent need to generate validated clinical protocols as a tool for medical doctors to orientate patients under risk for a preventive approach to control Alzheimer's disease. Moreover, there is consensus that the combined effects of risk factors for the disease can be modified according to lifestyle, thus controlling at least 40% of cases. The other fraction of cases are derived from candidate genes and epigenetic components as a relevant factor in AD pathogenesis. At this point, it appears to be of critical relevance the search for molecular biomarkers that may provide information on probable pathological events and alert about early detectable risks to prevent symptomatic events of the disease. These precocious detection markers will then allow early interventions of non-symptomatic subjects at risk. Here, we summarize the status and potential avenues of prevention and highlight the usefulness of biological and reliable markers for AD.
Collapse
Affiliation(s)
- Antonia González-Madrid
- International Center for Biomedicine - ICC and Faculty of Sciences, University of Chile, Santiago, Chile
| | - Camila Calfío
- International Center for Biomedicine - ICC and Faculty of Sciences, University of Chile, Santiago, Chile
| | - Andrea González
- International Center for Biomedicine - ICC and Faculty of Sciences, University of Chile, Santiago, Chile
| | - Valentina Lüttges
- International Center for Biomedicine - ICC and Faculty of Sciences, University of Chile, Santiago, Chile
| | - Ricardo B Maccioni
- International Center for Biomedicine - ICC and Faculty of Sciences, University of Chile, Santiago, Chile
| |
Collapse
|
3
|
Kang K, Lee HW, Lee DH. Plasma exchange: An effective method to eliminate neurotoxic lipophilic chemicals from blood. Alzheimers Dement 2022; 18:2730-2731. [PMID: 35933710 PMCID: PMC10087461 DOI: 10.1002/alz.12739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/06/2022] [Indexed: 01/31/2023]
Affiliation(s)
- Kyunghun Kang
- Department of Neurology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ho-Won Lee
- Department of Neurology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.,Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Duk-Hee Lee
- Department of Preventive Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
4
|
Fei Z, Pan B, Pei R, Chen Z, Du X, Cao H, Li C. Efficacy and safety of blood derivatives therapy in Alzheimer's disease: a systematic review and meta-analysis. Syst Rev 2022; 11:256. [PMID: 36443888 PMCID: PMC9706869 DOI: 10.1186/s13643-022-02115-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 11/02/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Blood derivatives therapy is a conventional clinical treatment, while the treatment for Alzheimer's disease (AD) is relatively novel. To provide clinical references for treating AD, this meta-analysis was performed to evaluate the efficacy and safety of blood derivatives therapy on the patients with AD. METHODS A systematic articles search was performed for eligible studies published up to December 6, 2021 through the PubMed, Embase, Cochrane library, ClinicalTrials.gov , Chinese National Knowledge Infrastructure database, and Wanfang databases. The included articles were screened by using rigorous inclusion and exclusion criteria. Study selection and data-extraction were performed by two authors independently. Random effects model or fixed effects model was used. Quality of studies and risk of bias were evaluated according to the Cochrane risk of bias tool. All analyses were conducted using Review Manager 5.4. The study was designed and conducted according to the Preferring Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline. RESULTS A total of three plasma administrations (two plasma exchange and one young plasma infusion) and five intravenous immunoglobulin (IVIG) randomized controlled trials with a sample size of 1148 subjects diagnosed with AD were included. There was no significant difference in cognitive improvement and all-cause discontinuation between intervention and placebo groups (RR 1.10, 95% CI 0.79-1.54). And Intervention groups showed not a statistically significant improvement in cognition of included subjects measured by the ADAS-Cog (MD 0.36, 95% CI 0.87-1.59), ADCS-ADL (MD -1.34, 95% CI - 5.01-2.32) and NPI (MD 2.20, 95% CI 0.07-4.32) score compared to the control groups. IVIG is well tolerated for AD patients even under the maximum dose (0.4 g/kg), but it is inferior to placebo in Neuropsychiatric Inventory scale in AD patients (MD 2.19, 95% CI 0.02-4.37). CONCLUSIONS The benefits of blood derivatives therapy for AD are limited. It is necessary to perform well-designed randomized controlled trials with large sample sizes focusing on the appropriate blood derivatives for the specific AD sub-populations in the future. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42021233886.
Collapse
Affiliation(s)
- Zhangcheng Fei
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, China
| | - Bo Pan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, China
| | - Renjun Pei
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, China
| | - Zhongsheng Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, China
| | - Xi Du
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, China
| | - Haijun Cao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, China.
| | - Changqing Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, 610052, China.
| |
Collapse
|
5
|
Raulin AC, Doss SV, Trottier ZA, Ikezu TC, Bu G, Liu CC. ApoE in Alzheimer’s disease: pathophysiology and therapeutic strategies. Mol Neurodegener 2022; 17:72. [PMID: 36348357 PMCID: PMC9644639 DOI: 10.1186/s13024-022-00574-4] [Citation(s) in RCA: 160] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common cause of dementia worldwide, and its prevalence is rapidly increasing due to extended lifespans. Among the increasing number of genetic risk factors identified, the apolipoprotein E (APOE) gene remains the strongest and most prevalent, impacting more than half of all AD cases. While the ε4 allele of the APOE gene significantly increases AD risk, the ε2 allele is protective relative to the common ε3 allele. These gene alleles encode three apoE protein isoforms that differ at two amino acid positions. The primary physiological function of apoE is to mediate lipid transport in the brain and periphery; however, additional functions of apoE in diverse biological functions have been recognized. Pathogenically, apoE seeds amyloid-β (Aβ) plaques in the brain with apoE4 driving earlier and more abundant amyloids. ApoE isoforms also have differential effects on multiple Aβ-related or Aβ-independent pathways. The complexity of apoE biology and pathobiology presents challenges to designing effective apoE-targeted therapeutic strategies. This review examines the key pathobiological pathways of apoE and related targeting strategies with a specific focus on the latest technological advances and tools.
Collapse
|
6
|
Shojai S, Haeri Rohani SA, Moosavi-Movahedi AA, Habibi-Rezaei M. Human serum albumin in neurodegeneration. Rev Neurosci 2022; 33:803-817. [PMID: 35363449 DOI: 10.1515/revneuro-2021-0165] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/02/2022] [Indexed: 11/15/2022]
Abstract
Serum albumin (SA) exists in relatively high concentrations, in close contact with most cells. However, in the adult brain, except for cerebrospinal fluid (CSF), SA concentration is relatively low. It is mainly produced in the liver to serve as the main protein of the blood plasma. In the plasma, it functions as a carrier, chaperon, antioxidant, source of amino acids, osmoregulator, etc. As a carrier, it facilitates the stable presence and transport of the hydrophobic and hydrophilic molecules, including free fatty acids, steroid hormones, medicines, and metal ions. As a chaperon, SA binds to and protects other proteins. As an antioxidant, thanks to a free sulfhydryl group (-SH), albumin is responsible for most antioxidant properties of plasma. These functions qualify SA as a major player in, and a mirror of, overall health status, aging, and neurodegeneration. The low concentration of SA is associated with cognitive deterioration in the elderly and negative prognosis in multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). SA has been shown to be structurally modified in neurological conditions such as Alzheimer's disease (AD). During blood-brain barrier damage albumin enters the brain tissue and could trigger epilepsy and neurodegeneration. SA is able to bind to the precursor agent of the AD, amyloid-beta (Aβ), preventing its toxic effects in the periphery, and is being tested for treating this disease. SA therapy may also be effective in brain rejuvenation. In the current review, we will bring forward the prominent properties and roles of SA in neurodegeneration.
Collapse
Affiliation(s)
- Sajjad Shojai
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | | | - Mehran Habibi-Rezaei
- School of Biology, College of Science, University of Tehran, Tehran, Iran
- Nano-Biomedicine Center of Excellence, Nanoscience and Nanotechnology Research Center, University of Tehran, Tehran, Iran
| |
Collapse
|
7
|
Allen ES, Cohn CS, Bakhtary S, Dunbar NM, Gniadek T, Hopkins CK, Jacobson J, Lokhandwala PM, Metcalf RA, Murphy C, Prochaska MT, Raval JS, Shan H, Storch EK, Pagano MB. Current advances in transfusion medicine 2020: A critical review of selected topics by the AABB Clinical Transfusion Medicine Committee. Transfusion 2021; 61:2756-2767. [PMID: 34423446 DOI: 10.1111/trf.16625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND The AABB Clinical Transfusion Medicine Committee (CTMC) compiles an annual synopsis of the published literature covering important developments in the field of transfusion medicine (TM), which has been made available as a manuscript published in Transfusion since 2018. METHODS CTMC committee members reviewed original manuscripts including TM-related topics published electronically (ahead) or in print from December 2019 to December 2020. The selection of topics and manuscripts was discussed at committee meetings and chosen based on relevance and originality. Next, committee members worked in pairs to create a synopsis of each topic, which was then reviewed by two additional committee members. The first and senior authors of this manuscript assembled the final manuscript. Although this synopsis is extensive, it is not exhaustive, and some papers may have been excluded or missed. RESULTS The following topics are included: COVID-19 effects on the blood supply and regulatory landscape, COVID convalescent plasma, adult transfusion practices, whole blood, molecular immunohematology, pediatric TM, cellular therapy, and apheresis medicine. CONCLUSIONS This synopsis provides easy access to relevant topics and may be useful as an educational tool.
Collapse
Affiliation(s)
- Elizabeth S Allen
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Claudia S Cohn
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sara Bakhtary
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, USA
| | - Nancy M Dunbar
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Thomas Gniadek
- Department of Pathology, NorthShore University Health System, Chicago, Illinois, USA
| | | | - Jessica Jacobson
- Department of Pathology, New York University Grossman School of Medicine, New York, New York, USA
| | - Parvez M Lokhandwala
- American Red Cross, Biomedical Services, Baltimore, Maryland, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ryan A Metcalf
- Clinical Pathology Division, Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Colin Murphy
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Micah T Prochaska
- Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Jay S Raval
- Department of Pathology, University of New Mexico, Albuquerque, New Mexico, USA
| | - Hua Shan
- Department of Pathology, Stanford University, Stanford, California, USA
| | - Emily K Storch
- Office of Blood Research and Review, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Monica B Pagano
- Transfusion Medicine Division, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
8
|
Boada M, Martínez-Lage P, Serrano-Castro P, Costa M, Páez A. Therapeutic plasma exchange with albumin: a new approach to treat Alzheimer's disease. Expert Rev Neurother 2021; 21:843-849. [PMID: 34338566 DOI: 10.1080/14737175.2021.1960823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a chronic neurodegenerative disease and the most common cause of dementia. It has a complex pathophysiology that is not yet completely understood, where multiple central, systemic, and environmental factors play a key role in disease progression. Understanding the multifactorial nature of AD is paramount to formulate new therapies. AREAS COVERED The authors reviewed the role of the amyloid-β-binding, antioxidant, and immunomodulatory properties of albumin in AD and the use of therapeutic plasma exchange (PE) in neurology. The results from the Alzheimer Management By Albumin Replacement (AMBAR) trial that combined the use of PE with albumin replacement in patients with mild-to-moderate AD, are also analyzed. EXPERT OPINION Findings from the AMBAR study provide encouraging results in the treatment of AD with PE and albumin replacement, especially in patients at the moderate stage of the disease, who showed less cognitive decline from baseline compared with placebo in most of the variables analyzed. Further research is warranted to ascertain the possible mechanisms of action underlying these results. Different cohorts of patients that may also benefit from this treatment, such as those with mild cognitive impairment or other types of dementia, could also be the target of additional studies.
Collapse
Affiliation(s)
- Mercè Boada
- Ace Alzheimer Center Barcelona, Universitat Internacional De Catalunya, Barcelona, Spain
| | - Pablo Martínez-Lage
- Centro De Investigación Y Clínica Memoria, Fundación CITA-Alzheimer Fundazioa, Donostia, San Sebastián, Spain
| | - Pedro Serrano-Castro
- Instituto De Investigación Biomédica De Málaga, Hospital Regional Universitario De Málaga, Málaga, Spain
| | | | - Antonio Páez
- Grifols Bioscience Research Group, Barcelona, Spain
| |
Collapse
|
9
|
Brand A, De Angelis V, Vuk T, Garraud O, Lozano M, Politis D. Review of indications for immunoglobulin (IG) use: Narrowing the gap between supply and demand. Transfus Clin Biol 2021; 28:96-122. [DOI: 10.1016/j.tracli.2020.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
10
|
Mehdipour M, Mehdipour T, Skinner CM, Wong N, Liu C, Chen CC, Jeon OH, Zuo Y, Conboy MJ, Conboy IM. Plasma dilution improves cognition and attenuates neuroinflammation in old mice. GeroScience 2020; 43:1-18. [PMID: 33191466 PMCID: PMC8050203 DOI: 10.1007/s11357-020-00297-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/01/2020] [Indexed: 02/06/2023] Open
Abstract
Our recent study has established that young blood factors are not causal, nor necessary, for the systemic rejuvenation of mammalian tissues. Instead, a procedure referred to as neutral blood exchange (NBE) that resets signaling milieu to a pro-regenerative state through dilution of old plasma, enhanced the health and repair of the muscle and liver, and promoted better hippocampal neurogenesis in 2-year-old mice (Mehdipour et al., Aging 12:8790–8819, 2020). Here we expand the rejuvenative phenotypes of NBE, focusing on the brain. Namely, our results demonstrate that old mice perform much better in novel object and novel texture (whisker discrimination) tests after a single NBE, which is accompanied by reduced neuroinflammation (less-activated CD68+ microglia). Evidence against attenuation/dilution of peripheral senescence-associated secretory phenotype (SASP) as the main mechanism behind NBE was that the senolytic ABT 263 had limited effects on neuroinflammation and did not enhance hippocampal neurogenesis in the old mice. Interestingly, peripherally acting ABT 263 and NBE both diminished SA-βGal signal in the old brain, demonstrating that peripheral senescence propagates to the brain, but NBE was more robustly rejuvenative than ABT 263, suggesting that rejuvenation was not simply by reducing senescence. Explaining the mechanism of the positive effects of NBE on the brain, our comparative proteomics analysis demonstrated that dilution of old blood plasma yields an increase in the determinants of brain maintenance and repair in mice and in people. These findings confirm the paradigm of rejuvenation through dilution of age-elevated systemic factors and extrapolate it to brain health and function.
Collapse
Affiliation(s)
- Melod Mehdipour
- Department of Bioengineering and QB3, UC Berkeley, Berkeley, CA, USA
| | - Taha Mehdipour
- Department of Bioengineering and QB3, UC Berkeley, Berkeley, CA, USA
| | - Colin M Skinner
- Department of Bioengineering and QB3, UC Berkeley, Berkeley, CA, USA
| | - Nathan Wong
- Department of Bioengineering and QB3, UC Berkeley, Berkeley, CA, USA
| | - Chao Liu
- Department of Bioengineering and QB3, UC Berkeley, Berkeley, CA, USA
| | - Chia-Chien Chen
- Department of Molecular and Cellular Biology and QB3, UCSC, Santa Cruz, CA, USA
| | - Ok Hee Jeon
- Buck Institute for Research on Aging, 8001 Redwood Boulevard, Novato, CA, USA.,Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yi Zuo
- Department of Molecular and Cellular Biology and QB3, UCSC, Santa Cruz, CA, USA
| | - Michael J Conboy
- Department of Bioengineering and QB3, UC Berkeley, Berkeley, CA, USA
| | - Irina M Conboy
- Department of Bioengineering and QB3, UC Berkeley, Berkeley, CA, USA.
| |
Collapse
|