1
|
Zhou Z, Tian E, Wang J, Guo Z, Chen J, Guo J, Shi S, Xu W, Yu X, Qiao C, Zhang Y, Lu Y, Zhang S. Cognitive impairments and neurobiological changes induced by unilateral vestibular dysfunction in mice. Neurobiol Dis 2024; 202:106719. [PMID: 39481811 DOI: 10.1016/j.nbd.2024.106719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/03/2024] Open
Abstract
The vestibular system is essential for balance and spatial orientation, and its dysfunction can lead to cognitive deficits. This study investigates the effects of unilateral vestibular dysfunction (UVL) on cognitive function and the underlying neurobiological changes in mice. We established a unilateral labyrinthectomy (UL) model in mice and assessed cognitive function at 28 days post-surgery using a comprehensive battery of behavioral tests. We found significant impairments in spatial reference memory, working memory, and synaptic plasticity in UL mice, which persisted despite compensation for vestibular and postural motor deficits. Immunofluorescence staining revealed enhanced activation of c-Fos in the hippocampal dentate gyrus (DG) at various time points post-UL, suggesting a role of the hippocampus in cognitive deficits following UVL. RNA sequencing of the DG identified differentially expressed genes (DEGs) and altered pathways related to cognitive function, synaptic plasticity, and neuronal activation. Quantitative real-time PCR (qRT-PCR) validated the expression changes of selected genes. Our findings indicate that UVL leads to persistent cognitive impairments in mice, associated with altered neuronal activation and gene expression in the hippocampus. This study offers valuable insights into the neurobiological mechanisms underlying cognitive deficits associated with UVL. Moreover, it underscores the importance of early cognitive screening in patients with vestibular diseases, as this approach is instrumental in comprehensive condition assessment, precise diagnosis, targeted treatment, and effective rehabilitation.
Collapse
Affiliation(s)
- Zhanghong Zhou
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - E Tian
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Zhaoqi Guo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyu Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaqi Guo
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiyu Shi
- Department of Rehabilitation, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wandi Xu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xixi Yu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Caijuan Qiao
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Yuejin Zhang
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China; School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Yisheng Lu
- Department of Physiology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China.
| | - Sulin Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Stanley OR, Swaminathan A, Wojahn E, Bao C, Ahmed ZM, Cullen KE. An open-source tool for automated human-level circling behavior detection. Sci Rep 2024; 14:20914. [PMID: 39245735 PMCID: PMC11381541 DOI: 10.1038/s41598-024-71665-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/29/2024] [Indexed: 09/10/2024] Open
Abstract
Quantitatively relating behavior to underlying biology is crucial in life science. Although progress in keypoint tracking tools has reduced barriers to recording postural data, identifying specific behaviors from this data remains challenging. Manual behavior coding is labor-intensive and inconsistent, while automatic methods struggle to explicitly define complex behaviors, even when they seem obvious to the human eye. Here, we demonstrate an effective technique for detecting circling in mice, a form of locomotion characterized by stereotyped spinning. Despite circling's extensive history as a behavioral marker, there currently exists no standard automated detection method. We developed a circling detection technique using simple postprocessing of keypoint data obtained from videos of freely-exploring (Cib2-/-;Cib3-/-) mutant mice, a strain previously found to exhibit circling behavior. Our technique achieves statistical parity with independent human observers in matching occurrence times based on human consensus, and it accurately distinguishes between videos of wild type mice and mutants. Our pipeline provides a convenient, noninvasive, quantitative tool for analyzing circling mouse models without the need for software engineering experience. Additionally, as the concepts underlying our approach are agnostic to the behavior being analyzed, and indeed to the modality of the recorded data, our results support the feasibility of algorithmically detecting specific research-relevant behaviors using readily-interpretable parameters tuned on the basis of human consensus.
Collapse
Affiliation(s)
- O R Stanley
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Ave, Traylor 504, Baltimore, MD, 21205-2109, USA
| | - A Swaminathan
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Ave, Traylor 504, Baltimore, MD, 21205-2109, USA
| | - E Wojahn
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Ave, Traylor 504, Baltimore, MD, 21205-2109, USA
| | - C Bao
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Ave, Traylor 504, Baltimore, MD, 21205-2109, USA
| | - Z M Ahmed
- Departments of Otorhinolaryngology-Head and Neck Surgery, Biochemistry and Molecular Biology, Ophthalmology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - K E Cullen
- Department of Biomedical Engineering, Johns Hopkins University, 720 Rutland Ave, Traylor 504, Baltimore, MD, 21205-2109, USA.
- Departments of Neuroscience, Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
3
|
Molkov YI, Yu G, Ausborn J, Bouvier J, Danner SM, Rybak IA. Sensory feedback and central neuronal interactions in mouse locomotion. ROYAL SOCIETY OPEN SCIENCE 2024; 11:240207. [PMID: 39169962 PMCID: PMC11335407 DOI: 10.1098/rsos.240207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/23/2024] [Accepted: 07/09/2024] [Indexed: 08/23/2024]
Abstract
Locomotion is a complex process involving specific interactions between the central neural controller and the mechanical components of the system. The basic rhythmic activity generated by locomotor circuits in the spinal cord defines rhythmic limb movements and their central coordination. The operation of these circuits is modulated by sensory feedback from the limbs providing information about the state of the limbs and the body. However, the specific role and contribution of central interactions and sensory feedback in the control of locomotor gait and posture remain poorly understood. We use biomechanical data on quadrupedal locomotion in mice and recent findings on the organization of neural interactions within the spinal locomotor circuitry to create and analyse a tractable mathematical model of mouse locomotion. The model includes a simplified mechanical model of the mouse body with four limbs and a central controller composed of four rhythm generators, each operating as a state machine controlling the state of one limb. Feedback signals characterize the load and extension of each limb as well as postural stability (balance). We systematically investigate and compare several model versions and compare their behaviour to existing experimental data on mouse locomotion. Our results highlight the specific roles of sensory feedback and some central propriospinal interactions between circuits controlling fore and hind limbs for speed-dependent gait expression. Our models suggest that postural imbalance feedback may be critically involved in the control of swing-to-stance transitions in each limb and the stabilization of walking direction.
Collapse
Affiliation(s)
- Yaroslav I. Molkov
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA30303, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA30303, USA
| | - Guoning Yu
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA30303, USA
| | - Jessica Ausborn
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129, USA
| | - Julien Bouvier
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay91400, France
| | - Simon M. Danner
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129, USA
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA19129, USA
| |
Collapse
|
4
|
Sallie FN, Pienaar L, Lubbe A, Xhakaza S, Manne SR, de la Torre BG, Albericio F, Mu Daniels W, Me Millen A, Baijnath S. Neurobehavioral and molecular changes in a rodent model of ACTH-induced HPA axis dysfunction. Brain Res 2024; 1834:148913. [PMID: 38580046 DOI: 10.1016/j.brainres.2024.148913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Hypothalamic-pituitary-adrenal (HPA) axis dysregulation is linked to the pathophysiology of depression. Although exogenous adrenocorticotropic hormone (ACTH) is associated with a depressive-like phenotype in rodents, comprehensive neurobehavioral and mechanistic evidence to support these findings are limited. Sprague-Dawley rats (male, n = 30; female, n = 10) were randomly assigned to the control (male, n = 10) or ACTH (male, n = 20; female n = 10) groups that received saline (0.1 ml, sc.) or ACTH (100 μg/day, sc.), respectively, for two weeks. Thereafter, rats in the ACTH group were subdivided to receive ACTH plus saline (ACTH_S; male, n = 10; female, n = 5; 0.2 ml, ip.) or ACTH plus imipramine (ACTH_I; male, n = 10; female, n = 5;10 mg/kg, ip.) for a further four weeks. Neurobehavioral changes were assessed using the forced swim test (FST), the sucrose preference test (SPT), and the open field test (OFT). Following termination, the brain regional mRNA expression of BDNF and CREB was determined using RT-PCR. After two-weeks, ACTH administration significantly increased immobility in the FST (p = 0.03), decreased interaction with the center of the OFT (p < 0.01), and increased sucrose consumption (p = 0.03) in male, but not female rats. ACTH administration significantly increased the expression of BDNF in the hippocampus and CREB in all brain regions in males (p < 0.05), but not in female rats. Imipramine treatment did not ameliorate these ACTH-induced neurobehavioral or molecular changes. In conclusion, ACTH administration resulted in a sex-specific onset of depressive-like symptoms and changes in brain regional expression of neurotrophic factors. These results suggest sex-specific mechanisms underlying the development of depressive-like behavior in a model of ACTH-induced HPA axis dysregulation.
Collapse
Affiliation(s)
- Farhanah N Sallie
- Wits Integrated Molecular Physiology Research Initiative, Wits Health Consortium (PTY) Ltd, School of Physiology, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, South Africa; School of Physiology, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, South Africa
| | - Leandrie Pienaar
- Wits Integrated Molecular Physiology Research Initiative, Wits Health Consortium (PTY) Ltd, School of Physiology, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, South Africa; School of Physiology, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, South Africa
| | - Andrea Lubbe
- Wits Integrated Molecular Physiology Research Initiative, Wits Health Consortium (PTY) Ltd, School of Physiology, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, South Africa; School of Physiology, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, South Africa
| | - Sanelisiwe Xhakaza
- Wits Integrated Molecular Physiology Research Initiative, Wits Health Consortium (PTY) Ltd, School of Physiology, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, South Africa; School of Physiology, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, South Africa
| | - Srinivasa R Manne
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Beatriz G de la Torre
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - Fernando Albericio
- Peptide Science Laboratory, School of Chemistry and Physics, University of KwaZulu-Natal, Durban, South Africa
| | - William Mu Daniels
- School of Physiology, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, South Africa
| | - Aletta Me Millen
- Wits Integrated Molecular Physiology Research Initiative, Wits Health Consortium (PTY) Ltd, School of Physiology, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, South Africa; School of Physiology, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, South Africa.
| | - Sooraj Baijnath
- Wits Integrated Molecular Physiology Research Initiative, Wits Health Consortium (PTY) Ltd, School of Physiology, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, South Africa; School of Physiology, Faculty of Health Sciences, University of The Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
5
|
Krut' VG, Kalinichenko AL, Maltsev DI, Jappy D, Shevchenko EK, Podgorny OV, Belousov VV. Optogenetic and chemogenetic approaches for modeling neurological disorders in vivo. Prog Neurobiol 2024; 235:102600. [PMID: 38548126 DOI: 10.1016/j.pneurobio.2024.102600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/26/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
Animal models of human neurological disorders provide valuable experimental tools which enable us to study various aspects of disorder pathogeneses, ranging from structural abnormalities and disrupted metabolism and signaling to motor and mental deficits, and allow us to test novel therapies in preclinical studies. To be valid, these animal models should recapitulate complex pathological features at the molecular, cellular, tissue, and behavioral levels as closely as possible to those observed in human subjects. Pathological states resembling known human neurological disorders can be induced in animal species by toxins, genetic factors, lesioning, or exposure to extreme conditions. In recent years, novel animal models recapitulating neuropathologies in humans have been introduced. These animal models are based on synthetic biology approaches: opto- and chemogenetics. In this paper, we review recent opto- and chemogenetics-based animal models of human neurological disorders. These models allow for the creation of pathological states by disrupting specific processes at the cellular level. The artificial pathological states mimic a range of human neurological disorders, such as aging-related dementia, Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, epilepsy, and ataxias. Opto- and chemogenetics provide new opportunities unavailable with other animal models of human neurological disorders. These techniques enable researchers to induce neuropathological states varying in severity and ranging from acute to chronic. We also discuss future directions for the development and application of synthetic biology approaches for modeling neurological disorders.
Collapse
Affiliation(s)
- Viktoriya G Krut'
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia
| | - Andrei L Kalinichenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Dmitry I Maltsev
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - David Jappy
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia
| | - Evgeny K Shevchenko
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia
| | - Oleg V Podgorny
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia.
| | - Vsevolod V Belousov
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; Life Improvement by Future Technologies (LIFT) Center, Skolkovo, Moscow 143025, Russia.
| |
Collapse
|
6
|
Rastoldo G, Tighilet B. The Vestibular Nuclei: A Cerebral Reservoir of Stem Cells Involved in Balance Function in Normal and Pathological Conditions. Int J Mol Sci 2024; 25:1422. [PMID: 38338702 PMCID: PMC10855768 DOI: 10.3390/ijms25031422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/18/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024] Open
Abstract
In this review, we explore the intriguing realm of neurogenesis in the vestibular nuclei-a critical brainstem region governing balance and spatial orientation. We retrace almost 20 years of research into vestibular neurogenesis, from its discovery in the feline model in 2007 to the recent discovery of a vestibular neural stem cell niche. We explore the reasons why neurogenesis is important in the vestibular nuclei and the triggers for activating the vestibular neurogenic niche. We develop the symbiotic relationship between neurogenesis and gliogenesis to promote vestibular compensation. Finally, we examine the potential impact of reactive neurogenesis on vestibular compensation, highlighting its role in restoring balance through various mechanisms.
Collapse
Affiliation(s)
- Guillaume Rastoldo
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, 13331 Marseille, France;
| | - Brahim Tighilet
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, 13331 Marseille, France;
- GDR Vertige CNRS Unité GDR2074, 13331 Marseille, France
| |
Collapse
|
7
|
Wan Y, Edmond MA, Kitz C, Southern J, Holman HA. An integrated workflow for 2D and 3D posture analysis during vestibular system testing in mice. Front Neurol 2023; 14:1281790. [PMID: 38107632 PMCID: PMC10722188 DOI: 10.3389/fneur.2023.1281790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/07/2023] [Indexed: 12/19/2023] Open
Abstract
Introduction Posture extraction from videos is fundamental to many real-world applications, including health screenings. In this study, we extend the utility and specificity of a well-established protocol, the balance beam, for examining balance and active motor coordination in adult mice of both sexes. Objectives The primary objective of this study is to design a workflow for analyzing the postures of mice walking on a balance beam. Methods We developed new tools and scripts based on the FluoRender architecture, which can interact with DeepLabCut (DLC) through Python code. Notably, twenty input videos were divided into four feature point groups (head, body, tail, and feet), based on camera positions relative to the balance beam (left and right), and viewing angles (90° and 45° from the beam). We determined key feature points on the mouse to track posture in a still video frame. We extracted a standard walk cycle (SWC) by focusing on foot movements, which were computed by a weighted average of the extracted walk cycles. The correlation of each walk cycle to the SWC was used as the weight. Results We learned that positions of the camera angles significantly improved the performance of 2D pose estimation (90°) and 3D (45°). Comparing the SWCs from age-matched mice, we found a consistent pattern of supporting feet on the beam. Two feet were consistently on the beam followed by three feet and another three feet in a 2-3-3 pattern. However, this pattern can be mirrored among individual subjects. A subtle phase shift of foot movement was also observed from the SWCs. Furthermore, we compared the SWCs with speed values to reveal anomalies in mouse walk postures. Some anomalies can be explained as the start or finish of the traversal, while others may be correlated to the distractions of the test environment, which will need further investigation. Conclusion Our posture analysis workflow improves the classical behavioral testing and analysis, allowing the detection of subtle, but significant differences in vestibular function and motor coordination.
Collapse
Affiliation(s)
- Yong Wan
- Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT, United States
| | - Michaela A. Edmond
- Department of Neurology, University of Utah, Salt Lake City, UT, United States
| | - Colin Kitz
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Joseph Southern
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| | - Holly A. Holman
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
8
|
Molkov YI, Yu G, Ausborn J, Bouvier J, Danner SM, Rybak IA. Sensory Feedback and Central Neuronal Interactions in Mouse Locomotion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.31.564886. [PMID: 37961258 PMCID: PMC10634960 DOI: 10.1101/2023.10.31.564886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Locomotion is a complex process involving specific interactions between the central neural controller and the mechanical components of the system. The basic rhythmic activity generated by locomotor circuits in the spinal cord defines rhythmic limb movements and their central coordination. The operation of these circuits is modulated by sensory feedback from the limbs providing information about the state of the limbs and the body. However, the specific role and contribution of central interactions and sensory feedback in the control of locomotor gait and posture remain poorly understood. We use biomechanical data on quadrupedal locomotion in mice and recent findings on the organization of neural interactions within the spinal locomotor circuitry to create and analyze a tractable mathematical model of mouse locomotion. The model includes a simplified mechanical model of the mouse body with four limbs and a central controller composed of four rhythm generators, each operating as a state machine controlling the state of one limb. Feedback signals characterize the load and extension of each limb as well as postural stability (balance). We systematically investigate and compare several model versions and compare their behavior to existing experimental data on mouse locomotion. Our results highlight the specific roles of sensory feedback and some central propriospinal interactions between circuits controlling fore and hind limbs for speed-dependent gait expression. Our models suggest that postural imbalance feedback may be critically involved in the control of swing-to-stance transitions in each limb and the stabilization of walking direction.
Collapse
Affiliation(s)
- Yaroslav I. Molkov
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Guoning Yu
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, USA
| | - Jessica Ausborn
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Julien Bouvier
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400, Saclay, France
| | - Simon M. Danner
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Ilya A. Rybak
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
9
|
Tighilet B, Trico J, Xavier F, Chabbert C. [Animal models of balance pathologies: New tools to study peripheral vestibulopathies]. Med Sci (Paris) 2023; 39:632-642. [PMID: 37695153 DOI: 10.1051/medsci/2023097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
The different types of peripheral vestibulopathies (PVs) or peripheral vestibular disorders (PVDs) are essentially diagnosed on the basis of their clinical expression. The heterogeneity of vestibular symptoms makes it difficult to stratify patients for therapeutic management. Animal models of PVs are a good mean to search for clinical evaluation criteria allowing to objectively analyze the kinetics of expression of the vertigo syndrome and to evaluate the benefits of therapeutic strategies, whether they are pharmacological or rehabilitative. The question of the predictability of these animal models is therefore crucial for the identification of behavioral and biological biomarkers that could then be used in the human clinic. In this review, we propose an overview of the different animal models of PVs, and discuss their relevance for the understanding of the underlying pathophysiological mechanisms and the development of new and more targeted therapeutic approaches.
Collapse
Affiliation(s)
- Brahim Tighilet
- Aix Marseille université-CNRS, Laboratoire de neurosciences cognitives, LNC UMR 7291, Marseille, France - Groupements de recherche (GDR) Vertige, Unité CNRS GDR2074, Marseille, France
| | - Jessica Trico
- Aix Marseille université-CNRS, Laboratoire de neurosciences cognitives, LNC UMR 7291, Marseille, France - Groupements de recherche (GDR) Vertige, Unité CNRS GDR2074, Marseille, France
| | - Frédéric Xavier
- Aix Marseille université-CNRS, Laboratoire de neurosciences cognitives, LNC UMR 7291, Marseille, France - Groupements de recherche (GDR) Vertige, Unité CNRS GDR2074, Marseille, France
| | - Christian Chabbert
- Aix Marseille université-CNRS, Laboratoire de neurosciences cognitives, LNC UMR 7291, Marseille, France - Groupements de recherche (GDR) Vertige, Unité CNRS GDR2074, Marseille, France
| |
Collapse
|
10
|
Antons M, Lindner M, Eilles E, Günther L, Delker A, Branner C, Krämer A, Beck R, Oos R, Wuehr M, Ziegler S, Strupp M, Zwergal A. Dose- and application route-dependent effects of betahistine on behavioral recovery and neuroplasticity after acute unilateral labyrinthectomy in rats. Front Neurol 2023; 14:1175481. [PMID: 37538257 PMCID: PMC10395078 DOI: 10.3389/fneur.2023.1175481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/28/2023] [Indexed: 08/05/2023] Open
Abstract
Introduction Betahistine is widely used for the treatment of various vestibular disorders. However, the approved oral administration route and maximum daily dose are evidently not effective in clinical trials, possibly due to a major first-pass metabolism by monoamine oxidases (MAOs). The current study aimed to test different application routes (i.v./s.c./p.o.), doses, and concurrent medication (with the MAO-B inhibitor selegiline) for their effects on behavioral recovery and cerebral target engagement following unilateral labyrinthectomy (UL) in rats. Methods Sixty rats were subjected to UL by transtympanic injection of bupivacaine/arsanilic acid and assigned to five treatment groups: i.v. low-dose betahistine (1 mg/kg bid), i.v. high-dose betahistine (10 mg/kg bid), p.o. betahistine (1 mg/kg bid)/selegiline (1 mg/kg once daily), s.c. betahistine (continuous release of 4.8 mg/day), and i.v. normal saline bid (sham treatment; days 1-3 post-UL), respectively. Behavioral testing of postural asymmetry, nystagmus, and mobility in an open field was performed seven times until day 30 post-UL and paralleled by sequential cerebral [18F]-FDG-μPET measurements. Results The therapeutic effects of betahistine after UL differed in extent and time course and were dependent on the dose, application route, and selegiline co-medication: Postural asymmetry was significantly reduced on 2-3 days post-UL by i.v. high-dose and s.c. betahistine only. No changes were observed in the intensity of nystagmus across groups. When compared to sham treatment, movement distance in the open field increased up to 5-fold from 2 to 30 days post-UL in the s.c., i.v. high-dose, and p.o. betahistine/selegiline groups. [18F]-FDG-μPET showed a dose-dependent rCGM increase in the ipsilesional vestibular nucleus until day 3 post-UL for i.v. high- vs. low-dose betahistine and sham treatment, as well as for p.o. betahistine/selegiline and s.c. betahistine vs. sham treatment. From 1 to 30 days post-UL, rCGM increased in the thalamus bilaterally for i.v. high-dose betahistine, s.c. betahistine, and p.o. betahistine/selegiline vs. saline treatment. Discussion Betahistine has the potential to augment the recovery of dynamic deficits after UL if the administration protocol is optimized toward higher effective plasma levels. This may be achieved by higher doses, inhibition of MAO-based metabolism, or a parenteral route. In vivo imaging suggests a drug-target engagement in central vestibular networks.
Collapse
Affiliation(s)
- Melissa Antons
- German Center for Vertigo and Balance Disorders, DSGZ, LMU University Hospital, LMU Munich, Munich, Germany
| | - Magdalena Lindner
- German Center for Vertigo and Balance Disorders, DSGZ, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Eva Eilles
- German Center for Vertigo and Balance Disorders, DSGZ, LMU University Hospital, LMU Munich, Munich, Germany
| | - Lisa Günther
- German Center for Vertigo and Balance Disorders, DSGZ, LMU University Hospital, LMU Munich, Munich, Germany
| | - Astrid Delker
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christina Branner
- German Center for Vertigo and Balance Disorders, DSGZ, LMU University Hospital, LMU Munich, Munich, Germany
| | - Anja Krämer
- German Center for Vertigo and Balance Disorders, DSGZ, LMU University Hospital, LMU Munich, Munich, Germany
| | - Roswitha Beck
- German Center for Vertigo and Balance Disorders, DSGZ, LMU University Hospital, LMU Munich, Munich, Germany
| | - Rosel Oos
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Max Wuehr
- German Center for Vertigo and Balance Disorders, DSGZ, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Michael Strupp
- German Center for Vertigo and Balance Disorders, DSGZ, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Andreas Zwergal
- German Center for Vertigo and Balance Disorders, DSGZ, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
11
|
Rastoldo G, Tighilet B. Thyroid Axis and Vestibular Physiopathology: From Animal Model to Pathology. Int J Mol Sci 2023; 24:9826. [PMID: 37372973 DOI: 10.3390/ijms24129826] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/02/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
A recent work of our group has shown the significant effects of thyroxine treatment on the restoration of postural balance function in a rodent model of acute peripheral vestibulopathy. Based on these findings, we attempt to shed light in this review on the interaction between the hypothalamic-pituitary-thyroid axis and the vestibular system in normal and pathological situations. Pubmed database and relevant websites were searched from inception through to 4 February 2023. All studies relevant to each subsection of this review have been included. After describing the role of thyroid hormones in the development of the inner ear, we investigated the possible link between the thyroid axis and the vestibular system in normal and pathological conditions. The mechanisms and cellular sites of action of thyroid hormones on animal models of vestibulopathy are postulated and therapeutic options are proposed. In view of their pleiotropic action, thyroid hormones represent a target of choice to promote vestibular compensation at different levels. However, very few studies have investigated the relationship between thyroid hormones and the vestibular system. It seems then important to more extensively investigate the link between the endocrine system and the vestibule in order to better understand the vestibular physiopathology and to find new therapeutic leads.
Collapse
Affiliation(s)
- Guillaume Rastoldo
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, 13331 Marseille, France
| | - Brahim Tighilet
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, 13331 Marseille, France
- GDR Vertige CNRS Unité GDR2074, 13331 Marseille, France
| |
Collapse
|
12
|
Stanley OR, Swaminathan A, Wojahn E, Ahmed ZM, Cullen KE. An Open-Source Tool for Automated Human-Level Circling Behavior Detection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.540066. [PMID: 37398316 PMCID: PMC10312579 DOI: 10.1101/2023.05.30.540066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Quantifying behavior and relating it to underlying biological states is of paramount importance in many life science fields. Although barriers to recording postural data have been reduced by progress in deep-learning-based computer vision tools for keypoint tracking, extracting specific behaviors from this data remains challenging. Manual behavior coding, the present gold standard, is labor-intensive and subject to intra- and inter-observer variability. Automatic methods are stymied by the difficulty of explicitly defining complex behaviors, even ones which appear obvious to the human eye. Here, we demonstrate an effective technique for detecting one such behavior, a form of locomotion characterized by stereotyped spinning, termed 'circling'. Though circling has an extensive history as a behavioral marker, at present there exists no standard automated detection method. Accordingly, we developed a technique to identify instances of the behavior by applying simple postprocessing to markerless keypoint data from videos of freely-exploring (Cib2-/-;Cib3-/-) mutant mice, a strain we previously found to exhibit circling. Our technique agrees with human consensus at the same level as do individual observers, and it achieves >90% accuracy in discriminating videos of wild type mice from videos of mutants. As using this technique requires no experience writing or modifying code, it also provides a convenient, noninvasive, quantitative tool for analyzing circling mouse models. Additionally, as our approach was agnostic to the underlying behavior, these results support the feasibility of algorithmically detecting specific, research-relevant behaviors using readily-interpretable parameters tuned on the basis of human consensus.
Collapse
Affiliation(s)
- O R Stanley
- Dept. Biomedical Engineering; Johns Hopkins University
| | - A Swaminathan
- Dept. Biomedical Engineering; Johns Hopkins University
| | - E Wojahn
- Dept. Biomedical Engineering; Johns Hopkins University
| | - Z M Ahmed
- Depts. Otorhinolaryngology-Head & Neck Surgery, Biochemistry & Molecular Biology, Ophthalmology; University of Maryland School of Medicine
| | - K E Cullen
- Dept. Biomedical Engineering; Johns Hopkins University
- Depts. Neuroscience, Otolaryngology-Head & Neck Surgery, Johns Hopkins University
| |
Collapse
|
13
|
Corrigan F, Wee IC, Collins-Praino LE. Chronic motor performance following different traumatic brain injury severity-A systematic review. Front Neurol 2023; 14:1180353. [PMID: 37288069 PMCID: PMC10243142 DOI: 10.3389/fneur.2023.1180353] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/05/2023] [Indexed: 06/09/2023] Open
Abstract
Introduction Traumatic brain injury (TBI) is now known to be a chronic disease, causing ongoing neurodegeneration and linked to increased risk of neurodegenerative motor diseases, such as Parkinson's disease and amyotrophic lateral sclerosis. While the presentation of motor deficits acutely following traumatic brain injury is well-documented, however, less is known about how these evolve in the long-term post-injury, or how the initial severity of injury affects these outcomes. The purpose of this review, therefore, was to examine objective assessment of chronic motor impairment across the spectrum of TBI in both preclinical and clinical models. Methods PubMed, Embase, Scopus, and PsycINFO databases were searched with a search strategy containing key search terms for TBI and motor function. Original research articles reporting chronic motor outcomes with a clearly defined TBI severity (mild, repeated mild, moderate, moderate-severe, and severe) in an adult population were included. Results A total of 97 studies met the inclusion criteria, incorporating 62 preclinical and 35 clinical studies. Motor domains examined included neuroscore, gait, fine-motor, balance, and locomotion for preclinical studies and neuroscore, fine-motor, posture, and gait for clinical studies. There was little consensus among the articles presented, with extensive differences both in assessment methodology of the tests and parameters reported. In general, an effect of severity was seen, with more severe injury leading to persistent motor deficits, although subtle fine motor deficits were also seen clinically following repeated injury. Only six clinical studies investigated motor outcomes beyond 10 years post-injury and two preclinical studies to 18-24 months post-injury, and, as such, the interaction between a previous TBI and aging on motor performance is yet to be comprehensively examined. Conclusion Further research is required to establish standardized motor assessment procedures to fully characterize chronic motor impairment across the spectrum of TBI with comprehensive outcomes and consistent protocols. Longitudinal studies investigating the same cohort over time are also a key for understanding the interaction between TBI and aging. This is particularly critical, given the risk of neurodegenerative motor disease development following TBI.
Collapse
Affiliation(s)
- Frances Corrigan
- Head Injury Lab, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Ing Chee Wee
- Cognition, Ageing and Neurodegenerative Disease Laboratory, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| | - Lyndsey E. Collins-Praino
- Cognition, Ageing and Neurodegenerative Disease Laboratory, School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
14
|
El Mahmoudi N, Laurent C, Péricat D, Watabe I, Lapotre A, Jacob PY, Tonetto A, Tighilet B, Sargolini F. Long-lasting spatial memory deficits and impaired hippocampal plasticity following unilateral vestibular loss. Prog Neurobiol 2023; 223:102403. [PMID: 36821981 DOI: 10.1016/j.pneurobio.2023.102403] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/25/2022] [Accepted: 01/04/2023] [Indexed: 02/23/2023]
Abstract
Unilateral vestibular loss (UVL) induces a characteristic vestibular syndrome composed of various posturo-locomotor, oculomotor, vegetative and perceptivo-cognitive symptoms. Functional deficits are progressively recovered over time during vestibular compensation, that is supported by the expression of multiscale plasticity mechanisms. While the dynamic of post-UVL posturo-locomotor and oculomotor deficits is well characterized, the expression over time of the cognitive deficits, and in particular spatial memory deficits, is still debated. In this study we aimed at investigating spatial memory deficits and their recovery in a rat model of unilateral vestibular neurectomy (UVN), using a wide spectrum of behavioral tasks. In parallel, we analyzed markers of hippocampal plasticity involved in learning and memory. Our results indicate the UVN affects all domains of spatial memory, from working memory to reference memory and object-in-place recognition. These deficits are associated with long-lasting impaired plasticity in the ipsilesional hippocampus. These results highlight the crucial role of symmetrical vestibular information in spatial memory and contribute to a better understanding of the cognitive disorders observed in vestibular patients.
Collapse
Affiliation(s)
- Nada El Mahmoudi
- Aix-Marseille Université -CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Centre Saint Charles, Case C; 3 Place Victor Hugo, 13331, Marseille Cedex 03, France.
| | - Célia Laurent
- Aix-Marseille Université -CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Centre Saint Charles, Case C; 3 Place Victor Hugo, 13331, Marseille Cedex 03, France
| | - David Péricat
- Université de Toulouse Paul Sabatier -CNRS, Institut de pharmacologie et de biologie structurale, Toulouse, France
| | - Isabelle Watabe
- Aix-Marseille Université -CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Centre Saint Charles, Case C; 3 Place Victor Hugo, 13331, Marseille Cedex 03, France
| | - Agnès Lapotre
- Aix-Marseille Université -CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Centre Saint Charles, Case C; 3 Place Victor Hugo, 13331, Marseille Cedex 03, France
| | - Pierre-Yves Jacob
- Aix-Marseille Université -CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Centre Saint Charles, Case C; 3 Place Victor Hugo, 13331, Marseille Cedex 03, France
| | - Alain Tonetto
- Aix Marseille Université-CNRS, Centrale Marseille, FSCM (FR 1739), PRATIM, F-13397 Marseille, France
| | - Brahim Tighilet
- Aix-Marseille Université -CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Centre Saint Charles, Case C; 3 Place Victor Hugo, 13331, Marseille Cedex 03, France
| | - Francesca Sargolini
- Aix-Marseille Université -CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Centre Saint Charles, Case C; 3 Place Victor Hugo, 13331, Marseille Cedex 03, France.
| |
Collapse
|
15
|
Oxytocin Disturbs Vestibular Compensation and Modifies Behavioral Strategies in a Rodent Model of Acute Vestibulopathy. Int J Mol Sci 2022; 23:ijms232315262. [PMID: 36499588 PMCID: PMC9738578 DOI: 10.3390/ijms232315262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/18/2022] [Accepted: 11/28/2022] [Indexed: 12/11/2022] Open
Abstract
Unilateral inner ear injury is followed by behavioral recovery due to central vestibular compensation. The therapeutic effect of oxytocin (OT) on vestibular compensation was investigated by behavioral testing in a rat model of unilateral vestibular neurectomy (UVN). Animals in the oxytocin group (UVN-OT) exhibited delayed vestibular compensation on the qualitative scale of vestibular deficits and aggravated static postural deficits (bearing surface) compared to animals in the NaCl group (UVN-NaCl). Surprisingly, oxytocin-treated animals adopt a different postural strategy than untreated animals. Instead of shifting their weight to the ipsilesional paws (left front and hind paws), they shift their weight to the front paws (right and left) without modification along the lateral axis. Furthermore, some locomotor strategies of the animals to compensate for the vestibular loss are also altered by oxytocin treatment. UVN-OT animals do not induce an increase in the distance traveled, their mean velocity is lower than that in the control group, and the ipsilesional body rotations do not increase from 7 to 30 days after UVN. This study reveals that oxytocin treatment hinders the restoration of some postural and locomotor deficits while improving others following vestibular lesions. The mechanisms of the action of oxytocin that support these behavioral changes remain to be elucidated.
Collapse
|
16
|
What Predictability for Animal Models of Peripheral Vestibular Disorders? Biomedicines 2022; 10:biomedicines10123097. [PMID: 36551852 PMCID: PMC9775358 DOI: 10.3390/biomedicines10123097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
The different clinical entities grouped under the term peripheral vestibulopathies (PVs) or peripheral vestibular disorders (PVDs) are distinguished mainly based on their symptoms/clinical expression. Today, there are very few commonly accepted functional and biological biomarkers that can confirm or refute whether a vestibular disorder belongs to a precise classification. Consequently, there is currently a severe lack of reliable and commonly accepted clinical endpoints, either to precisely follow the course of the vertigo syndrome of vestibular origin or to assess the benefits of therapeutic approaches, whether they are pharmacological or re-educational. Animal models of PV are a good means to identify biomarkers that could subsequently be exploited in human clinical practice. The question of their predictability is therefore crucial. Ten years ago, we had already raised this question. We revisit this concept today in order to take into account the animal models of peripheral vestibular pathology that have emerged over the last decade, and the new technological approaches available for the behavioral assessment of vestibular syndrome in animals and its progression over time. The questions we address in this review are the following: are animal models of PV predictive of the different types and stages of vestibular pathologies, and if so, to what extent? Are the benefits of the pharmacological or reeducational therapeutic approaches achieved on these different models of PV (in particular the effects of attenuation of the acute vertigo, or acceleration of central compensation) predictive of those expected in the vertiginous patient, and if so, to what extent?
Collapse
|
17
|
Hatat B, Boularand R, Bringuier C, Chanut N, Besnard S, Mueller AM, Weyer K, Seilheimer B, Tighilet B, Chabbert C. Vertigoheel improves central vestibular compensation after unilateral peripheral vestibulopathy in rats. Front Neurol 2022; 13:969047. [PMID: 36212670 PMCID: PMC9541623 DOI: 10.3389/fneur.2022.969047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
The aim of this study was to assess the effect of Vertigoheel on central vestibular compensation and cognitive deficits in rats subjected to peripheral vestibular loss. Young adult male Long Evans rats were subjected to bilateral vestibular insults through irreversible sequential ototoxic destructions of the vestibular sensory organs. Vestibular syndrome characteristics were monitored at several time points over days and weeks following the sequential insults, using a combination of behavioral assessment paradigms allowing appreciation of patterns of change in static and dynamic deficits, together with spatial navigation, learning, and memory processes. Vertigoheel administered intraperitoneally significantly improved maximum body velocity and not moving time relative to its vehicle control on days 2 and 3 and on day 2, respectively, after unilateral vestibular lesion (UVL). It also significantly improved postural control relative to its vehicle 1 day after UVL. Conversely, Vertigoheel did not display any significant effect vs. vehicle on the severity of the syndrome, nor on the time course of other examined parameters, such as distance moved, mean body velocity, meander, and rearing. Spatial cognition testing using Y- and T-maze and eight-radial arm maze did not show any statistically significant difference between Vertigoheel and vehicle groups. However, Vertigoheel potentially enhanced the speed of learning in sham animals. Evaluating Vertigoheel's effect on thigmotaxis during the open-field video tracking test revealed no significant difference between Vertigoheel and its vehicle control groups suggesting that Vertigoheel does not seem to induce sedative or anxiolytic effects that could negatively affect vestibular and memory function. Present observations reveal that Vertigoheel improves central vestibular compensation following the unilateral peripheral vestibular loss as demonstrated by improvement of specific symptoms.
Collapse
Affiliation(s)
| | | | | | | | - Stéphane Besnard
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, France
- Unité GDR2074 CNRS, Marseille, France
| | | | | | | | - Brahim Tighilet
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, France
- Unité GDR2074 CNRS, Marseille, France
- *Correspondence: Brahim Tighilet
| | - Christian Chabbert
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Marseille, France
- Unité GDR2074 CNRS, Marseille, France
- Christian Chabbert
| |
Collapse
|
18
|
Microglial Dynamics Modulate Vestibular Compensation in a Rodent Model of Vestibulopathy and Condition the Expression of Plasticity Mechanisms in the Deafferented Vestibular Nuclei. Cells 2022; 11:cells11172693. [PMID: 36078101 PMCID: PMC9454928 DOI: 10.3390/cells11172693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/17/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Unilateral vestibular loss (UVL) induces a vestibular syndrome composed of posturo-locomotor, oculomotor, vegetative, and perceptivo-cognitive symptoms. With time, these functional deficits progressively disappear due to a phenomenon called vestibular compensation, known to be supported by the expression in the deafferented vestibular nuclei (VNs) of various adaptative plasticity mechanisms. UVL is known to induce a neuroinflammatory response within the VNs, thought to be caused by the structural alteration of primary vestibular afferents. The acute inflammatory response, expressed in the deafferented VNs was recently proven to be crucial for the expression of the endogenous plasticity supporting functional recovery. Neuroinflammation is supported by reactive microglial cells, known to have various phenotypes with adverse effects on brain tissue. Here, we used markers of pro-inflammatory and anti-inflammatory phenotypes of reactive microglia to study microglial dynamics following a unilateral vestibular neurectomy (UVN) in the adult rat. In addition, to highlight the role of acute inflammation in vestibular compensation and its underlying mechanisms, we enhanced the inflammatory state of the deafferented VNs using systemic injections of lipopolysaccharide (LPS) during the acute phase after a UVN. We observed that the UVN induced the expression of both M1 proinflammatory and M2 anti-inflammatory microglial phenotypes in the deafferented VNs. The acute LPS treatment exacerbated the inflammatory reaction and increased the M1 phenotype while decreasing M2 expression. These effects were associated with impaired postlesional plasticity in the deafferented VNs and exacerbated functional deficits. These results highlight the importance of a homeostatic inflammatory level in the expression of the adaptative plasticity mechanisms underlying vestibular compensation. Understanding the rules that govern neuroinflammation would provide therapeutic leads in neuropathologies associated with these processes.
Collapse
|
19
|
Hatat B, Boularand R, Bringuier C, Chanut N, Chabbert C, Tighilet B. Effect of Fluoxetine and Acacetin on Central Vestibular Compensation in an Animal Model of Unilateral Peripheral Vestibulopathy. Biomedicines 2022; 10:2097. [PMID: 36140199 PMCID: PMC9495702 DOI: 10.3390/biomedicines10092097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/22/2022] Open
Abstract
Damage to the peripheral vestibular system is known to generate a syndrome characterized by postural, locomotor, oculomotor, perceptual and cognitive deficits. Current pharmacological therapeutic solutions for these pathologies lack specificity and efficacy. Recently, we demonstrated that apamin, a specific SK channel blocker, significantly reduced posturo-locomotor and oculomotor deficits in the cat and the rat. The aim of the present study was to test the antivertigo potential of compounds belonging to the SK antagonists family, such as Acacetin and Fluoxetine. Young rats were subjected to unilateral ototoxic lesions of the vestibular organ using transtympanic administration of arsanilic acid (TTA) to evoke unilateral vestibular loss (UVL). Vestibular syndrome was monitored using behavioural evaluation allowing appreciation of the evolution of static and dynamic posturo-locomotor deficits. A significant effect of the TTA insult was only found on the distance moved, the mean body velocity and the not moving time. From day 2 to week 2 after TTA, the distance moved and the mean body velocity were significantly decreased, while the not moving time was significantly increased. Acacetin does not evoke any significant change in the vestibular posturo-locomotor parameters' kinetics. Administration of Fluoxetine two weeks before TTA and over three weeks after TTA (preventive group) does not evoke any significant change in the vestibular posturo-locomotor parameters' kinetics. Administration of Fluoxetine from three weeks after TTA significantly delayed the functional recovery. This study demonstrates that Acacetin or Fluoxetine in TTA vestibulo-injured rats does not bring any significant benefit on the posture and locomotor balance deficits.
Collapse
Affiliation(s)
| | | | | | | | - Christian Chabbert
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, 13331 Marseille, France
- GDR Physiopathologie Vestibulaire, Unité GDR2074, CNRS, 13003 Marseille, France
| | - Brahim Tighilet
- Aix Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, 13331 Marseille, France
- GDR Physiopathologie Vestibulaire, Unité GDR2074, CNRS, 13003 Marseille, France
| |
Collapse
|
20
|
Foecking EM, Segismundo AB, Lotesto KM, Westfall EJ, Bolduan AJ, Peter TK, Wallace DG, Kozlowski DA, Stubbs EB, Marzo SJ, Byram SC. Testosterone treatment restores vestibular function by enhancing neuronal survival in an experimental closed-head repetitive mild traumatic brain injury model. Behav Brain Res 2022; 433:113998. [PMID: 35809692 DOI: 10.1016/j.bbr.2022.113998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/22/2022] [Accepted: 07/05/2022] [Indexed: 11/28/2022]
Abstract
Repetitive mild traumatic brain injury (rmTBI) results in a myriad of symptoms, including vestibular impairment. The mechanisms underlying vestibular dysfunction in rmTBI patients remain poorly understood. Concomitantly, acute hypogonadism occurs following TBI and can persist chronically in many patients. Using a repetitive mild closed-head animal model of TBI, the role of testosterone on vestibular function was tested. Male Long Evans Hooded rats were randomly divided into sham or rmTBI groups. Significant vestibular deficits were observed both acutely and chronically in the rmTBI groups. Systemic testosterone was administered after the development of chronic vestibular dysfunction. rmTBI animals given testosterone showed improved vestibular function that was sustained for 175 days post-rmTBI. Significant vestibular neuronal cell loss was, however, observed in the rmTBI animals compared to Sham animals at 175 days post-rmTBI and testosterone treatment significantly improved vestibular neuronal survival. Taken together, these data demonstrate a critical restorative role of testosterone in vestibular function following rmTBI. This study has important clinical implications because it identifies testosterone treatment as a viable therapeutic strategy for the long-term recovery of vestibular function following TBI.
Collapse
Affiliation(s)
- Eileen M Foecking
- Loyola University Chicago, Department of Otolaryngology, Burn Shock Trauma Research Institute, Loyola University Chicago, 2160 South 1st Avenue, Maywood, IL 60153, the United States of America; Burn Shock Trauma Research Institute, Loyola University Chicago, 2160 South 1st Avenue, Maywood, IL 60153, the United States of America; Edward Hines Jr. VA Hospital Research Service, Hines, IL 60141, the United States of America.
| | - Arthur B Segismundo
- Loyola University of Chicago, Biomedical Graduate School, 2160 South 1st Avenue, Maywood, IL 60153, the United States of America.
| | - Krista M Lotesto
- Burn Shock Trauma Research Institute, Loyola University Chicago, 2160 South 1st Avenue, Maywood, IL 60153, the United States of America.
| | - Edward J Westfall
- Loyola University Medical Center, Department of Otolaryngology, 2160 South 1st Avenue, Maywood, IL 60153, the United States of America.
| | - Alyssa J Bolduan
- Loyola University Medical Center, Department of Otolaryngology, 2160 South 1st Avenue, Maywood, IL 60153, the United States of America.
| | - Tony K Peter
- Loyola University Medical Center, Department of Otolaryngology, 2160 South 1st Avenue, Maywood, IL 60153, the United States of America.
| | - Douglas G Wallace
- Northern Illinois University, Department of Psychology, 1425 Lincoln Hwy, DeKalb, IL 60115, the United States of America.
| | - Dorothy A Kozlowski
- DePaul University, Department of Biological Sciences and Neuroscience Program, 2325 N., Chicago, IL 60604, the United States of America.
| | - Evan B Stubbs
- Edward Hines Jr. VA Research Service, Hines, IL 60141, the United States of America; Loyola University Medical Center, Department of Otolaryngology, 2160 South 1st Avenue, Maywood, IL 60153, the United States of America.
| | - Sam J Marzo
- Loyola University Medical Center, Department of Otolaryngology, 2160 South 1st Avenue, Maywood, IL 60153, the United States of America.
| | - Susanna C Byram
- Loyola University Medical Center, Department of Anesthesiology and Perioperative Medicine, 2160 South 1st Avenue, Maywood, IL 60153, the United States of America; Edward Hines Jr. VA Hospital Research Service, Hines, IL 60141, the United States of America.
| |
Collapse
|
21
|
Le Ray D, Guayasamin M. How Does the Central Nervous System for Posture and Locomotion Cope With Damage-Induced Neural Asymmetry? Front Syst Neurosci 2022; 16:828532. [PMID: 35308565 PMCID: PMC8927091 DOI: 10.3389/fnsys.2022.828532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/07/2022] [Indexed: 12/28/2022] Open
Abstract
In most vertebrates, posture and locomotion are achieved by a biomechanical apparatus whose effectors are symmetrically positioned around the main body axis. Logically, motor commands to these effectors are intrinsically adapted to such anatomical symmetry, and the underlying sensory-motor neural networks are correspondingly arranged during central nervous system (CNS) development. However, many developmental and/or life accidents may alter such neural organization and acutely generate asymmetries in motor operation that are often at least partially compensated for over time. First, we briefly present the basic sensory-motor organization of posturo-locomotor networks in vertebrates. Next, we review some aspects of neural plasticity that is implemented in response to unilateral central injury or asymmetrical sensory deprivation in order to substantially restore symmetry in the control of posturo-locomotor functions. Data are finally discussed in the context of CNS structure-function relationship.
Collapse
|
22
|
L-Thyroxine Improves Vestibular Compensation in a Rat Model of Acute Peripheral Vestibulopathy: Cellular and Behavioral Aspects. Cells 2022; 11:cells11040684. [PMID: 35203333 PMCID: PMC8869897 DOI: 10.3390/cells11040684] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 02/07/2023] Open
Abstract
Unilateral vestibular lesions induce a vestibular syndrome, which recovers over time due to vestibular compensation. The therapeutic effect of L-Thyroxine (L-T4) on vestibular compensation was investigated by behavioral testing and immunohistochemical analysis in a rat model of unilateral vestibular neurectomy (UVN). We demonstrated that a short-term L-T4 treatment reduced the vestibular syndrome and significantly promoted vestibular compensation. Thyroid hormone receptors (TRα and TRβ) and type II iodothyronine deiodinase (DIO2) were present in the vestibular nuclei (VN), supporting a local action of L-T4. We confirmed the T4-induced metabolic effects by demonstrating an increase in the number of cytochrome oxidase-labeled neurons in the VN three days after the lesion. L-T4 treatment modulated glial reaction by decreasing both microglia and oligodendrocytes in the deafferented VN three days after UVN and increased cell proliferation. Survival of newly generated cells in the deafferented vestibular nuclei was not affected, but microglial rather than neuronal differentiation was favored by L-T4 treatment.
Collapse
|
23
|
Marouane E, El Mahmoudi N, Rastoldo G, Péricat D, Watabe I, Lapôtre A, Tonetto A, Xavier F, Dumas O, Chabbert C, Artzner V, Tighilet B. Sensorimotor Rehabilitation Promotes Vestibular Compensation in a Rodent Model of Acute Peripheral Vestibulopathy by Promoting Microgliogenesis in the Deafferented Vestibular Nuclei. Cells 2021; 10:3377. [PMID: 34943885 PMCID: PMC8699190 DOI: 10.3390/cells10123377] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/16/2022] Open
Abstract
Acute peripheral vestibulopathy leads to a cascade of symptoms involving balance and gait disorders that are particularly disabling for vestibular patients. Vestibular rehabilitation protocols have proven to be effective in improving vestibular compensation in clinical practice. Yet, the underlying neurobiological correlates remain unknown. The aim of this study was to highlight the behavioural and cellular consequences of a vestibular rehabilitation protocol adapted to a rat model of unilateral vestibular neurectomy. We developed a progressive sensory-motor rehabilitation task, and the behavioural consequences were quantified using a weight-distribution device. This analysis method provides a precise and ecological analysis of posturolocomotor vestibular deficits. At the cellular level, we focused on the analysis of plasticity mechanisms expressed in the vestibular nuclei. The results obtained show that vestibular rehabilitation induces a faster recovery of posturolocomotor deficits during vestibular compensation associated with a decrease in neurogenesis and an increase in microgliogenesis in the deafferented medial vestibular nucleus. This study reveals for the first time a part of the underlying adaptative neuroplasticity mechanisms of vestibular rehabilitation. These original data incite further investigation of the impact of rehabilitation on animal models of vestibulopathy. This new line of research should improve the management of vestibular patients.
Collapse
Affiliation(s)
- Emna Marouane
- Aix-Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Centre Saint-Charles Case C, 3 Place Victor Hugo, CEDEX 03, 13331 Marseille, France; (E.M.); (N.E.M.); (G.R.); (I.W.); (A.L.); (F.X.); (C.C.)
- BIOSEB ALLCAT Instruments, Couperigne, 13127 Vitrolles, France;
| | - Nada El Mahmoudi
- Aix-Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Centre Saint-Charles Case C, 3 Place Victor Hugo, CEDEX 03, 13331 Marseille, France; (E.M.); (N.E.M.); (G.R.); (I.W.); (A.L.); (F.X.); (C.C.)
| | - Guillaume Rastoldo
- Aix-Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Centre Saint-Charles Case C, 3 Place Victor Hugo, CEDEX 03, 13331 Marseille, France; (E.M.); (N.E.M.); (G.R.); (I.W.); (A.L.); (F.X.); (C.C.)
| | - David Péricat
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, 31400 Toulouse, France;
| | - Isabelle Watabe
- Aix-Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Centre Saint-Charles Case C, 3 Place Victor Hugo, CEDEX 03, 13331 Marseille, France; (E.M.); (N.E.M.); (G.R.); (I.W.); (A.L.); (F.X.); (C.C.)
| | - Agnès Lapôtre
- Aix-Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Centre Saint-Charles Case C, 3 Place Victor Hugo, CEDEX 03, 13331 Marseille, France; (E.M.); (N.E.M.); (G.R.); (I.W.); (A.L.); (F.X.); (C.C.)
| | - Alain Tonetto
- Fédération de Recherche Sciences Chimiques Marseille FR 1739, Pôle 18 PRATIM, CEDEX 03, 13331 Marseille, France;
| | - Frédéric Xavier
- Aix-Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Centre Saint-Charles Case C, 3 Place Victor Hugo, CEDEX 03, 13331 Marseille, France; (E.M.); (N.E.M.); (G.R.); (I.W.); (A.L.); (F.X.); (C.C.)
- GDR Physiopathologie Vestibulaire—Unité GDR2074, CNRS, 13003 Marseille, France;
| | - Olivier Dumas
- GDR Physiopathologie Vestibulaire—Unité GDR2074, CNRS, 13003 Marseille, France;
| | - Christian Chabbert
- Aix-Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Centre Saint-Charles Case C, 3 Place Victor Hugo, CEDEX 03, 13331 Marseille, France; (E.M.); (N.E.M.); (G.R.); (I.W.); (A.L.); (F.X.); (C.C.)
- GDR Physiopathologie Vestibulaire—Unité GDR2074, CNRS, 13003 Marseille, France;
| | - Vincent Artzner
- BIOSEB ALLCAT Instruments, Couperigne, 13127 Vitrolles, France;
| | - Brahim Tighilet
- Aix-Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Centre Saint-Charles Case C, 3 Place Victor Hugo, CEDEX 03, 13331 Marseille, France; (E.M.); (N.E.M.); (G.R.); (I.W.); (A.L.); (F.X.); (C.C.)
- GDR Physiopathologie Vestibulaire—Unité GDR2074, CNRS, 13003 Marseille, France;
| |
Collapse
|
24
|
SK Channels Modulation Accelerates Equilibrium Recovery in Unilateral Vestibular Neurectomized Rats. Pharmaceuticals (Basel) 2021; 14:ph14121226. [PMID: 34959626 PMCID: PMC8707273 DOI: 10.3390/ph14121226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
We have previously reported in a feline model of acute peripheral vestibulopathy (APV) that the sudden, unilateral, and irreversible loss of vestibular inputs induces selective overexpression of small conductance calcium-activated potassium (SK) channels in the brain stem vestibular nuclei. Pharmacological blockade of these ion channels by the selective antagonist apamin significantly alleviated the evoked vestibular syndrome and accelerated vestibular compensation. In this follow-up study, we aimed at testing, using a behavioral approach, whether the antivertigo (AV) effect resulting from the antagonization of SK channels was species-dependent or whether it could be reproduced in a rodent APV model, whether other SK channel antagonists reproduced similar functional effects on the vestibular syndrome expression, and whether administration of SK agonist could also alter the vestibular syndrome. We also compared the AV effects of apamin and acetyl-DL-leucine, a reference AV compound used in human clinic. We demonstrate that the AV effect of apamin is also found in a rodent model of APV. Other SK antagonists also produce a trend of AV effect when administrated during the acute phase of the vertigo syndrome. Conversely, the vertigo syndrome is worsened upon administration of SK channel agonist. It is noteworthy that the AV effect of apamin is superior to that of acetyl-DL-leucine. Taken together, these data reinforce SK channels as a pharmacological target for modulating the manifestation of the vertigo syndrome during APV.
Collapse
|
25
|
Tighilet B. [Vestibular compensation and aging: An example of cellular and behavioral resilience over time]. Med Sci (Paris) 2021; 37:851-862. [PMID: 34647873 DOI: 10.1051/medsci/2021144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The vestibular system has a remarkable capacity of self-repair. Vestibular compensation, a model of post-lesional plasticity of the central nervous system, refers to a set of endogenous neuroplasticity mechanisms in the vestibular nuclei in response to damage to the peripheral vestibular system, and underlying functional recovery. During aging, this "homeostatic" plasticity, although still present, diminishes and is accompanied by sensorimotor and cognitive disturbances. Regardless of age, vestibular compensation can be improved by pharmacological therapy but also by rehabilitation based on strengthening other sensory modalities such as visual and proprioceptive modalities, but also cognitive and motor components. In this article, we will first discuss neurobiological mechanisms of vestibular compensation, then document the impact of aging on this adaptive plasticity.
Collapse
Affiliation(s)
- Brahim Tighilet
- Aix Marseille Université-CNRS UMR 7291, laboratoire de neurosciences cognitives, équipe physiopathologie et thérapie des désordres vestibulaires, groupe de recherche Vertige (GDR#2074), 3 place Victor Hugo, 13000 Marseille, France
| |
Collapse
|
26
|
Fayat R, Delgado Betancourt V, Goyallon T, Petremann M, Liaudet P, Descossy V, Reveret L, Dugué GP. Inertial Measurement of Head Tilt in Rodents: Principles and Applications to Vestibular Research. SENSORS (BASEL, SWITZERLAND) 2021; 21:6318. [PMID: 34577524 PMCID: PMC8472891 DOI: 10.3390/s21186318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 12/21/2022]
Abstract
Inertial sensors are increasingly used in rodent research, in particular for estimating head orientation relative to gravity, or head tilt. Despite this growing interest, the accuracy of tilt estimates computed from rodent head inertial data has never been assessed. Using readily available inertial measurement units mounted onto the head of freely moving rats, we benchmarked a set of tilt estimation methods against concurrent 3D optical motion capture. We show that, while low-pass filtered head acceleration signals only provided reliable tilt estimates in static conditions, sensor calibration combined with an appropriate choice of orientation filter and parameters could yield average tilt estimation errors below 1.5∘ during movement. We then illustrate an application of inertial head tilt measurements in a preclinical rat model of unilateral vestibular lesion and propose a set of metrics describing the severity of associated postural and motor symptoms and the time course of recovery. We conclude that headborne inertial sensors are an attractive tool for quantitative rodent behavioral analysis in general and for the study of vestibulo-postural functions in particular.
Collapse
Affiliation(s)
- Romain Fayat
- Neurophysiologie des Circuits Cérébraux, Institut de Biologie de l’ENS (IBENS), Ecole Normale Supérieure, UMR CNRS 8197, INSERM U1024, Université PSL, 75005 Paris, France;
- Laboratoire MAP5, UMR CNRS 8145, Université Paris Descartes, 75006 Paris, France
| | | | - Thibault Goyallon
- Laboratoire Jean Kuntzmann, Université Grenoble Alpes, UMR CNRS 5224, INRIA, 38330 Montbonnot-Saint-Martin, France; (T.G.); (L.R.)
| | - Mathieu Petremann
- Preclinical Development, Sensorion SA, 34080 Montpellier, France; (V.D.B.); (M.P.); (P.L.); (V.D.)
| | - Pauline Liaudet
- Preclinical Development, Sensorion SA, 34080 Montpellier, France; (V.D.B.); (M.P.); (P.L.); (V.D.)
| | - Vincent Descossy
- Preclinical Development, Sensorion SA, 34080 Montpellier, France; (V.D.B.); (M.P.); (P.L.); (V.D.)
| | - Lionel Reveret
- Laboratoire Jean Kuntzmann, Université Grenoble Alpes, UMR CNRS 5224, INRIA, 38330 Montbonnot-Saint-Martin, France; (T.G.); (L.R.)
| | - Guillaume P. Dugué
- Neurophysiologie des Circuits Cérébraux, Institut de Biologie de l’ENS (IBENS), Ecole Normale Supérieure, UMR CNRS 8197, INSERM U1024, Université PSL, 75005 Paris, France;
| |
Collapse
|
27
|
El Mahmoudi N, Rastoldo G, Marouane E, Péricat D, Watabe I, Tonetto A, Hautefort C, Chabbert C, Sargolini F, Tighilet B. Breaking a dogma: acute anti-inflammatory treatment alters both post-lesional functional recovery and endogenous adaptive plasticity mechanisms in a rodent model of acute peripheral vestibulopathy. J Neuroinflammation 2021; 18:183. [PMID: 34419105 PMCID: PMC8380392 DOI: 10.1186/s12974-021-02222-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/19/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Due to their anti-inflammatory action, corticosteroids are the reference treatment for brain injuries and many inflammatory diseases. However, the benefits of acute corticotherapy are now being questioned, particularly in the case of acute peripheral vestibulopathies (APV), characterized by a vestibular syndrome composed of sustained spinning vertigo, spontaneous ocular nystagmus and oscillopsia, perceptual-cognitive, posturo-locomotor, and vegetative disorders. We assessed the effectiveness of acute corticotherapy, and the functional role of acute inflammation observed after sudden unilateral vestibular loss. METHODS We used the rodent model of unilateral vestibular neurectomy, mimicking the syndrome observed in patients with APV. We treated the animals during the acute phase of the vestibular syndrome, either with placebo or methylprednisolone, an anti-inflammatory corticosteroid. At the cellular level, impacts of methylprednisolone on endogenous plasticity mechanisms were assessed through analysis of cell proliferation and survival, glial reactions, neuron's membrane excitability, and stress marker. At the behavioral level, vestibular and posturo-locomotor functions' recovery were assessed with appropriate qualitative and quantitative evaluations. RESULTS We observed that acute treatment with methylprednisolone significantly decreases glial reactions, cell proliferation and survival. In addition, stress and excitability markers were significantly impacted by the treatment. Besides, vestibular syndrome's intensity was enhanced, and vestibular compensation delayed under acute methylprednisolone treatment. CONCLUSIONS We show here, for the first time, that acute anti-inflammatory treatment alters the expression of the adaptive plasticity mechanisms in the deafferented vestibular nuclei and generates enhanced and prolonged vestibular and postural deficits. These results strongly suggest a beneficial role for acute endogenous neuroinflammation in vestibular compensation. They open the way to a change in dogma for the treatment and therapeutic management of vestibular patients.
Collapse
Affiliation(s)
- Nada El Mahmoudi
- Aix-Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Centre Saint Charles, Case C; 3 Place Victor Hugo, 13331, Marseille Cedex 03, France
- Centre Saint-Charles, Aix-Marseille Université CNRS, Case C; 3 Place Victor Hugo, 13331, Marseille Cedex 03, France
| | - Guillaume Rastoldo
- Aix-Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Centre Saint Charles, Case C; 3 Place Victor Hugo, 13331, Marseille Cedex 03, France
- Centre Saint-Charles, Aix-Marseille Université CNRS, Case C; 3 Place Victor Hugo, 13331, Marseille Cedex 03, France
| | - Emna Marouane
- Aix-Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Centre Saint Charles, Case C; 3 Place Victor Hugo, 13331, Marseille Cedex 03, France
- Centre Saint-Charles, Aix-Marseille Université CNRS, Case C; 3 Place Victor Hugo, 13331, Marseille Cedex 03, France
| | - David Péricat
- Institut de Pharmacologie Et de Biologie Structurale, Université de Toulouse Paul Sabatier-CNRS, Toulouse, France
| | - Isabelle Watabe
- Aix-Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Centre Saint Charles, Case C; 3 Place Victor Hugo, 13331, Marseille Cedex 03, France
- Centre Saint-Charles, Aix-Marseille Université CNRS, Case C; 3 Place Victor Hugo, 13331, Marseille Cedex 03, France
| | - Alain Tonetto
- Centrale Marseille, FSCM (FR 1739), PRATIM, Aix Marseille Université-CNRS, 13397, Marseille, France
| | - Charlotte Hautefort
- Department of Head and Neck Surgery, Lariboisière University Hospital, Paris, France
| | - Christian Chabbert
- Aix-Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Centre Saint Charles, Case C; 3 Place Victor Hugo, 13331, Marseille Cedex 03, France
- Centre Saint-Charles, Aix-Marseille Université CNRS, Case C; 3 Place Victor Hugo, 13331, Marseille Cedex 03, France
- GDR Physiopathologie Vestibulaire-Unité GDR2074 CNRS, Marseille, France
| | - Francesca Sargolini
- Aix-Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Centre Saint Charles, Case C; 3 Place Victor Hugo, 13331, Marseille Cedex 03, France
| | - Brahim Tighilet
- Aix-Marseille Université-CNRS, Laboratoire de Neurosciences Cognitives, LNC UMR 7291, Centre Saint Charles, Case C; 3 Place Victor Hugo, 13331, Marseille Cedex 03, France.
- GDR Physiopathologie Vestibulaire-Unité GDR2074 CNRS, Marseille, France.
| |
Collapse
|
28
|
Montardy Q, Wei M, Liu X, Yi T, Zhou Z, Lai J, Zhao B, Besnard S, Tighilet B, Chabbert C, Wang L. Selective optogenetic stimulation of glutamatergic, but not GABAergic, vestibular nuclei neurons induces immediate and reversible postural imbalance in mice. Prog Neurobiol 2021; 204:102085. [PMID: 34171443 DOI: 10.1016/j.pneurobio.2021.102085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 04/21/2021] [Accepted: 05/25/2021] [Indexed: 11/24/2022]
Abstract
Glutamatergic and GABAergic neurons represent the neural components of the medial vestibular nuclei. We assessed the functional role of glutamatergic and GABAergic neuronal pathways arising from the vestibular nuclei (VN) in the maintenance of gait and balance by optogenetically stimulating the VN in VGluT2-cre and GAD2-cre mice. We demonstrate that glutamatergic, but not GABAergic VN neuronal subpopulation is responsible for immediate and strong posturo-locomotor deficits, comparable to unilateral vestibular deafferentation models. During optogenetic stimulation, the support surface dramatically increased in VNVGluT2+ mice, and rapidly fell back to baseline after stimulation, whilst it remained unchanged during similar stimulation of VNGAD2+ mice. This effect persisted when vestibular tactilo kinesthesic plantar inputs were removed. Posturo-locomotor alterations evoked in VNVGluT2+ animals were still present immediately after stimulation, while they disappeared 1 h later. Overall, these results indicate a fundamental role for VNVGluT2+ neurons in balance and posturo-locomotor functions, but not for VNGAD2+ neurons, in this specific context. This new optogenetic approach will be useful to characterize the role of the different VN neuronal populations involved in vestibular physiology and pathophysiology.
Collapse
Affiliation(s)
- Q Montardy
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; GDR Physiopathologie Vestibulaire - unité GDR2074 CNRS, France
| | - M Wei
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - X Liu
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - T Yi
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Z Zhou
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - J Lai
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - B Zhao
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - S Besnard
- Aix Marseille University-CNRS, Laboratory of Sensory and Cognitive Neurosciences, UMR 7260, Team Pathophysiology and Therapy of Vestibular Disorders, Marseille, France; Université de Caen Normandie, CHU de Caen, Caen, France; GDR Physiopathologie Vestibulaire - unité GDR2074 CNRS, France
| | - B Tighilet
- Aix Marseille University-CNRS, Laboratory of Sensory and Cognitive Neurosciences, UMR 7260, Team Pathophysiology and Therapy of Vestibular Disorders, Marseille, France; GDR Physiopathologie Vestibulaire - unité GDR2074 CNRS, France.
| | - C Chabbert
- Aix Marseille University-CNRS, Laboratory of Sensory and Cognitive Neurosciences, UMR 7260, Team Pathophysiology and Therapy of Vestibular Disorders, Marseille, France; GDR Physiopathologie Vestibulaire - unité GDR2074 CNRS, France.
| | - L Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| |
Collapse
|
29
|
Dynamic whole-brain metabolic connectivity during vestibular compensation in the rat. Neuroimage 2020; 226:117588. [PMID: 33249212 DOI: 10.1016/j.neuroimage.2020.117588] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/05/2020] [Accepted: 11/19/2020] [Indexed: 12/16/2022] Open
Abstract
Unilateral damage to the inner ear results in an acute vestibular syndrome, which is compensated within days to weeks due to adaptive cerebral plasticity. This process, called central vestibular compensation (VC), involves a wide range of functional and structural mechanisms at the cellular and network level. The short-term dynamics of whole-brain functional network recruitment and recalibration during VC has not been depicted in vivo. The purpose of this study was to investigate the interplay of separate and distinct brain regions and in vivo networks in the course of VC by sequential [18F]-FDG-PET-based statistical and graph theoretical analysis with the aim of revealing the metabolic connectome before and 1, 3, 7, and 15 days post unilateral labyrinthectomy (UL) in the rat. Temporal changes in metabolic brain connectivity were determined by Pearson's correlation (|r| > 0.5, p < 0.001) of regional cerebral glucose metabolism (rCGM) in 57 segmented brain regions. Metabolic connectivity analysis was compared to univariate voxel-wise statistical analysis of rCGM over time and to behavioral scores of static and dynamic sensorimotor recovery. Univariate statistical analysis revealed an ipsilesional relative rCGM decrease (compared to baseline) and a contralesional rCGM increase in vestibular and limbic networks and an increase in bilateral cerebellar and sensorimotor networks. Quantitative analysis of the metabolic connections showed a maximal increase from baseline to day 3 post UL (interhemispheric: 2-fold, ipsilesional: 3-fold, contralesional: 12-fold) and a gradual decline until day 15 post UL, which paralleled the dynamics of vestibular symptoms. In graph theoretical analysis, an increase in connectivity occurred especially within brain regions associated with brainstem-cerebellar and thalamocortical vestibular networks and cortical sensorimotor networks. At the symptom peak (day 3 post UL), brain networks were found to be organized in large ensembles of distinct and highly connected hubs of brain regions, which separated again with progressing VC. Thus, we found rapid changes in network organization at the subcortical and cortical level and in both hemispheres, which may indicate an initial functional substitution of vestibular loss and subsequent recalibration and reorganization of sensorimotor networks during VC.
Collapse
|