1
|
Papini MG, Avila AN, Fitzgerald M, Hellewell SC. Evidence for Altered White Matter Organization After Mild Traumatic Brain Injury: A Scoping Review on the Use of Diffusion Magnetic Resonance Imaging and Blood-Based Biomarkers to Investigate Acute Pathology and Relationship to Persistent Post-Concussion Symptoms. J Neurotrauma 2024. [PMID: 39096132 DOI: 10.1089/neu.2024.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024] Open
Abstract
Mild traumatic brain injury (mTBI) is the most common form of traumatic brain injury. Post-concussive symptoms typically resolve after a few weeks although up to 20% of people experience these symptoms for >3 months, termed persistent post-concussive symptoms (PPCS). Subtle white matter (WM) microstructural damage is thought to underlie neurological and cognitive deficits experienced post-mTBI. Evidence suggests that diffusion magnetic resonance imaging (dMRI) and blood-based biomarkers could be used as surrogate markers of WM organization. We conducted a scoping review according to PRISMA-ScR guidelines, aiming to collate evidence for the use of dMRI and/or blood-based biomarkers of WM organization, in mTBI and PPCS, and document relationships between WM biomarkers and symptoms. We focused specifically on biomarkers of axonal or myelin integrity post-mTBI. Biomarkers excluded from this review therefore included the following: astroglial, perivascular, endothelial, and inflammatory markers. A literature search performed across four databases, EMBASE, Scopus, Google Scholar, and ProQuest, identified 100 records: 68 analyzed dMRI, 28 assessed blood-based biomarkers, and 4 used both. Blood biomarker studies commonly assessed axonal cytoskeleton proteins (i.e., tau); dMRI studies assessed measures of WM organization (i.e., fractional anisotropy). Significant biomarker alterations were frequently associated with heightened symptom burden and prolonged recovery time post-injury. These data suggest that dMRI and blood-based biomarkers may be useful proxies of WM organization, although few studies assessed these complementary measures in parallel, and the relationship between modalities remains unclear. Further studies are warranted to assess the benefit of a combined biomarker approach in evaluating alterations to WM organization after mTBI.
Collapse
Affiliation(s)
- Melissa G Papini
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| | - André N Avila
- Curtin Medical School, Faculty of Health Sciences, Curtin University, Perth, Australia
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Melinda Fitzgerald
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Sarah C Hellewell
- Curtin Health Innovation Research Institute, Curtin University, Perth, Australia
- Perron Institute for Neurological and Translational Science, Perth, Australia
| |
Collapse
|
2
|
Spielman LA, Maruta J, Ghajar J. Dual statistical models link baseline visual attention measure to risk for significant symptomatic concussion in sports. Concussion 2023; 8:CNC112. [PMID: 38855758 PMCID: PMC10945612 DOI: 10.2217/cnc-2023-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 12/01/2023] [Indexed: 06/11/2024] Open
Abstract
Aim Athletic pre-season testing can establish functional baseline for comparison following concussion. Whether impacts of future concussions may be foretold by such testing is little known. Materials & methods Two sets of models for a significant burden of concussion were generated: a traditional approach using a series of logistic regressions, and a penalized regression approach using elastic net. Results 3091 youth and adult athletes were baseline-assessed. 90 subsequently experienced concussion and 35 were still experiencing a significant burden of concussion when tested within two weeks. Both models associated prior history of head injury and visual attention-related metrics with a significant burden of concussion. Conclusion Pre-season testing of visual attention may identify athletes who are at risk for significant sports-related concussion.
Collapse
Affiliation(s)
- Lisa A Spielman
- Department of Rehabilitation & Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jun Maruta
- Department of Rehabilitation & Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | |
Collapse
|
3
|
Dennis EL, Newsome MR, Lindsey HM, Adamson M, Austin TA, Disner SG, Eapen BC, Esopenko C, Franz CE, Geuze E, Haswell C, Hinds SR, Hodges CB, Irimia A, Kenney K, Koerte IK, Kremen WS, Levin HS, Morey RA, Ollinger J, Rowland JA, Scheibel RS, Shenton ME, Sullivan DR, Talbert LD, Thomopoulos SI, Troyanskaya M, Walker WC, Wang X, Ware AL, Werner JK, Williams W, Thompson PM, Tate DF, Wilde EA. Altered lateralization of the cingulum in deployment-related traumatic brain injury: An ENIGMA military-relevant brain injury study. Hum Brain Mapp 2023; 44:1888-1900. [PMID: 36583562 PMCID: PMC9980891 DOI: 10.1002/hbm.26179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/31/2022] Open
Abstract
Traumatic brain injury (TBI) in military populations can cause disruptions in brain structure and function, along with cognitive and psychological dysfunction. Diffusion magnetic resonance imaging (dMRI) can detect alterations in white matter (WM) microstructure, but few studies have examined brain asymmetry. Examining asymmetry in large samples may increase sensitivity to detect heterogeneous areas of WM alteration in mild TBI. Through the Enhancing Neuroimaging Genetics Through Meta-Analysis Military-Relevant Brain Injury working group, we conducted a mega-analysis of neuroimaging and clinical data from 16 cohorts of Active Duty Service Members and Veterans (n = 2598). dMRI data were processed together along with harmonized demographic, injury, psychiatric, and cognitive measures. Fractional anisotropy in the cingulum showed greater asymmetry in individuals with deployment-related TBI, driven by greater left lateralization in TBI. Results remained significant after accounting for potentially confounding variables including posttraumatic stress disorder, depression, and handedness, and were driven primarily by individuals whose worst TBI occurred before age 40. Alterations in the cingulum were also associated with slower processing speed and poorer set shifting. The results indicate an enhancement of the natural left laterality of the cingulum, possibly due to vulnerability of the nondominant hemisphere or compensatory mechanisms in the dominant hemisphere. The cingulum is one of the last WM tracts to mature, reaching peak FA around 42 years old. This effect was primarily detected in individuals whose worst injury occurred before age 40, suggesting that the protracted development of the cingulum may lead to increased vulnerability to insults, such as TBI.
Collapse
Affiliation(s)
- Emily L. Dennis
- Department of NeurologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare SystemSalt Lake CityUtahUSA
| | - Mary R. Newsome
- Michael E. DeBakey Veterans Affairs Medical CenterHoustonTexasUSA
- H. Ben Taub Department of Physical Medicine and RehabilitationBaylor College of MedicineHoustonTexasUSA
| | - Hannah M. Lindsey
- Department of NeurologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare SystemSalt Lake CityUtahUSA
| | - Maheen Adamson
- Rehabilitation DepartmentVA Palo Alto Health Care SystemPalo AltoCaliforniaUSA
- NeurosurgeryStanford School of MedicineStanfordCaliforniaUSA
- Operational Military Exposure Network (WOMEN), VA Palo Alto Healthcare SystemCaliforniaPalo Alto94304USA
| | - Tara A. Austin
- The VA Center of Excellence for Research on Returning War VeteransWacoTexasUSA
| | - Seth G. Disner
- Minneapolis VA Health Care SystemMinneapolisMinnesottaUSA
- Department of Psychiatry and Behavioral SciencesUniversity of Minnesota Medical SchoolMinneapolisMinnesottaUSA
| | - Blessen C. Eapen
- Department of Physical Medicine and RehabilitationVA Greater Los Angeles Health Care SystemLos AngelesCaliforniaUSA
- Department of MedicineDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Carrie Esopenko
- Department of Rehabilitation and Human PerformanceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Carol E. Franz
- Department of PsychiatryUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center for Behavior Genetics of AgingUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Elbert Geuze
- University Medical Center UtrechtUtrechtThe Netherlands
- Brain Research and Innovation CentreMinistry of DefenceUtrechtThe Netherlands
| | - Courtney Haswell
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNorth CarolinaUSA
| | - Sidney R. Hinds
- Department of NeurologyUniformed Services UniversityBethesdaMarylandUSA
| | - Cooper B. Hodges
- Department of Physical Medicine and RehabilitationVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Andrei Irimia
- Ethel Percy Andrus Gerontology Center, Leonard Davis School of GerontologyUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Department of Biomedical EngineeringViterbi School of Engineering, University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Kimbra Kenney
- Department of NeurologyUniformed Services UniversityBethesdaMarylandUSA
- National Intrepid Center of ExcellenceWalter Reed National Military Medical CenterBethesdaMarylandUSA
| | - Inga K. Koerte
- Psychiatry Neuroimaging LaboratoryBrigham and Women's HospitalBostonMassachusettsUSA
- Department of Child and Adolescent Psychiatry, Psychosomatics and PsychotherapyLudwig‐Maximilians‐UniversitätMunichGermany
| | - William S. Kremen
- Department of PsychiatryUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center for Behavior Genetics of AgingUniversity of California, San DiegoLa JollaCaliforniaUSA
- Center of Excellence for Stress and Mental HealthVA San Diego Healthcare SystemLa JollaCaliforniaUSA
| | - Harvey S. Levin
- Michael E. DeBakey Veterans Affairs Medical CenterHoustonTexasUSA
- H. Ben Taub Department of Physical Medicine and RehabilitationBaylor College of MedicineHoustonTexasUSA
| | - Rajendra A. Morey
- Department of Psychiatry and Behavioral SciencesDuke UniversityDurhamNorth CarolinaUSA
- Duke‐UNC Brain Imaging and Analysis CenterDuke UniversityDurhamNorth CarolinaUSA
- VA Mid‐Atlantic Mental Illness Research Education and Clinical Center (MA‐MIRECC)DurhamNorth CarolinaUSA
| | - John Ollinger
- National Intrepid Center of ExcellenceWalter Reed National Military Medical CenterBethesdaMarylandUSA
| | - Jared A. Rowland
- VA Mid‐Atlantic Mental Illness Research Education and Clinical Center (MA‐MIRECC)DurhamNorth CarolinaUSA
- W.G. (Bill) Hefner VA Medical CenterSalisburyNorth CarolinaUSA
- Department of Neurobiology & AnatomyWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Randall S. Scheibel
- Michael E. DeBakey Veterans Affairs Medical CenterHoustonTexasUSA
- H. Ben Taub Department of Physical Medicine and RehabilitationBaylor College of MedicineHoustonTexasUSA
| | - Martha E. Shenton
- Psychiatry Neuroimaging LaboratoryBrigham and Women's HospitalBostonMassachusettsUSA
- VA Boston Healthcare SystemBostonMassachusettsUSA
| | - Danielle R. Sullivan
- National Center for PTSDVA Boston Healthcare SystemBostonMassachusettsUSA
- Department of PsychiatryBoston University School of MedicineBostonMassachusettsUSA
| | - Leah D. Talbert
- Department of PsychologyBrigham Young UniversityProvoUtahUSA
| | - Sophia I. Thomopoulos
- Imaging Genetics CenterStevens Neuroimaging & Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
| | - Maya Troyanskaya
- Michael E. DeBakey Veterans Affairs Medical CenterHoustonTexasUSA
- H. Ben Taub Department of Physical Medicine and RehabilitationBaylor College of MedicineHoustonTexasUSA
| | - William C. Walker
- Department of Physical Medicine and RehabilitationVirginia Commonwealth UniversityRichmondVirginiaUSA
- Hunter Holmes McGuire Veterans Affairs Medical CenterRichmondVirginiaUSA
| | - Xin Wang
- Department of PsychiatryUniversity of ToledoToledoOhioUSA
| | - Ashley L. Ware
- Department of NeurologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- Department of PsychologyGeorgia State UniversityAtlantaGeorgiaUSA
| | - John Kent Werner
- Department of NeurologyUniformed Services UniversityBethesdaMarylandUSA
| | - Wright Williams
- Michael E. DeBakey Veterans Affairs Medical CenterHoustonTexasUSA
| | - Paul M. Thompson
- Imaging Genetics CenterStevens Neuroimaging & Informatics Institute, Keck School of Medicine of USCMarina del ReyCaliforniaUSA
- Departments of Neurology, Pediatrics, Psychiatry, Radiology, Engineering, and OphthalmologyUSCLos AngelesCaliforniaUSA
| | - David F. Tate
- Department of NeurologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare SystemSalt Lake CityUtahUSA
| | - Elisabeth A. Wilde
- Department of NeurologyUniversity of Utah School of MedicineSalt Lake CityUtahUSA
- George E. Wahlen Veterans Affairs Salt Lake City Healthcare SystemSalt Lake CityUtahUSA
- H. Ben Taub Department of Physical Medicine and RehabilitationBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
4
|
Raikes AC, Hernandez GD, Mullins VA, Wang Y, Lopez C, Killgore WDS, Chilton FH, Brinton RD. Effects of docosahexaenoic acid and eicosapentaoic acid supplementation on white matter integrity after repetitive sub-concussive head impacts during American football: Exploratory neuroimaging findings from a pilot RCT. Front Neurol 2022; 13:891531. [PMID: 36188406 PMCID: PMC9521411 DOI: 10.3389/fneur.2022.891531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Context Repetitive sub-concussive head impacts (RSHIs) are common in American football and result in changes to the microstructural integrity of white matter. Both docosahexaenoic acid (DHA) and eicosapentaoic acid (EPA) supplementation exerted neuroprotective effects against RSHIs in animal models and in a prior study in football players supplemented with DHA alone. Objective Here, we present exploratory neuroimaging outcomes from a randomized controlled trial of DHA + EPA supplementation in American football players. We hypothesized that supplementation would result in less white matter integrity loss on diffusion weighted imaging over the season. Design setting participants We conducted a double-blind placebo-controlled trial in 38 American football players between June 2019 and January 2020. Intervention Participants were randomized to the treatment (2.442 g/day DHA and 1.020 g/day EPA) or placebo group for five times-per-week supplementation for 7 months. Of these, 27 participants were included in the neuroimaging data analysis (n = 16 placebo; n = 11 DHA + EPA). Exploratory outcome measures Changes in white matter integrity were quantified using both voxelwise diffusion kurtosis scalars and deterministic tractography at baseline and end of season. Additional neuroimaging outcomes included changes in regional gray matter volume as well as intra-regional, edge-wise, and network level functional connectivity. Serum neurofilament light (NfL) provided a peripheral biomarker of axonal damage. Results No voxel-wise between-group differences were identified on diffusion tensor metrics. Deterministic tractography using quantitative anisotropy (QA) revealed increased structural connectivity in ascending corticostriatal fibers and decreased connectivity in long association and commissural fibers in the DHA+EPA group compared to the placebo group. Serum NfL increases were correlated with increased mean (ρ = 0.47), axial (ρ = 0.44), and radial (ρ = 0.51) diffusivity and decreased QA (ρ = -0.52) in the corpus callosum and bilateral corona radiata irrespective of treatment group. DHA + EPA supplementation did preserve default mode/frontoparietal control network connectivity (g = 0.96, p = 0.024). Conclusions These exploratory findings did not provide strong evidence that DHA + EPA prevented or protected against axonal damage as quantified via neuroimaging. Neuroprotective effects on functional connectivity were observed despite white matter damage. Further studies with larger samples are needed to fully establish the relationship between omega-3 supplementation, RSHIs, and neuroimaging biomarkers. Trial registration ClinicalTrials.gov-NCT04796207.
Collapse
Affiliation(s)
- Adam C. Raikes
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Gerson D. Hernandez
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Veronica A. Mullins
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
| | - Yiwei Wang
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - Claudia Lopez
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| | - William D. S. Killgore
- Social, Cognitive, and Affective Neuroscience Lab, Department of Psychiatry, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Floyd H. Chilton
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
| | - Roberta D. Brinton
- Center for Innovation in Brain Science, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
5
|
Huang W, Hu W, Zhang P, Wang J, Jiang Y, Ma L, Zheng Y, Zhang J. Early Changes in the White Matter Microstructure and Connectome Underlie Cognitive Deficit and Depression Symptoms After Mild Traumatic Brain Injury. Front Neurol 2022; 13:880902. [PMID: 35847204 PMCID: PMC9279564 DOI: 10.3389/fneur.2022.880902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/01/2022] [Indexed: 11/18/2022] Open
Abstract
Cognitive and emotional impairments are frequent among patients with mild traumatic brain injury (mTBI) and may reflect alterations in the brain structural properties. The relationship between microstructural changes and cognitive and emotional deficits remains unclear in patients with mTBI at the acute stage. The purpose of this study was to analyze the alterations in white matter microstructure and connectome of patients with mTBI within 7 days after injury and investigate whether they are related to the clinical questionnaires. A total of 79 subjects (42 mTBI and 37 healthy controls) underwent neuropsychological assessment and diffusion-tensor MRI scan. The microstructure and connectome of white matter were characterized by tract-based spatial statistics (TBSSs) and graph theory approaches, respectively. Mini-mental state examination (MMSE) and self-rating depression scale (SDS) were used to evaluate the cognitive function and depressive symptoms of all the subjects. Patients with mTBI revealed early increases of fractional anisotropy in most areas compared with the healthy controls. Graph theory analyses showed that patients with mTBI had increased nodal shortest path length, along with decreased nodal degree centrality and nodal efficiency, mainly located in the bilateral temporal lobe and right middle occipital gyrus. Moreover, lower nodal shortest path length and higher nodal efficiency of the right middle occipital gyrus were associated with higher SDS scores. Significantly, the strength of the rich club connection in the mTBI group decreased and was associated with the MMSE. Our study demonstrated that the neuroanatomical alterations of mTBI in the acute stage might be an initial step of damage leading to cognitive deficits and depression symptoms, and arguably, these occur due to distinct mechanisms.
Collapse
Affiliation(s)
- Wenjing Huang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Wanjun Hu
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Pengfei Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Jun Wang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Yanli Jiang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Laiyang Ma
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Yu Zheng
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Jing Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
- *Correspondence: Jing Zhang
| |
Collapse
|
6
|
Kim E, Yoo RE, Seong MY, Oh BM. A systematic review and data synthesis of longitudinal changes in white matter integrity after mild traumatic brain injury assessed by diffusion tensor imaging in adults. Eur J Radiol 2021; 147:110117. [PMID: 34973540 DOI: 10.1016/j.ejrad.2021.110117] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/28/2021] [Accepted: 12/20/2021] [Indexed: 01/16/2023]
Abstract
PURPOSE This study aimed to review diffusion tensor imaging studies of mild traumatic brain injury (mTBI) in adults with longitudinal acquisition of data and investigate the variability of findings in association with related factors, such as the time post-injury. METHODS Eligible studies from PubMed and EMBASE were searched to identify relevant studies for review. Of the 540 studies, 23 observational studies without intervention and with the following characteristics were included: original research in which adults with mTBI were examined, diffusion tensor imaging was acquired at least twice, white matter integrity was investigated by estimating diffusion metrics, and mode of injury was not restricted to sport- or blast-related mTBI. RESULTS Baseline scans were acquired within 3 weeks post-injury, followed by longitudinal scans within 3 months and at 12 months post-injury. During the acute/subacute period, mixed results (increase, decrease, or no significant change) of fractional anisotropy (FA) were observed compared to those in controls. Some studies reported increased FA during the acute/subacute period compared to controls, followed by normalization of FA. Decreased FA was also reported during the acute/subacute period, which lasted long into the chronic phase. In the acute phase, the mean diffusivity (MD) was greater than that in the controls. Compared to the early phase of injury, MD was reduced in the follow-up phase in most studies in the mTBI group. Insignificant differences in FA and MD have been reported in several studies. Such variability limits the clinical usefulness of diffusion tensor metrics. CONCLUSIONS There was a high variability in reported changes in white matter integrity. Decreased FA not only in acute/subacute but also in long-term period after injury may indicate long-term neurodegenerative processes after mTBI. Nevertheless, longitudinal changes in MD towards normalization suggest possible recovery. Long-term cohort studies with research initiatives should be considered to elucidate brain changes after mTBI.
Collapse
Affiliation(s)
- Eunkyung Kim
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Roh-Eul Yoo
- Department of Radiology, Seoul National University Hospital and Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Min Yong Seong
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea
| | - Byung-Mo Oh
- Department of Rehabilitation Medicine, Seoul National University Hospital, Seoul, Republic of Korea; Department of Rehabilitation Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; National Traffic Injury Rehabilitation Hospital, Yangpyeong, Republic of Korea.
| |
Collapse
|
7
|
Park G, Suh JH, Han SJ. Transcranial direct current stimulation for balance and gait in repetitive mild traumatic brain injury in rats. BMC Neurosci 2021; 22:26. [PMID: 33865318 PMCID: PMC8052850 DOI: 10.1186/s12868-021-00633-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Balance impairment and lack of postural orientation are serious problems in patients with repetitive mild traumatic brain injury (mTBI). OBJECTIVE To investigate whether anodal transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) can improve balance control and gait in repetitive mTBI rat models. METHODS In this prospective animal study, 65 repetitive mTBI rats were randomly assigned to two groups: the tDCS group and the control group. To create repetitive mTBI model rats, we induced mTBI in the rats for 3 consecutive days. The tDCS group received one session of anodal tDCS over the M1 area 24 h after the third induced mTBI, while the control group did not receive tDCS treatment. Motor-evoked potential (MEP), foot-fault test, and rotarod test were evaluated before mTBI, before tDCS and after tDCS. The Mann-Whitney U test and Wilcoxon signed rank test were used to assess the effects of variables between the two groups. RESULTS Anodal tDCS over the M1 area significantly improved the amplitude of MEP in the tDCS group (p = 0.041). In addition, rotarod duration was significantly increased in the tDCS group (p = 0.001). The foot-fault ratio was slightly lower in the tDCS group, however, this was not statistically significant. CONCLUSION Anodal tDCS at the M1 area could significantly improve the amplitude of MEP and balance function in a repetitive mTBI rat model. We expect that anodal tDCS would have the potential to improve balance in patients with repetitive mTBI.
Collapse
Affiliation(s)
- Gahee Park
- Department of Rehabilitation Medicine, College of Medicine, Ewha Womans University, 1071 An-Yang-Cheon Ro, Yang-Cheon Gu, Seoul, 07985, Republic of Korea
| | - Jee Hyun Suh
- Department of Rehabilitation Medicine, College of Medicine, Ewha Womans University, 1071 An-Yang-Cheon Ro, Yang-Cheon Gu, Seoul, 07985, Republic of Korea. .,Department of Rehabilitation Medicine, Bundang Jesaeng General Hospital, 20, Seohyeon-ro 180 beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, 13590, Republic of Korea.
| | - Soo Jeong Han
- Department of Rehabilitation Medicine, College of Medicine, Ewha Womans University, 1071 An-Yang-Cheon Ro, Yang-Cheon Gu, Seoul, 07985, Republic of Korea
| |
Collapse
|