1
|
Chen X, Zhang W, Wang M, Li J. Static and temporal dynamic alterations of regional homogeneity in chronic insomnia: a resting-state fMRI study. Sleep Biol Rhythms 2024; 22:541-544. [PMID: 39300981 PMCID: PMC11408457 DOI: 10.1007/s41105-024-00541-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/23/2024] [Indexed: 09/22/2024]
Abstract
To explore brain function alterations in chronic insomnia (CI). 65 CI patients and 48 healthy controls were included to analyze abnormal alterations in brain spontaneous activity using static regional homogeneity (sReHo) and dynamic regional homogeneity (dReHo) methods. CI patients focused on decreased sReHo in bilateral lingual gyrus, bilateral middle occipital gyrus, bilateral inferior occipital gyrus and right superior occipital gyrus; decreased dReHo in bilateral superior occipital gyrus, bilateral cortical area around the talus fissure, and right middle occipital gyrus. CI patients exhibit abnormal activity in multiple brain regions, which can reflect the sleep quality index. Supplementary Information The online version contains supplementary material available at 10.1007/s41105-024-00541-0.
Collapse
Affiliation(s)
- Xiaoxin Chen
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Wenzheng Zhang
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Maoyang Wang
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Jun Li
- Department of Radiology, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| |
Collapse
|
2
|
Lin K, Gao Y, Ji W, Li Y, Wang W, Du M, Liu J, Hong Z, Jiang T, Wang Y. Attentional impairment and altered brain activity in healthcare workers after mild COVID-19. Brain Imaging Behav 2024; 18:566-575. [PMID: 38296922 PMCID: PMC11222278 DOI: 10.1007/s11682-024-00851-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2024] [Indexed: 02/02/2024]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) is highly transmissible and pathogenic. Patients with mild cases account for the majority of those infected with coronavirus disease 2019 (COVID-19). Although there is evidence that many patients with COVID-19 have varying degrees of attentional impairment, little is known about how SARS-COV-2 affects attentional function. This study included a high-risk healthcare population divided into groups of healthcare workers (HCWs) with mild COVID-19 (patient group, n = 45) and matched healthy HCWs controls (HC group, n = 42), who completed general neuropsychological background tests and Attention Network Test (ANT), and underwent resting-state functional magnetic resonance imaging (rs-fMRI) using amplitude of low-frequency fluctuation (ALFF) to assess altered brain activity; Selective impairment occurred in orienting and executive control networks, but not in alert network, in the patient group, and widespread cognitive impairment encompassing general attention, memory, and executive dysfunction. Moreover, the patient group had significantly lower ALFF values in the left superior and left middle frontal gyri than the HC group. SARS-COV-2 infection may have led to reduced brain activity in the left superior and left middle frontal gyri, thus impairing attentional orienting and executive control networks, which may explain the development of attentional deficits after COVID-19.
Collapse
Affiliation(s)
- Keyi Lin
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Yaotian Gao
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Wei Ji
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
- Department of Neurosurgery, Hefei Huaan Brain Hospital, Hefei, China
| | - Yan Li
- Anhui Public Health Clinical Center, Hefei, China
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mengcheng Du
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jia Liu
- Anhui Public Health Clinical Center, Hefei, China
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhengyu Hong
- Anhui Public Health Clinical Center, Hefei, China
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tao Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
- Anhui Public Health Clinical Center, Hefei, China.
- Anhui Provincial Institute of Translational Medicine, Hefei, China.
| | - Yuyang Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
3
|
Ding J, Tang Z, Chen Q, Liu Y, Feng C, Li Y, Ding X. Abnormal degree centrality as a potential imaging biomarker for ischemic stroke: A resting-state functional magnetic resonance imaging study. Neurosci Lett 2024; 831:137790. [PMID: 38670522 DOI: 10.1016/j.neulet.2024.137790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/09/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
OBJECTIVE To explore degree centrality (DC) abnormalities in ischemic stroke patients and determine whether these abnormalities have potential value in understanding the pathological mechanisms of ischemic stroke patients. METHODS Sixteen ischemic stroke patients and 22 healthy controls (HCs) underwent resting state functional magnetic resonance imaging (rs-fMRI) scanning, and the resulting data were subjected to DC analysis. Then we conducted a correlation analysis between DC values and neuropsychological test scores, including Montreal Cognitive Assessment (MoCA) and Mini-Mental State Examination (MMSE). Finally, extracted the abnormal DC values of brain regions and defined them as features for support vector machine (SVM) analysis. RESULTS Compared with HCs, ischemic stroke patients showed increased DC in the bilateral supplementary motor area, and median cingulate and paracingulate gyri and decreased DC in the left postcentral gyrus, right calcarine fissure and surrounding cortex, lingual gyrus, and orbital parts of the right superior frontal gyrus and bilateral cuneus. Correlation analyses revealed that DC values in the right lingual gyrus, calcarine fissure and surrounding cortex, and orbital parts of the right superior frontal gyrus were positively correlated with the MMSE scores. The SVM classification of the DC values achieved an area under the curve (AUC) of 0.93, an accuracy of 89.47%. CONCLUSION Our research results indicate that ischemic stroke patients exhibit abnormalities in the global connectivity mechanisms and patterns of the brain network. These abnormal changes may provide neuroimaging evidence for stroke-related motor, visual, and cognitive impairments, contribute to a deeper comprehension of the underlying pathophysiological mechanisms implicated in ischemic stroke.
Collapse
Affiliation(s)
- Jurong Ding
- School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, PR China; Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Zigong, PR China.
| | - Zhiling Tang
- School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, PR China; Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Zigong, PR China
| | - Qiang Chen
- School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, PR China; Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Zigong, PR China
| | - Yihong Liu
- School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, PR China; Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Zigong, PR China
| | - Chenyu Feng
- School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, PR China; Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Zigong, PR China
| | - Yuan Li
- School of Automation and Information Engineering, Sichuan University of Science and Engineering, Zigong, PR China; Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Zigong, PR China
| | - Xin Ding
- Department of Neurology, Chengdu Second People's Hospital, Chengdu, PR China
| |
Collapse
|
4
|
Chang JR, Yao ZF, Hsieh S, Nordling TEM. Age Prediction Using Resting-State Functional MRI. Neuroinformatics 2024; 22:119-134. [PMID: 38341830 DOI: 10.1007/s12021-024-09653-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 02/13/2024]
Abstract
The increasing lifespan and large individual differences in cognitive capability highlight the importance of comprehending the aging process of the brain. Contrary to visible signs of bodily ageing, like greying of hair and loss of muscle mass, the internal changes that occur within our brains remain less apparent until they impair function. Brain age, distinct from chronological age, reflects our brain's health status and may deviate from our actual chronological age. Notably, brain age has been associated with mortality and depression. The brain is plastic and can compensate even for severe structural damage by rewiring. Functional characterization offers insights that structural cannot provide. Contrary to the multitude of studies relying on structural magnetic resonance imaging (MRI), we utilize resting-state functional MRI (rsfMRI). We also address the issue of inclusion of subjects with abnormal brain ageing through outlier removal. In this study, we employ the Least Absolute Shrinkage and Selection Operator (LASSO) to identify the 39 most predictive correlations derived from the rsfMRI data. The data is from a cohort of 176 healthy right-handed volunteers, aged 18-78 years (95/81 male/female, mean age 48, SD 17) collected at the Mind Research Imaging Center at the National Cheng Kung University. We establish a normal reference model by excluding 68 outliers, which achieves a leave-one-out mean absolute error of 2.48 years. By asking which additional features that are needed to predict the chronological age of the outliers with a smaller error, we identify correlations predictive of abnormal aging. These are associated with the Default Mode Network (DMN). Our normal reference model has the lowest prediction error among published models evaluated on adult subjects of almost all ages and is thus a candidate for screening for abnormal brain aging that has not yet manifested in cognitive decline. This study advances our ability to predict brain aging and provides insights into potential biomarkers for assessing brain age, suggesting that the role of DMN in brain aging should be studied further.
Collapse
Affiliation(s)
- Jose Ramon Chang
- Department of Mechanical Engineering, National Cheng Kung University, No. 1 University Rd., Tainan, 701, Taiwan
| | - Zai-Fu Yao
- College of Education, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Research Center for Education and Mind Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Kinesiology, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Basic Psychology Group, Department of Educational Psychology and Counseling, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Shulan Hsieh
- Department of Psychology, National Cheng Kung University, No. 1 University Rd., Tainan, 701, Taiwan
- Institute of Allied Health Sciences, National Cheng Kung University, No. 1 University Rd., Tainan, 701, Taiwan
- Department of Public Health, College of Medicine, National Cheng Kung University, No. 1 University Rd., Tainan, 701, Taiwan
| | - Torbjörn E M Nordling
- Department of Mechanical Engineering, National Cheng Kung University, No. 1 University Rd., Tainan, 701, Taiwan.
| |
Collapse
|
5
|
Yu Z, Pang H, Yang Y, Luo D, Zheng H, Huang Z, Zhang M, Ren K. Microglia dysfunction drives disrupted hippocampal amplitude of low frequency after acute kidney injury. CNS Neurosci Ther 2024; 30:e14363. [PMID: 37469216 PMCID: PMC10848109 DOI: 10.1111/cns.14363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/21/2023] Open
Abstract
AIMS Acute kidney injury (AKI) has been associated with a variety of neurological problems, while the neurobiological mechanism remains unclear. In the present study, we utilized resting-state functional magnetic resonance imaging (rs-fMRI) to detect brain injury at an early stage and investigated the impact of microglia on the neuropathological mechanism of AKI. METHODS Rs-fMRI data were collected from AKI rats and the control group with a 9.4-Tesla scanner at 24, 48, and 72 h post administration of contrast medium or saline. The amplitude of low-frequency fluctuations (ALFF) was then compared across the groups at each time course. Additionally, flow cytometry and SMART-seq2 were employed to evaluate microglia. Furthermore, pathological staining and Western blot were used to analyze the samples. RESULTS MRI results revealed that AKI led to a decreased ALFF in the hippocampus, particularly in the 48 h and 72 h groups. Additionally, western blot suggested that AKI-induced the neuronal apoptosis at 48 h and 72 h. Flow cytometry and confocal microscopy images demonstrated that AKI activated the aggregation of microglia into neurons at 24 h, with a strong upregulation of M1 polarization at 48 h and peaking at 72 h, accompanying with the release of proinflammatory cytokines. The ALFF value was strongly correlated with the proportion of microglia (|r| > 0.80, p < 0.001). CONCLUSIONS Our study demonstrated that microglia aggregation and inflammatory factor upregulation are significant mechanisms of AKI-induced neuronal apoptosis. We used fMRI to detect the alterations in hippocampal function, which may provide a noninvasive method for the early detection of brain injury after AKI.
Collapse
Affiliation(s)
- Ziyang Yu
- School of MedicineXiamen UniversityXiamenChina
| | - Huize Pang
- Department of RadiologyThe First Hospital of China Medical UniversityShenyangChina
| | - Yifan Yang
- School of MedicineXiamen UniversityXiamenChina
| | - Doudou Luo
- School of MedicineXiamen UniversityXiamenChina
| | - Haiping Zheng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life SciencesXiamen UniversityXiamenChina
| | - Zicheng Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public HealthXiamen UniversityXiamenChina
| | - Mingxia Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life SciencesXiamen UniversityXiamenChina
| | - Ke Ren
- School of MedicineXiamen UniversityXiamenChina
- Department of RadiologyThe First Hospital of China Medical UniversityShenyangChina
| |
Collapse
|
6
|
Ruan Z, Gao L, Li S, Yu M, Rao B, Sun W, Zhou X, Li Y, Song X, Xu H. Functional abnormalities of the cerebellum in vascular mild cognitive impairment. Brain Imaging Behav 2023; 17:530-540. [PMID: 37433970 DOI: 10.1007/s11682-023-00783-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2023] [Indexed: 07/13/2023]
Abstract
OBJECTIVES The alterations in cerebellar activity that occur in vascular mild cognitive impairment remain largely unexplored. This study aimed to investigate potential associations between abnormal cerebellar functional connectivity (FC) and changes in cognitive function by examining intracerebellar and cerebellar-cerebral FC. METHODS MRI data were collected from seventy-two patients with vascular mild cognitive impairment (VMCI), comprising 38 patients with small vessel mild cognitive impairment (SVMCI) and 34 with poststroke mild cognitive impairment (PSMCI), and from 43 demographically matched healthy controls (HCs). Changes in FC between subregions within the cerebellum and from each cerebellar subregion to the selected cerebral seed points in VMCI patients were calculated, and the association of these changes with cognitive function was examined. RESULTS Compared with HCs, we found that VMCI patients had 11 cerebellar subregions showing significant differences (mainly decreases) in FC with brain regions in the default-mode network (DMN), sensory-motor network (SMN), and frontoparietal network (FPN). In the intracerebellar FC analysis, 47 (8%) cerebellar connections had significant intergroup differences, mainly a reduced magnitude of FC in VMCI patients. In the correlation analysis, higher Montreal Cognitive Assessment (MoCA) scores were correlated with stronger intracerebellar FC (left crus II-right lobule VI, left crus II-right lobule VIIb) and cerebellar-cerebral FC (right lobule X-left precuneus, vermal lobule IX-right inferior parietal lobule) in both the SVMCI and PSMCI groups. CONCLUSION These findings suggest prominent intracerebellar and cerebellar-cerebral FC abnormalities in VMCI patients, contributing evidence for a possible role of the cerebellum in cognitive processes.
Collapse
Affiliation(s)
- Zhao Ruan
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China
| | - Sirui Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China
| | - Minhua Yu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China
| | - Bo Rao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China
| | - Wenbo Sun
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China
| | - Xiaoli Zhou
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China
| | - Yidan Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China
| | - Xiaopeng Song
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing, 100871, China.
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan City, Hubei Province, 430071, China.
| |
Collapse
|
7
|
Wei Z, Yue J, Li X, Zhao W, Cao D, Li A, Yang G, Zhang Q. A mini-review on functional magnetic resonance imaging on brain structure of vascular cognitive impairment. Front Neurol 2023; 14:1249147. [PMID: 37808504 PMCID: PMC10552639 DOI: 10.3389/fneur.2023.1249147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023] Open
Abstract
Vascular cognitive impairment (VCI) is the initial stage of vascular dementia (VaD). Early diagnosis and treatment of VCI are crucial to prevent the progression of VaD. In order to gain a better understanding of VCI, this study aimed to investigate the use of advanced imaging techniques such as structural magnetic resonance imaging (sMRI) and resting-state functional magnetic resonance imaging (rs-fMRI). These techniques allow researchers to observe the structural and functional changes in the brain that are associated with VCI. Functional magnetic resonance imaging (fMRI) and sMRI techniques have been widely used in studies focusing on gray matter, brain networks, and functional abnormalities during rest. By searching and summarizing recent literature, this study has provided valuable evidence on the use of advanced imaging techniques in understanding and treating VCI. The findings from this study can aid in the development of early intervention strategies for patients with VCI, potentially slowing down or even halting the progression of VCI to full-blown VaD.
Collapse
Affiliation(s)
- Zeyi Wei
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jinhuan Yue
- Shenzhen Frontiers in Chinese Medicine Research Co., Ltd., Shenzhen, China
- Department of Acupuncture and Moxibustion, Vitality University, Hayward, CA, United States
| | - Xiaoling Li
- Division of CT and MRI, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | | | - Danna Cao
- Division of CT and MRI, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ang Li
- Servier (Beijing) Pharmaceutical Research & Development CO. Ltd., Beijing, China
| | - Guanhu Yang
- Department of Specialty Medicine, Ohio University, Athens, OH, United States
| | - Qinhong Zhang
- Shenzhen Frontiers in Chinese Medicine Research Co., Ltd., Shenzhen, China
- Department of Acupuncture and Moxibustion, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
8
|
Pommy J, Smart CM, Bryant AM, Wang Y. Three potential neurovascular pathways driving the benefits of mindfulness meditation for older adults. Front Aging Neurosci 2023; 15:1207012. [PMID: 37455940 PMCID: PMC10340530 DOI: 10.3389/fnagi.2023.1207012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/06/2023] [Indexed: 07/18/2023] Open
Abstract
Mindfulness meditation has been shown to be beneficial for a range of different health conditions, impacts brain function and structure relatively quickly, and has shown promise with aging samples. Functional magnetic resonance imaging metrics provide insight into neurovascular health which plays a key role in both normal and pathological aging processes. Experimental mindfulness meditation studies that included functional magnetic resonance metrics as an outcome measure may point to potential neurovascular mechanisms of action relevant for aging adults that have not yet been previously examined. We first review the resting-state magnetic resonance studies conducted in exclusively older adult age samples. Findings from older adult-only samples are then used to frame the findings of task magnetic resonance imaging studies conducted in both clinical and healthy adult samples. Based on the resting-state studies in older adults and the task magnetic resonance studies in adult samples, we propose three potential mechanisms by which mindfulness meditation may offer a neurovascular therapeutic benefit for older adults: (1) a direct neurovascular mechanism via increased resting-state cerebral blood flow; (2) an indirect anti-neuroinflammatory mechanism via increased functional connectivity within the default mode network, and (3) a top-down control mechanism that likely reflects both a direct and an indirect neurovascular pathway.
Collapse
Affiliation(s)
- Jessica Pommy
- Department of Neurology, Division of Neuropsychology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Colette M. Smart
- Department of Psychology, University of Victoria, Victoria, BC, Canada
| | - Andrew M. Bryant
- Department of Neurology, The Ohio State University, Columbus, OH, United States
| | - Yang Wang
- Department of Neurology, Division of Neuropsychology, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Radiology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
9
|
Wang X, Wang C, Liu J, Guo J, Miao P, Wei Y, Wang Y, Li Z, Li J, Wang K, Zhang Y, Cheng J, Ren C. Altered static and dynamic spontaneous neural activity in patients with ischemic pontine stroke. Front Neurosci 2023; 17:1131062. [PMID: 37008224 PMCID: PMC10060846 DOI: 10.3389/fnins.2023.1131062] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/28/2023] [Indexed: 03/18/2023] Open
Abstract
ObjectiveThe purpose of the study was to investigate the abnormality both of static spontaneous brain activity and dynamic temporal variances following a pontine infarction.MethodsForty-six patients with chronic left pontine infarction (LPI), thirty-two patients with chronic right pontine infarction (RPI), and fifty healthy controls (HCs) were recruited for the study. The static amplitude of low-frequency fluctuations (sALFF), static regional homogeneity (sReHo), dynamic ALFF (dALFF), and dynamic ReHo (dReHo) were employed to detect the alterations in brain activity induced by an infarction. The Rey Auditory Verbal Learning Test and Flanker task were used to evaluate the verbal memory and visual attention function, respectively. Receiver operating characteristic curve analysis was used to reveal the potential capacity of these metrics to distinguish the patients from HCs.ResultsThere were significant variations of these static and dynamic metrics in patients with chronic pontine infarction. The altered regions involved the supratentorial regions, including cortex and subcortical. Moreover, the altered metrics were significantly correlated with verbal memory and visual attention. In addition, these static and dynamic metrics also showed potential in distinguishing stroke patients with behavior deficits from HCs.ConclusionThe pontine infarction-induced cerebral activation changes are observed in both motor and cognitive systems, indicating the functional damage and reorganization across the global cerebral level in these patients with subtentorial infarction, and there is a reciprocal effect between motor and cognitive impairment and repair.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Caihong Wang
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Caihong Wang,
| | - Jingchun Liu
- Tianjin Key Laboratory of Functional Imaging, Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jun Guo
- Department of Radiology, Tianjin Huanhu Hospital, Tianjin, China
| | - Peifang Miao
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Wei
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingying Wang
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhen Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaiyu Wang
- GE Healthcare MR Research, Beijing, China
| | - Yong Zhang
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cuiping Ren
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Cuiping Ren,
| |
Collapse
|
10
|
Loftus JR, Puri S, Meyers SP. Multimodality imaging of neurodegenerative disorders with a focus on multiparametric magnetic resonance and molecular imaging. Insights Imaging 2023; 14:8. [PMID: 36645560 PMCID: PMC9842851 DOI: 10.1186/s13244-022-01358-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/13/2022] [Indexed: 01/17/2023] Open
Abstract
Neurodegenerative diseases afflict a large number of persons worldwide, with the prevalence and incidence of dementia rapidly increasing. Despite their prevalence, clinical diagnosis of dementia syndromes remains imperfect with limited specificity. Conventional structural-based imaging techniques also lack the accuracy necessary for confident diagnosis. Multiparametric magnetic resonance imaging and molecular imaging provide the promise of improving specificity and sensitivity in the diagnosis of neurodegenerative disease as well as therapeutic monitoring of monoclonal antibody therapy. This educational review will briefly focus on the epidemiology, clinical presentation, and pathologic findings of common and uncommon neurodegenerative diseases. Imaging features of each disease spanning from conventional magnetic resonance sequences to advanced multiparametric methods such as resting-state functional magnetic resonance imaging and arterial spin labeling imaging will be described in detail. Additionally, the review will explore the findings of each diagnosis on molecular imaging including single-photon emission computed tomography and positron emission tomography with a variety of clinically used and experimental radiotracers. The literature and clinical cases provided demonstrate the power of advanced magnetic resonance imaging and molecular techniques in the diagnosis of neurodegenerative diseases and areas of future and ongoing research. With the advent of combined positron emission tomography/magnetic resonance imaging scanners, hybrid protocols utilizing both techniques are an attractive option for improving the evaluation of neurodegenerative diseases.
Collapse
Affiliation(s)
- James Ryan Loftus
- grid.412750.50000 0004 1936 9166Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642 USA
| | - Savita Puri
- grid.412750.50000 0004 1936 9166Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642 USA
| | - Steven P. Meyers
- grid.412750.50000 0004 1936 9166Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642 USA
| |
Collapse
|
11
|
Solovieva EY, Vorob'eva OV, Fateeva VV, Skipetrova LA. [Imaging of brain activity using fMRI in a patient with subjective cognitive decline]. Zh Nevrol Psikhiatr Im S S Korsakova 2023; 123:125-129. [PMID: 37084377 DOI: 10.17116/jnevro2023123041125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023]
Abstract
In clinical practice, subjective cognitive decline (SCD) is often difficult to diagnose because it is not detected by standard neuropsychological and cognitive tests.The described clinical case is presented to demonstrate the difficulties of diagnosis and treatment choice in a patient with SCD. fMRI might be considered as an instrumental method to analyze the functional relationship between the activity of brain structures and cerebral circulation in patients with SCD. Patient clinical and neuropsychological data with a detailed description of fMRI with a cognitive paradigm are presented. The article is focused on the early diagnosis of SCD and the prognostic assessment of the transition of SCD to dementia.
Collapse
Affiliation(s)
- E Yu Solovieva
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - O V Vorob'eva
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - V V Fateeva
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- OOO «NPF «MATERIA MEDICA HOLDING», Moscow, Russia
| | - L A Skipetrova
- Center for Speech Pathology and Neurorehabilitation, Moscow, Russia
| |
Collapse
|
12
|
Wang M, Tang X, Li B, Wan T, Zhu X, Zhu Y, Lai X, He Y, Xia G. Dynamic local metrics changes in patients with toothache: A resting-state functional magnetic resonance imaging study. Front Neurol 2022; 13:1077432. [PMID: 36578304 PMCID: PMC9790921 DOI: 10.3389/fneur.2022.1077432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Objective To study the dynamic changes of local metrics in patients with toothache (TA, Toothache) in the resting state, in order to further understand the changes of central neural mechanism in patients with dental pain and its effect on cognition and emotion. Methods Thirty patients with TA and thirty matched healthy (HC) control volunteers were recruited, and resting-state functional magnetic resonance (rs-MRI) scans were performed on all subjects, and data were analyzed to compare group differences in three dynamic local indices: dynamic regional homogeneity (dReHO), dynamic low-frequency fluctuation amplitude (dALFF) and dynamic fractional low-frequency fluctuation amplitude (dfALFF). In addition, the association between dynamic local metrics in different brain regions of TA patients and scores on the Visual Analog Scale (VAS) and the Hospital Anxiety and Depression Scale (HADS) was investigated by Pearson correlation analysis. Results In this study, we found that The local metrics of TA patients changed with time Compared with the HC group, TA patients showed increased dReHo values in the left superior temporal gyrus, middle frontal gyrus, precentral gyrus, precuneus, angular gyrus, right superior frontal gyrus, middle temporal gyrus, postcentral gyrus and middle frontal gyrus, increased dALFF values in the right superior frontal gyrus, and increased dfALFF values in the right middle temporal gyrus, middle frontal gyrus and right superior occipital gyrus (p < 0.01, cluster level P < 0.05). Pearson correlation analysis showed that dReHo values of left precuneus and left angular gyrus were positively correlated with VAS scores in TA group. dReHo value of right posterior central gyrus was positively correlated with HADS score (P < 0.05). Conclusion There are differences in the patterns of neural activity changes in resting-state brain areas of TA patients, and the brain areas that undergo abnormal changes are mainly pain processing brain areas, emotion processing brain areas and pain cognitive modulation brain areas, which help to reveal their underlying neuropathological mechanisms. In the hope of further understanding its effects on cognition and emotion.
Collapse
Affiliation(s)
- Mengting Wang
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xin Tang
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Bin Li
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Tianyi Wan
- Medical Imaging Center, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Xuechao Zhu
- Medical Imaging Center, Jiangxi Cancer Hospital, Nanchang, China
| | - Yuping Zhu
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xunfu Lai
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yulin He
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China,*Correspondence: Yulin He
| | - Guojin Xia
- Medical Imaging Center, The First Affiliated Hospital of Nanchang University, Nanchang, China,Guojin Xia
| |
Collapse
|
13
|
Cao H, Lin F, Ke B, Song J, Xue Y, Fang X, Zeng E. Alterations of amplitude of low-frequency fluctuations and fractional amplitude of low-frequency fluctuations in end-stage renal disease on maintenance dialysis: An activation likelihood estimation meta-analysis. Front Hum Neurosci 2022; 16:1040553. [PMID: 36530199 PMCID: PMC9751321 DOI: 10.3389/fnhum.2022.1040553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/16/2022] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Cognitive impairment (CI) is a common complication of end-stage renal disease (ESRD). Many resting-state functional magnetic resonance imaging (rs-fMRI) studies have identified abnormal spontaneous low-frequency brain activity in ESRD dialysis patients. However, these studies have reported inconsistent results. So far, no meta-analyses on this topic have been published. This meta-analysis aimed to identify the more consistently vulnerable brain regions in ESRD patients at rest and to reveal its possible neuropathophysiological mechanisms. METHODS We systematically searched PubMed, Cochrane Library, Web of Science, Medline, and EMBASE databases up to July 20, 2022 based on the amplitude of low-frequency fluctuation (ALFF) or fractional amplitude of low-frequency fluctuation (fALFF). Brain regions with abnormal spontaneous neural activity in ESRD compared to healthy controls (HCs) from previous studies were integrated and analyzed using an activation likelihood estimation (ALE) method. Jackknife sensitivity analysis was carried out to assess the reproducibility of the results. RESULTS In total, 11 studies (380 patients and 351 HCs) were included in the final analysis. According to the results of the meta-analysis, compared with HCs, ESRD patients had decreased ALFF/fALFF in the right precuneus, right cuneus, and left superior temporal gyrus (STG), while no brain regions with increased brain activity were identified. Jackknife sensitivity analysis showed that our results were highly reliable. CONCLUSION Compared to HCs, ESRD dialysis patients exhibit significant abnormalities in spontaneous neural activity associated with CI, occurring primarily in the default mode network, visual recognition network (VRN), and executive control network (ECN). This contributes to the understanding of its pathophysiological mechanisms. SYSTEMATIC REVIEW REGISTRATION [https://www.crd.york.ac.uk/prospero/], identifier [CRD42022348694].
Collapse
Affiliation(s)
- Huiling Cao
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Feng Lin
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Ben Ke
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jianling Song
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Yuting Xue
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Xiangdong Fang
- Department of Nephrology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Erming Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
14
|
Xia MH, Li A, Gao RX, Li XL, Zhang Q, Tong X, Zhao WW, Cao DN, Wei ZY, Yue J. Research hotspots and trends of multimodality MRI on vascular cognitive impairment in recent 12 years: A bibliometric analysis. Medicine (Baltimore) 2022; 101:e30172. [PMID: 36042608 PMCID: PMC9410608 DOI: 10.1097/md.0000000000030172] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Multimodality magnetic resonance imaging (MRI) is widely used to detect vascular cognitive impairment (VCI). However, a bibliometric analysis of this issue remains unknown. Therefore, this study aimed to explore the research hotspots and trends of multimodality MRI on VCI over the past 12 years based on the Web of Science core collection using CiteSpace Software (6.1R2). METHODS Literature related to multimodality MRI for VCI from 2010 to 2021 was identified and analyzed from the Web of Science core collection database. We analyzed the countries, institutions, authors, cited journals, references, keyword bursts, and clusters using CiteSpace. RESULTS In total, 587 peer-reviewed documents were retrieved, and the annual number of publications showed an exponential growth trend over the past 12 years. The most productive country was the USA, with 182 articles, followed by China with 134 papers. The top 3 active academic institutions were Capital Medical University, Radboud UNIV Nijmegen, and UNIV Toronto. The most productive journal was the Journal of Alzheimer's Disease (33 articles). The most co-cited journal was Neurology, with the highest citations (492) and the highest intermediary centrality (0.14). The top-ranked publishing author was De Leeuw FE (17 articles) with the highest intermediary centrality of 0.04. Ward Law JM was the most cited author (123 citations) and Salat Dh was the most centrally cited author (0.24). The research hotspots of multimodal MRI for VCI include Alzheimer disease, vascular cognitive impairment, white matter intensity, cerebrovascular disease, dementia, mild cognitive impairment, neurovascular coupling, acute ischemic stroke, depression, and cerebral ischemic stroke. The main frontiers in the keywords are fMRI, vascular coupling, and cerebral ischemic stroke, and current research trends include impact, decline, and classification. CONCLUSIONS The findings from this bibliometric study provide research hotspots and trends for multimodality MRI for VCI over the past 12 years, which may help researchers identify hotspots and explore cutting-edge trends in this field.
Collapse
Affiliation(s)
- Mei-Hui Xia
- Department of Endocrinology and Geriatrics, Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ang Li
- Sanofi-Aventis China Investment Co., Ltd, Beijing, China
| | - Rui-Xue Gao
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiao-Ling Li
- Division of CT and MRI, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qinhong Zhang
- Department of Tuina, Acupuncture and Moxibustion, Shenzhen Jiuwei Chinese Medicine Clinic, Shenzhen, China
| | - Xin Tong
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | | | - Dan-Na Cao
- Division of CT and MRI, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Ze-Yi Wei
- Graduate School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jinhuan Yue
- Department of Tuina, Acupuncture and Moxibustion, Shenzhen Jiuwei Chinese Medicine Clinic, Shenzhen, China
- *Correspondence: Jinhuan Yue, Department of Tuina, Acupuncture and Moxibustion, Shenzhen Jiuwei Chinese Medicine Clinic, Shenzhen 518000, China (e-mail: )
| |
Collapse
|
15
|
Wang J, Kong F, Zheng H, Cai D, Liu L, Lian J, Lyu H, Lin S, Chen J, Qin X. Lateralized brain activities in subcortical vascular mild cognitive impairment with differential Chinese medicine patterns: A resting-state functional magnetic resonance imaging study. Front Neurosci 2022; 16:943929. [PMID: 36071714 PMCID: PMC9441905 DOI: 10.3389/fnins.2022.943929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022] Open
Abstract
Background Subcortical vascular mild cognitive impairment (svMCI) is one of the most treatable cognitive impairments, but could be hampered by the high clinical heterogeneities. Further classification by Chinese Medicine (CM) patterns has been proved to stratify its clinical heterogeneities. It remains largely unknown of the spontaneous brain activities regarding deficiency patterns (DPs) and excess patterns (EPs) of svMCI patients based on fMRI data. Objective We aim to provide neuroimaging evidence of altered resting-state brain activities associated with DPs and EPs in svMCI patients. Methods Thirty-seven svMCI patients (PAs) and 23 healthy controls (CNs) were consecutively enrolled. All patients were categorized into either the EP group (n = 16) and the DP group (n = 21) based on a quantitative CM scale. The fractional amplitude of low-frequency fluctuation (fALFF) value was used to make comparisons between different subgroups. Results The DP group showed significant differences of fALFF values in the right middle frontal gyrus and the right cerebellum, while the EP group showed significant differences in the left orbitofrontal gyrus and the left cerebellum, when compared with the CN group. When compared with the EP group, the DP group had markedly increased fALFF values in the left superior temporal gyrus, right middle temporal gyrus and brainstem. The decreased fALFF values was shown in the right anterior cingulate and paracingulate gyri. Among the extensive areas of frontotemporal lobe, the Montreal Cognitive Assessment (MoCA) scores were significantly correlated with the reduced fALFF value of the right middle frontal gyrus and the left orbitofrontal gyrus. Conclusion Our results indicated that the DPs and EPs presented the lateralization pattern in the bilateral frontal gyrus, which will probably benefit the future investigation of the pathogenesis of svMCI patients.
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
- Harvard Medical School, Global Clinical Scholars Research Training (GCSRT), Boston, MA, United States
| | - Fanxin Kong
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Haotao Zheng
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Dongbin Cai
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lijin Liu
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jie Lian
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Hanqing Lyu
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
- Department of Radiology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Songjun Lin
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jianxiang Chen
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
- Department of Radiology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Xiude Qin
- Department of Neurology and Psychology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
- The Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
16
|
Kong C, Xu D, Wang Y, Wang B, Wen J, Wang X, Zhan L, Sun Z, Jia X, Li M, Tang S, Hou D. Amplitude of low-frequency fluctuations in multiple-frequency bands in patients with intracranial tuberculosis: a prospective cross-sectional study. Quant Imaging Med Surg 2022; 12:4120-4134. [PMID: 35919063 PMCID: PMC9338357 DOI: 10.21037/qims-22-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/19/2022] [Indexed: 12/11/2022]
Abstract
Background Resting-state functional magnetic resonance imaging (rs-fMRI) is widely used to study brain functional alteration, but there have been no reports of research regarding the application of rs-fMRI in intracranial tuberculosis. The purpose of this prospective, cross-sectional study was to investigate spontaneous neural activity at different frequency bands in patients with intracranial tuberculosis using rs-fMRI with amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF) methods. Methods The rs-fMRI data of 31 patients with intracranial tuberculosis and 30 gender-, age-, and education-matched healthy controls (HCs) were included. The ALFF and fALFF values in the conventional frequency band (0.01-0.08 Hz) and 2 sub-frequency bands (slow-4: 0.027-0.073 Hz; slow-5: 0.01-0.027 Hz) were calculated and compared between the groups. The resultant T-maps were corrected using the Gaussian random field (GRF) theory (voxel P<0.01, cluster P<0.05). Correlations between the ALFF and fALFF values and neurocognitive scores were assessed. Results Compared with the HCs, patients with intracranial tuberculosis showed decreased ALFF in the right paracentral lobule (T=-4.69) in the conventional frequency band, in the right supplementary motor area (T=-4.85) in the slow-4 band, and in the left supplementary motor area (T=-3.76) in the slow-5 band. Compared to the slow-5 band, the voxels with decreased ALFF were spatially more extensive in the slow-4 band. Compared with HCs, patients with intracranial tuberculosis showed decreased fALFF in the opercular parts of the right inferior frontal gyrus (T=-4.50) and the left inferior parietal lobe (T=-4.86) and increased fALFF in the left inferior cerebellum (T=5.84) in the conventional frequency band. In the slow-4 band, fALFF decreased in the opercular parts of the right inferior frontal gyrus (T=-5.29) and right precuneus (T=-4.34). In the slow-5 band, fALFF decreased in the left middle occipital gyrus (T=-4.65) and right middle frontal gyrus (T=-5.05). Conclusions Patients with intracranial tuberculosis showed abnormal intrinsic brain activity at different frequency bands, and ALFF abnormalities in different brain regions could be better detected in the slow-4 band. This preliminary study might provide new insights into understanding the pathophysiological mechanism in intracranial tuberculosis.
Collapse
Affiliation(s)
- Chengcheng Kong
- Translational Medicine Center, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Dong Xu
- Department of Radiology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yichuan Wang
- Department of Radiology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Bing Wang
- Department of Radiology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Jianjie Wen
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Xinguang Wang
- School of Information Science and Electronic Technology, Jiamusi University, Jiamusi, China
| | - Linlin Zhan
- Faculty of Western Languages, Heilongjiang University, Harbin, China
| | - Zhaogang Sun
- Translational Medicine Center, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Xize Jia
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Mengting Li
- School of Teacher Education, Zhejiang Normal University, Jinhua, China
- Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, China
| | - Shenjie Tang
- Tuberculosis Clinical Medical Center, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Dailun Hou
- Department of Radiology, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
17
|
Lake EMR, Higley MJ. Building bridges: simultaneous multimodal neuroimaging approaches for exploring the organization of brain networks. NEUROPHOTONICS 2022; 9:032202. [PMID: 36159712 PMCID: PMC9506627 DOI: 10.1117/1.nph.9.3.032202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Brain organization is evident across spatiotemporal scales as well as from structural and functional data. Yet, translating from micro- to macroscale (vice versa) as well as between different measures is difficult. Reconciling disparate observations from different modes is challenging because each specializes within a restricted spatiotemporal milieu, usually has bounded organ coverage, and has access to different contrasts. True intersubject biological heterogeneity, variation in experiment implementation (e.g., use of anesthesia), and true moment-to-moment variations in brain activity (maybe attributable to different brain states) also contribute to variability between studies. Ultimately, for a deeper and more actionable understanding of brain organization, an ability to translate across scales, measures, and species is needed. Simultaneous multimodal methods can contribute to bettering this understanding. We consider four modes, three optically based: multiphoton imaging, single-photon (wide-field) imaging, and fiber photometry, as well as magnetic resonance imaging. We discuss each mode as well as their pairwise combinations with regard to the definition and study of brain networks.
Collapse
Affiliation(s)
- Evelyn M. R. Lake
- Yale School of Medicine, Department of Radiology and Biomedical Imaging, New Haven, Connecticut, United States
| | - Michael J. Higley
- Yale School of Medicine, Departments of Neuroscience and Psychiatry, New Haven, Connecticut, United States
- Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, Connecticut, United States
- Program in Cellular Neuroscience, Neurodegeneration, and Repair, New Haven, Connecticut, United States
| |
Collapse
|
18
|
Porcu M, Cocco L, Cau R, Suri JS, Wintermark M, Puig J, Qi Y, Lanzino G, Caulo M, Saba L. The restoring of interhemispheric brain connectivity following carotid endarterectomy: an exploratory observational study. Brain Imaging Behav 2022; 16:2037-2048. [PMID: 35622267 DOI: 10.1007/s11682-022-00674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2022] [Indexed: 12/24/2022]
Abstract
This study aimed to evaluate the differences of brain connectivity between healthy subjects (HS) and patients with extracranial internal carotid artery (eICA) stenosis before and after carotid endarterectomy (CEA). An exploratory prospective study was designed. The study population consisted of a patient group (PG) of 20 patients with eICA stenosis eligible for CEA, and a control group (CG) of 20 HS, matched for age and sex. The subjects of the PG group underwent Magnetic Resonance Imaging (MRI) for resting-state functional connectivity MRI (rs-fc MRI) analysis within one week from the CEA (pre-CEA) and 12 months following CEA (post-CEA). The CG underwent a single MRI with the same protocol utilized for the PG. Three region-of-interest to region-of-interest (ROI-to-ROI) rs-fc MRI analyses were conducted: analysis 1 to compare pre-CEA PG and CG; analysis 2 to compare pre-CEA PG and post-CEA PG; analysis 3 to compare post-CEA PG and CG. The Functional Network Connectivity multivariate parametric technique was used for statistical analysis, adopting a p-uncorrected (p-unc) < 0.05 as connection threshold, and a cluster level False Discovery Rate corrected p (p-FDR) < 0.05 as cluster threshold. The clusters were defined by using a data-driven hierarchical clustering procedure. Analysis 1 revealed two clusters of reduced interhemispheric connectivity of pre-CEA PG when compared to CG. Analysis 2 and 3 showed no statistically significant differences. Our exploratory analysis suggests that patients with eICA stenosis have reduced interhemispheric connectivity when compared to a matched control group, and this difference was not evident anymore following endarterectomy.
Collapse
Affiliation(s)
- Michele Porcu
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy. .,Department of Medical Imaging, Azienda Ospedaliera Universitaria Di Cagliari, S.S: 554, km 4,500, Monserrato, CAP: 09042, Cagliari, Italy.
| | - Luigi Cocco
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Riccardo Cau
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| | - Jasjit S Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, USA
| | - Max Wintermark
- Department of Neuroradiology, Stanford University, Stanford, CA, USA
| | - Josep Puig
- Department of Radiology (IDI) and Girona Biomedical Research Institute (IDIBGI), Hospital Universitari de Girona Dr Josep Trueta, Girona, Spain
| | - Yang Qi
- Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Xicheng District, Beijing, China
| | | | - Massimo Caulo
- Department of Neuroscience, Imaging and Clinical Sciences, University "G. d'Annunzio", Chieti, Italy
| | - Luca Saba
- Department of Radiology, AOU Cagliari, University of Cagliari, Cagliari, Italy
| |
Collapse
|
19
|
Huang J, Cheng R, Liu X, Chen L, Luo T. Abnormal static and dynamic functional connectivity of networks related to cognition in patients with subcortical ischemic vascular disease. Neuroradiology 2022; 64:1201-1211. [DOI: 10.1007/s00234-022-02895-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/20/2021] [Indexed: 12/01/2022]
|
20
|
Kong Y, Li X, Chang L, Liu Y, Jia L, Gao L, Ren L. Hypertension With High Homocysteine Is Associated With Default Network Gray Matter Loss. Front Neurol 2021; 12:740819. [PMID: 34650512 PMCID: PMC8505539 DOI: 10.3389/fneur.2021.740819] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/24/2021] [Indexed: 11/29/2022] Open
Abstract
Hypertension with high homocysteine (Hcy, ≥10 μmol/L) is also known as H-type hypertension (HHT) and proposed as an independent risk factor for stroke and cognitive impairment. Although previous studies have established the relationships among hypertension, Hcy levels, and cognitive impairment, how they affect brain neuroanatomy remains unclear. Thus, we aimed to investigate whether and to what extent hypertension and high Hcy may affect gray matter volume in 52 middle-aged HHT patients and 51 demographically matched normotensive subjects. Voxel-based morphological analysis suggested that HHT patients experienced significant gray matter loss in the default network. The default network atrophy was significantly correlated with Hcy level and global cognitive function. These findings provide, to our knowledge, novel insights into how HHT affects brain gray matter morphology through blood pressure and Hcy.
Collapse
Affiliation(s)
- Yanliang Kong
- Department of Radiology, People's Hospital of Tongchuan City, Tongchuan, China
| | - Xin Li
- Department of Ultrasound, People's Hospital of Tongchuan City, Tongchuan, China
| | - Lina Chang
- Department of Radiology, People's Hospital of Tongchuan City, Tongchuan, China
| | - Yuwei Liu
- Department of Radiology, People's Hospital of Tongchuan City, Tongchuan, China
| | - Lin Jia
- Department of Radiology, People's Hospital of Tongchuan City, Tongchuan, China
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lijuan Ren
- Department of Radiology, People's Hospital of Tongchuan City, Tongchuan, China.,Department of Ultrasound, People's Hospital of Tongchuan City, Tongchuan, China
| |
Collapse
|
21
|
Wang S, Rao B, Chen L, Chen Z, Fang P, Miao G, Xu H, Liao W. Using Fractional Amplitude of Low-Frequency Fluctuations and Functional Connectivity in Patients With Post-stroke Cognitive Impairment for a Simulated Stimulation Program. Front Aging Neurosci 2021; 13:724267. [PMID: 34483891 PMCID: PMC8414996 DOI: 10.3389/fnagi.2021.724267] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 07/22/2021] [Indexed: 12/26/2022] Open
Abstract
Stroke causes alterations in local spontaneous neuronal activity and related networks functional connectivity. We hypothesized that these changes occur in patients with post-stroke cognitive impairment (PSCI). Fractional amplitude of low-frequency fluctuations (fALFF) was calculated in 36 patients with cognitive impairment, including 16 patients with hemorrhagic stroke (hPSCI group), 20 patients with ischemic stroke (iPSCI group). Twenty healthy volunteers closely matched to the patient groups with respect to age and gender were selected as the healthy control group (HC group). Regions with significant alteration were regarded as regions of interest (ROIs) using the one-way analysis of variance, and then the seed-based functional connectivity (FC) with other regions in the brain was analyzed. Pearson correlation analyses were performed to investigate the correlation between functional indexes and cognitive performance in patients with PSCI. Our results showed that fALFF values of bilateral posterior cingulate cortex (PCC)/precuneus and bilateral anterior cingulate cortex in the hPSCI group were lower than those in the HC group. Compared with the HC group, fALFF values were lower in the superior frontal gyrus and basal ganglia in the iPSCI group. Correlation analysis showed that the fALFF value of left PCC was positively correlated with MMSE scores and MoCA scores in hPSCI. Besides, the reduction of seed-based FC values was reported, especially in regions of the default-mode network (DMN) and the salience network (SN). Abnormalities of spontaneous brain activity and functional connectivity are observed in PSCI patients. The decreased fALFF and FC values in DMN of patients with hemorrhagic and SN of patients with ischemic stroke may be the pathological mechanism of cognitive impairment. Besides, we showed how to use fALFF values and functional connectivity maps to specify a target map on the cortical surface for repetitive transcranial magnetic stimulation (rTMS).
Collapse
Affiliation(s)
- Sirui Wang
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bo Rao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Linglong Chen
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhuo Chen
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Pinyan Fang
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Guofu Miao
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Weijing Liao
- Department of Rehabilitation Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
22
|
Zanon Zotin MC, Sveikata L, Viswanathan A, Yilmaz P. Cerebral small vessel disease and vascular cognitive impairment: from diagnosis to management. Curr Opin Neurol 2021; 34:246-257. [PMID: 33630769 PMCID: PMC7984766 DOI: 10.1097/wco.0000000000000913] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW We present recent developments in the field of small vessel disease (SVD)-related vascular cognitive impairment, including pathological mechanisms, updated diagnostic criteria, cognitive profile, neuroimaging markers and risk factors. We further address available management and therapeutic strategies. RECENT FINDINGS Vascular and neurodegenerative pathologies often co-occur and share similar risk factors. The updated consensus criteria aim to standardize vascular cognitive impairment (VCI) diagnosis, relying strongly on cognitive profile and MRI findings. Aggressive blood pressure control and multidomain lifestyle interventions are associated with decreased risk of cognitive impairment, but disease-modifying treatments are still lacking. Recent research has led to a better understanding of mechanisms leading to SVD-related cognitive decline, such as blood-brain barrier dysfunction, reduced cerebrovascular reactivity and impaired perivascular clearance. SUMMARY SVD is the leading cause of VCI and is associated with substantial morbidity. Tackling cardiovascular risk factors is currently the most effective approach to prevent cognitive decline in the elderly. Advanced imaging techniques provide tools for early diagnosis and may play an important role as surrogate markers for cognitive endpoints in clinical trials. Designing and testing disease-modifying interventions for VCI remains a key priority in healthcare.
Collapse
Affiliation(s)
- Maria Clara Zanon Zotin
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Center for Imaging Sciences and Medical Physics. Department of Medical Imaging, Hematology and Clinical Oncology. Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lukas Sveikata
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Institute of Cardiology, Medical Academy, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Anand Viswanathan
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Pinar Yilmaz
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, United States
- Departments of Epidemiology and Radiology and Nuclear Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|