1
|
Vandelanotte S, De Meyer SF. Acute Ischemic Stroke Thrombus Composition. Neuroscience 2024; 550:11-20. [PMID: 38185279 DOI: 10.1016/j.neuroscience.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/09/2024]
Abstract
Ischemic stroke is caused by a thrombus blocking one or multiple arteries in the brain, resulting in irreversible damage in the associated brain tissue. The aim of therapy is to restore the blood flow as fast as possible. Two recanalization strategies are currently available: pharmacological thrombolysis using recombinant tissue plasminogen activator (rt-PA) and mechanical removal of the thrombus. Despite recent advancements, achieving efficient recanalization remains a challenge. The precise causes of therapy failure are not fully understood but thrombus composition is likely a key factor in successful recanalization. This review explores acute ischemic stroke thrombus composition, its recently identified components, and how it affects stroke treatment. It also discusses how new insights could enhance current recanalization strategies for ischemic stroke patients.
Collapse
Affiliation(s)
| | - Simon F De Meyer
- Laboratory for Thrombosis Research, KU Leuven Kulak, Kortrijk, Belgium.
| |
Collapse
|
2
|
Akkipeddi SMK, Rahmani R, Ellens NR, Kohli GS, Houk C, Schartz DA, Chittaranjan S, Worley L, Gunturi A, Bhalla T, Mattingly TK, Welle K, Morrell CN, Bender MT. Histone content, and thus DNA content, is associated with differential in vitro lysis of acute ischemic stroke clots. J Thromb Haemost 2024; 22:1410-1420. [PMID: 38296159 DOI: 10.1016/j.jtha.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/15/2023] [Accepted: 01/09/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND Fibrin, von Willebrand factor, and extracellular DNA from neutrophil extracellular traps all contribute to acute ischemic stroke thrombus integrity. OBJECTIVES In this study, we explored how the proteomic composition of retrieved thromboemboli relates to susceptibility to lysis with distinct thrombolytics. METHODS Twenty-six retrieved stroke thromboemboli were portioned into 4 segments, with each subjected to 1 hour of in vitro lysis at 37 °C in 1 of 4 solutions: tissue plasminogen activator (tPA), tPA + von Willebrand factor-cleaving ADAMTS-13, tPA + DNA-cleaving deoxyribonuclease (DNase) I, and all 3 enzymes. Lysis, characterized by the percent change in prelysis and postlysis weight, was compared across the solutions and related to the corresponding abundance of proteins identified on mass spectrometry for each of the thromboemboli used in lysis. RESULTS Solutions containing DNase resulted in approximately 3-fold greater thrombolysis than that with the standard-of-care tPA solution (post hoc Tukey, P < .01 for all). DNA content was directly related to lysis in solutions containing DNase (Spearman's ρ > 0.39 and P < .05 for all significant histones) and inversely related to lysis in solutions without DNase (Spearman's ρ < -0.40 and P < .05 for all significant histones). Functional analysis suggests distinct pathways associated with susceptibility to thrombolysis with tPA (platelet-mediated) or DNase (innate immune system-mediated). CONCLUSION This study demonstrates synergy of DNase and tPA in thrombolysis of stroke emboli and points to DNase as a potential adjunct to our currently limited selection of thrombolytics in treating acute ischemic stroke.
Collapse
Affiliation(s)
- Sajal Medha K Akkipeddi
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA. https://twitter.com/SajalAkkipeddi
| | - Redi Rahmani
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Nathaniel R Ellens
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Gurkirat S Kohli
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Clifton Houk
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Derrek A Schartz
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, USA. https://twitter.com/D_SchartzMD
| | - Siddharth Chittaranjan
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Logan Worley
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Aditya Gunturi
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Tarun Bhalla
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Thomas K Mattingly
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Kevin Welle
- Mass Spectrometry Resource Laboratory, University of Rochester Medical Center, Rochester, New York, USA
| | - Craig N Morrell
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Matthew T Bender
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA.
| |
Collapse
|
3
|
Dargazanli C, Blaquière M, Moynier M, de Bock F, Labreuche J, Ter Schiphorst A, Derraz I, Radu RA, Gascou G, Lefevre PH, Rapido F, Fendeleur J, Arquizan C, Bourcier R, Marin P, Machi P, Cagnazzo F, Hirtz C, Costalat V, Marchi N. Inflammation biomarkers in the intracranial blood are associated with outcome in patients with ischemic stroke. J Neurointerv Surg 2024:jnis-2023-021365. [PMID: 38514190 DOI: 10.1136/jnis-2023-021365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/18/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Performing endovascular treatment (EVT) in patients with acute ischemic stroke (AIS) allows a port of entry for intracranial biological sampling. OBJECTIVE To test the hypothesis that specific immune players are molecular contributors to disease, outcome biomarkers, and potential targets for modifying AIS. METHODS We examined 75 subjects presenting with large vessel occlusion of the anterior circulation and undergoing EVT. Intracranial blood samples were obtained by microcatheter aspiration, as positioned for stent deployment. Peripheral blood samples were collected from the femoral artery. Plasma samples were quality controlled by electrophoresis and analyzed using a Mesoscale multiplex for targeted inflammatory and vascular factors. RESULTS We measured 37 protein biomarkers in our sample cohort. Through multivariate analysis, adjusted for age, intravenous thrombolysis, pretreatment National Institutes of Health Stroke Scale and Alberta Stroke Program Early CT scores, we found that post-clot blood levels of interleukin-6 (IL-6) were significantly correlated (adjusted P value <0.05) with disability assessed by the modified Rankin Scale (mRS) score at 90 days, with medium effect size. Chemokine (C-C) ligand 17 CCL17/TARC levels were inversely correlated with the mRS score. Examination of peripheral blood showed that these correlations did not reach statistical significance after correction. Intracranial biomarker IL-6 level was specifically associated with a lower likelihood of favorable outcome, defined as a mRS score of 0-2. CONCLUSIONS Our findings show a signature of blood inflammatory factors at the cerebrovascular occlusion site. The correlations between these acute-stage biomarkers and mRS score outcome support an avenue for add-on and localized immune modulatory strategies in AIS.
Collapse
Affiliation(s)
- Cyril Dargazanli
- Department of Neuroradiology, University Hospital Centre Montpellier, Montpellier, France
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Marine Blaquière
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Marinette Moynier
- Department of Neuroradiology, University Hospital Centre Montpellier, Montpellier, France
| | - Frédéric de Bock
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Julien Labreuche
- Unité Statistique, Évaluation Économique, Data-management, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Adrien Ter Schiphorst
- Department of Neurology, CHRU Gui de Chauliac, University Hospital Centre Montpellier, Montpellier, France
| | - Imad Derraz
- Department of Neuroradiology, University Hospital Centre Montpellier, Montpellier, France
| | - Răzvan Alexandru Radu
- Department of Neuroradiology, University Hospital Centre Montpellier, Montpellier, France
| | - Gregory Gascou
- Department of Neuroradiology, University Hospital Centre Montpellier, Montpellier, France
| | - Pierre Henri Lefevre
- Department of Neuroradiology, University Hospital Centre Montpellier, Montpellier, France
| | - Francesca Rapido
- Department of Anesthesiology and Critical Care Medicine, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| | - Julien Fendeleur
- Department of Anesthesiology and Critical Care Medicine, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| | - Caroline Arquizan
- Department of Neurology, CHRU Gui de Chauliac, University Hospital Centre Montpellier, Montpellier, France
| | - Romain Bourcier
- Department of Neuroradiology, Université de Nantes, Nantes, France
| | - Philippe Marin
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Paolo Machi
- Department of Neuroradiology, Geneva University Hospitals, Geneve, Switzerland
| | - Federico Cagnazzo
- Department of Neuroradiology, University Hospital Centre Montpellier, Montpellier, France
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Vincent Costalat
- Department of Neuroradiology, University Hospital Centre Montpellier, Montpellier, France
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Nicola Marchi
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
4
|
Akkipeddi SMK, Rahmani R, Schartz D, Chittaranjan S, Ellens NR, Kohli GS, Bhalla T, Mattingly TK, Welle K, Morrell CN, Bender MT. Stroke emboli from patients with atrial fibrillation enriched with neutrophil extracellular traps. Res Pract Thromb Haemost 2024; 8:102347. [PMID: 38496712 PMCID: PMC10943055 DOI: 10.1016/j.rpth.2024.102347] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 03/19/2024] Open
Abstract
Background Recent literature has demonstrated remarkable heterogeneity in the composition of acute ischemic stroke (AIS) emboli, which may impact susceptibility to therapy. Objectives In this study, we explored differences in proteomic composition of retrieved embolic material from patients with stroke with and without atrial fibrillation (AF) (AF+ and AF-, respectively). Methods The full proteome of retrieved thromboembolic material from 24 patients with AIS was obtained by mass spectrometry. Known marker proteins were assigned groups representing broad classes of embolus components: red blood cells, platelets, neutrophils, eosinophils, histones, complement, and other clotting-associated proteins (eg, fibrinogen). Relative protein abundances were compared between AF+ and AF- samples. Functional implications of differences were explored with gene set enrichment analysis and Gene Ontology enrichment analysis and visualization tool. Results One hundred sixty-six proteins were differentially expressed between AF+ and AF- specimens. Eight out of the 15 neutrophil proteins (P < .05; fold change, >2) and 4 of the 14 histone proteins were significantly enriched in AF+ emboli (P < .05; fold change, >2). Gene set enrichment analysis revealed a significant representation of proteins from published neutrophil extracellular trap (NET) proteomic gene sets. The most significantly represented functional Gene Ontology pathways in patients with AF involved neutrophil activation and degranulation (P < 1 × 10-7). Conclusion The present analysis suggests enrichment of NETs in emboli of patients with stroke and AF. NETs are a significant though understudied structural component of thrombi. This work suggests not only unique stroke biology in AF but also potential therapeutic targets for AIS in this population.
Collapse
Affiliation(s)
| | - Redi Rahmani
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Derrek Schartz
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, New York, USA
| | - Siddharth Chittaranjan
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Nathaniel R. Ellens
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Gurkirat S. Kohli
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Tarun Bhalla
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Thomas K. Mattingly
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Kevin Welle
- Mass Spectrometry Research Laboratory, University of Rochester Medical Center, Rochester, New York, USA
| | - Craig N. Morrell
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Matthew T. Bender
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
5
|
Schartz D, Akkipeddi SMK, Chittaranjan S, Rahmani R, Gunturi A, Ellens N, Kohli GS, Kessler A, Mattingly T, Morrell C, Bhalla T, Bender MT. CT hyperdense cerebral artery sign reflects distinct proteomic composition in acute ischemic stroke thrombus. J Neurointerv Surg 2023; 15:1264-1268. [PMID: 36878687 DOI: 10.1136/jnis-2022-019937] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 02/17/2023] [Indexed: 03/08/2023]
Abstract
BACKGROUND Hyperdense cerebral artery sign (HCAS) is an imaging biomarker in acute ischemic stroke (AIS) that has been shown to be associated with various clinical outcomes and stroke etiology. While prior studies have correlated HCAS with histopathological composition of cerebral thrombus, it is unknown whether and to what extent HCAS is also associated with distinct clot protein composition. METHODS Thromboembolic material from 24 patients with AIS were retrieved via mechanical thrombectomy and evaluated with mass spectrometry in order to characterize their proteomic composition. Presence (+) or absence (-) of HCAS on preintervention non-contrast head CT was then determined and correlated with thrombus protein signature with abundance of individual proteins calculated as a function HCAS status. RESULTS 24 clots with 1797 distinct proteins in total were identified. 14 patients were HCAS(+) and 10 were HCAS(-). HCAS(+) were most significantly differentially abundant in actin cytoskeletal protein (P=0.002, Z=2.82), bleomycin hydrolase (P=0.007, Z=2.44), arachidonate 12-lipoxygenase (P=0.004, Z=2.60), and lysophospholipase D (P=0.007, Z=2.44), among other proteins; HCAS(-) clots were differentially enriched in soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (P=0.0009, Z=3.11), tyrosine-protein kinase Fyn (P=0.002, Z=2.84), and several complement proteins (P<0.05, Z>1.71 for all), among numerous other proteins. Additionally, HCAS(-) thrombi were enriched in biological processes involved with plasma lipoprotein and protein-lipid remodeling/assembling, and lipoprotein metabolic processes (P<0.001), as well as cellular components including mitochondria (P<0.001). CONCLUSIONS HCAS is reflective of distinct proteomic composition in AIS thrombus. These findings suggest that imaging can be used to identify mechanisms of clot formation or maintenance at the protein level, and might inform future research on thrombus biology and imaging characterization.
Collapse
Affiliation(s)
- Derrek Schartz
- Imaging Sciences, University of Rochester Medical Center, Rochester, New York, USA
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Sajal Medha K Akkipeddi
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Siddharth Chittaranjan
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Redi Rahmani
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Aditya Gunturi
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Nathaniel Ellens
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Gurkirat Singh Kohli
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Alex Kessler
- Imaging Sciences, University of Rochester Medical Center, Rochester, New York, USA
| | - Thomas Mattingly
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Craig Morrell
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, New York, USA
| | - Tarun Bhalla
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| | - Matthew T Bender
- Department of Neurosurgery, University of Rochester Medical Center, Rochester, New York, USA
| |
Collapse
|
6
|
Marto JP, Carvalho AS, G. Mollet I, Mendonça M, Salavisa M, Meira B, Fernandes M, Serrazina F, Cabral G, Ventura R, Sobral‐Pinho A, Beck HC, Vieira HLA, Viana‐Baptista M, Matthiesen R. Proteomics to Identify New Blood Biomarkers for Diagnosing Patients With Acute Stroke. J Am Heart Assoc 2023; 12:e030021. [PMID: 37947097 PMCID: PMC10727303 DOI: 10.1161/jaha.123.030021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
BACKGROUND Blood biomarkers are a potential tool for early stroke diagnosis. We aimed to perform a pilot and exploratory study on untargeted blood biomarkers in patients with suspected stroke by using mass spectrometry analysis. METHODS AND RESULTS This was a prospective observational study of consecutive patients with suspected stroke admitted within 6 hours of last being seen well. Blood samples were collected at admission. Patients were divided into 3 groups: ischemic stroke (IS), intracerebral hemorrhage (ICH), and stroke mimics. Quantitative analysis from mass spectrometry data was performed using a supervised approach. Biomarker-based prediction models were developed to differentiate IS from ICH and ICH+stroke mimics. Models were built aiming to minimize misidentification of patients with ICH as having IS. We included 90 patients, one-third within each subgroup. The median age was 71 years (interquartile range, 57-81 years), and 49 participants (54.4%) were women. In quantitative analysis, C3 (complement component 3), ICAM-2 (intercellular adhesion molecule 2), PLGLA (plasminogen like A), STXBP5 (syntaxin-binding protein 5), and IGHV3-64 (immunoglobulin heavy variable 3-64) were the 5 most significantly dysregulated proteins for both comparisons. Biomarker-based models showed 88% sensitivity and 89% negative predictive value for differentiating IS from ICH, and 75% sensitivity and 95% negative predictive value for differentiating IS from ICH+stroke mimics. ICAM-2, STXBP5, PLGLA, C3, and IGHV3-64 displayed the highest importance score in our models, being the most informative for identifying patients with stroke. CONCLUSIONS In this proof-of-concept and exploratory study, our biomarker-based prediction models, including ICAM-2, STXBP5, PLGLA, C3, and IGHV3-64, showed 75% to 88% sensitivity for identifying patients with IS, while aiming to minimize misclassification of ICH. Although our methodology provided an internal validation, these results still need validation in other cohorts and with different measurement techniques.
Collapse
Affiliation(s)
- João Pedro Marto
- Department of NeurologyHospital de Egas Moniz, Centro Hospitalar Lisboa OcidentalLisbonPortugal
- Centro Clínico Académico de Lisboa (CCAL), NOVA Medical School (MNS)LisbonPortugal
| | - Ana Sofia Carvalho
- iNOVA4Health, NOVA Medical SchoolUniversidade NOVA de LisboaLisbonPortugal
| | - Inês G. Mollet
- iNOVA4Health, NOVA Medical SchoolUniversidade NOVA de LisboaLisbonPortugal
- UCIBIO, Applied Molecular Biosciences Unit, NOVA School of Science and TechnologyUniversidade NOVA de LisboaCaparicaPortugal
- i4HB—Institute for Health and Bioeconomy, NOVA School of Science and TechnologyUniversidade NOVA de LisboaCaparicaPortugal
| | - Marcelo Mendonça
- iNOVA4Health, NOVA Medical SchoolUniversidade NOVA de LisboaLisbonPortugal
- Champalimaud Research and Clinical CentreChampalimaud FoundationLisbonPortugal
| | - Manuel Salavisa
- Department of NeurologyHospital de Egas Moniz, Centro Hospitalar Lisboa OcidentalLisbonPortugal
| | - Bruna Meira
- Department of NeurologyHospital de Egas Moniz, Centro Hospitalar Lisboa OcidentalLisbonPortugal
| | - Marco Fernandes
- Department of NeurologyHospital de Egas Moniz, Centro Hospitalar Lisboa OcidentalLisbonPortugal
| | - Filipa Serrazina
- Department of NeurologyHospital de Egas Moniz, Centro Hospitalar Lisboa OcidentalLisbonPortugal
| | - Gonçalo Cabral
- Department of NeurologyHospital de Egas Moniz, Centro Hospitalar Lisboa OcidentalLisbonPortugal
| | - Rita Ventura
- Department of NeurologyHospital de Egas Moniz, Centro Hospitalar Lisboa OcidentalLisbonPortugal
| | - André Sobral‐Pinho
- Department of NeurologyHospital de Egas Moniz, Centro Hospitalar Lisboa OcidentalLisbonPortugal
| | - Hans C. Beck
- Department of Clinical BiochemistryOdense University HospitalOdenseDenmark
| | - Helena L. A. Vieira
- iNOVA4Health, NOVA Medical SchoolUniversidade NOVA de LisboaLisbonPortugal
- UCIBIO, Applied Molecular Biosciences Unit, NOVA School of Science and TechnologyUniversidade NOVA de LisboaCaparicaPortugal
- i4HB—Institute for Health and Bioeconomy, NOVA School of Science and TechnologyUniversidade NOVA de LisboaCaparicaPortugal
| | - Miguel Viana‐Baptista
- Department of NeurologyHospital de Egas Moniz, Centro Hospitalar Lisboa OcidentalLisbonPortugal
- Centro Clínico Académico de Lisboa (CCAL), NOVA Medical School (MNS)LisbonPortugal
| | - Rune Matthiesen
- iNOVA4Health, NOVA Medical SchoolUniversidade NOVA de LisboaLisbonPortugal
| |
Collapse
|
7
|
Tutino VM, Fricano S, Chien A, Patel TR, Monteiro A, Rai HH, Dmytriw AA, Chaves LD, Waqas M, Levy EI, Poppenberg KE, Siddiqui AH. Gene expression profiles of ischemic stroke clots retrieved by mechanical thrombectomy are associated with disease etiology. J Neurointerv Surg 2023; 15:e33-e40. [PMID: 35750484 PMCID: PMC9789205 DOI: 10.1136/neurintsurg-2022-018898] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/06/2022] [Indexed: 12/26/2022]
Abstract
BACKGROUND Determining stroke etiology is crucial for secondary prevention, but intensive workups fail to classify ~30% of strokes that are cryptogenic. OBJECTIVE To examine the hypothesis that the transcriptomic profiles of clots retrieved during mechanical thrombectomy are unique to strokes of different subtypes. METHODS We isolated RNA from the clots of 73 patients undergoing mechanical thrombectomy. Samples of sufficient quality were subjected to 100-cycle, paired-end RNAseq, and transcriptomes with less than 10 million unique reads were excluded from analysis. Significant differentially expressed genes (DEGs) between subtypes (defined by the Trial of Org 10 172 in Acute Stroke Treatment) were identified by expression analysis in edgeR. Gene ontology enrichment analysis was used to study the biologic differences between stroke etiologies. RESULTS In all, 38 clot transcriptomes were analyzed; 6 from large artery atherosclerosis (LAA), 21 from cardioembolism (CE), 5 from strokes of other determined origin, and 6 from cryptogenic strokes. Among all comparisons, there were 816 unique DEGs, 174 of which were shared by at least two comparisons, and 20 of which were shared by all three. Gene ontology analysis showed that CE clots reflected high levels of inflammation, LAA clots had greater oxidoreduction and T-cell processes, and clots of other determined origin were enriched for aberrant platelet and hemoglobin-related processes. Principal component analysis indicated separation between these subtypes and showed cryptogenic samples clustered among several different groups. CONCLUSIONS Expression profiles of stroke clots were identified between stroke etiologies and reflected different biologic responses. Cryptogenic thrombi may be related to multiple etiologies.
Collapse
Affiliation(s)
- Vincent M Tutino
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, New York, USA
- Department of Pathology and Anatomical Sciences, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
- Department of Neurosurgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
- Department of Mechanical and Aerospace Engineering, University at Buffalo School of Engineering and Applied Sciences, Buffalo, New York, USA
- Department of Biomedical Engineering, University at Buffalo School of Engineering and Applied Sciences, Buffalo, New York, USA
| | - Sarah Fricano
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, New York, USA
- Department of Pathology and Anatomical Sciences, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Aichi Chien
- Department of Radiological Sciences, UCLA, Los Angeles, California, USA
| | - Tatsat R Patel
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, New York, USA
- Department of Mechanical and Aerospace Engineering, University at Buffalo School of Engineering and Applied Sciences, Buffalo, New York, USA
| | - Andre Monteiro
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, New York, USA
- Department of Neurosurgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Hamid H Rai
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, New York, USA
- Department of Neurosurgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Adam A Dmytriw
- Neuroendovascular Program, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Neuroradiology and Neurointervention, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Lee D Chaves
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, New York, USA
- Department of Neurosurgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Muhammad Waqas
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, New York, USA
- Department of Neurosurgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Elad I Levy
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, New York, USA
- Department of Neurosurgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Kerry E Poppenberg
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, New York, USA
- Department of Neurosurgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| | - Adnan H Siddiqui
- Canon Stroke and Vascular Research Center, University at Buffalo, Buffalo, New York, USA
- Department of Neurosurgery, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, New York, USA
| |
Collapse
|
8
|
Costamagna G, Bonato S, Corti S, Meneri M. Advancing Stroke Research on Cerebral Thrombi with Omic Technologies. Int J Mol Sci 2023; 24:ijms24043419. [PMID: 36834829 PMCID: PMC9961481 DOI: 10.3390/ijms24043419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Cerebrovascular diseases represent a leading cause of disability, morbidity, and death worldwide. In the last decade, the advances in endovascular procedures have not only improved acute ischemic stroke care but also conceded a thorough analysis of patients' thrombi. Although early anatomopathological and immunohistochemical analyses have provided valuable insights into thrombus composition and its correlation with radiological features, response to reperfusion therapies, and stroke etiology, these results have been inconclusive so far. Recent studies applied single- or multi-omic approaches-such as proteomics, metabolomics, transcriptomics, or a combination of these-to investigate clot composition and stroke mechanisms, showing high predictive power. Particularly, one pilot studies showed that combined deep phenotyping of stroke thrombi may be superior to classic clinical predictors in defining stroke mechanisms. Small sample sizes, varying methodologies, and lack of adjustments for potential confounders still represent roadblocks to generalizing these findings. However, these techniques hold the potential to better investigate stroke-related thrombogenesis and select secondary prevention strategies, and to prompt the discovery of novel biomarkers and therapeutic targets. In this review, we summarize the most recent findings, overview current strengths and limitations, and present future perspectives in the field.
Collapse
Affiliation(s)
- Gianluca Costamagna
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
- Stroke Unit, Neurology Unit, Neuroscience and Mental Health Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Correspondence:
| | - Sara Bonato
- Stroke Unit, Neurology Unit, Neuroscience and Mental Health Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Stefania Corti
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
- Stroke Unit, Neurology Unit, Neuroscience and Mental Health Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Megi Meneri
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation (DEPT), University of Milan, Via Francesco Sforza 35, 20122 Milan, Italy
- Stroke Unit, Neurology Unit, Neuroscience and Mental Health Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
9
|
Rossi R, Mereuta OM, Barbachan e Silva M, Molina Gil S, Douglas A, Pandit A, Gilvarry M, McCarthy R, O'Connell S, Tierney C, Psychogios K, Tsivgoulis G, Szikora I, Tatlisumak T, Rentzos A, Thornton J, Ó Broin P, Doyle KM. Potential Biomarkers of Acute Ischemic Stroke Etiology Revealed by Mass Spectrometry-Based Proteomic Characterization of Formalin-Fixed Paraffin-Embedded Blood Clots. Front Neurol 2022; 13:854846. [PMID: 35518205 PMCID: PMC9062453 DOI: 10.3389/fneur.2022.854846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/25/2022] [Indexed: 12/31/2022] Open
Abstract
Background and Aims Besides the crucial role in the treatment of acute ischemic stroke (AIS), mechanical thrombectomy represents a unique opportunity for researchers to study the retrieved clots, with the possibility of unveiling biological patterns linked to stroke pathophysiology and etiology. We aimed to develop a shotgun proteomic approach to study and compare the proteome of formalin-fixed paraffin-embedded (FFPE) cardioembolic and large artery atherosclerotic (LAA) clots. Methods We used 16 cardioembolic and 15 LAA FFPE thrombi from 31 AIS patients. The thrombus proteome was analyzed by label-free quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS). MaxQuant v1.5.2.8 and Perseus v.1.6.15.0 were used for bioinformatics analysis. Protein classes were identified using the PANTHER database and the STRING database was used to predict protein interactions. Results We identified 1,581 protein groups as part of the AIS thrombus proteome. Fourteen significantly differentially abundant proteins across the two etiologies were identified. Four proteins involved in the ubiquitin-proteasome pathway, blood coagulation or plasminogen activating cascade were identified as significantly abundant in LAA clots. Ten proteins involved in the ubiquitin proteasome-pathway, cytoskeletal remodeling of platelets, platelet adhesion or blood coagulation were identified as significantly abundant in cardioembolic clots. Conclusion Our results outlined a set of 14 proteins for a proof-of-principle characterization of cardioembolic and LAA FFPE clots, advancing the proteome profile of AIS human thrombi and understanding the pathophysiology of ischemic stroke.
Collapse
Affiliation(s)
- Rosanna Rossi
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, National University of Ireland, Galway, Ireland
- CÚRAM–SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Oana Madalina Mereuta
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, National University of Ireland, Galway, Ireland
- CÚRAM–SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Mariel Barbachan e Silva
- School of Mathematical and Statistical Sciences, National University of Ireland Galway, Galway, Ireland
| | - Sara Molina Gil
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, National University of Ireland, Galway, Ireland
- CÚRAM–SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Andrew Douglas
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, National University of Ireland, Galway, Ireland
- CÚRAM–SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Abhay Pandit
- CÚRAM–SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | | | | | - Shane O'Connell
- School of Mathematical and Statistical Sciences, National University of Ireland Galway, Galway, Ireland
| | - Ciara Tierney
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, National University of Ireland, Galway, Ireland
- CÚRAM–SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | | | - Georgios Tsivgoulis
- Second Department of Neurology, National and Kapodistrian University of Athens, “Attikon” University Hospital, Athens, Greece
| | - István Szikora
- Department of Neurointerventions, National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Turgut Tatlisumak
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Alexandros Rentzos
- Department of Interventional and Diagnostic Neuroradiology, Sahlgrenska University Hospital, University of Gothenburg, Gothenburg, Sweden
| | - John Thornton
- Department of Radiology, Royal College of Surgeons in Ireland, Beaumont Hospital, Dublin, Ireland
| | - Pilib Ó Broin
- School of Mathematical and Statistical Sciences, National University of Ireland Galway, Galway, Ireland
| | - Karen M. Doyle
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, National University of Ireland, Galway, Ireland
- CÚRAM–SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
10
|
van Vliet EA, Marchi N. Neurovascular unit dysfunction as a mechanism of seizures and epilepsy during aging. Epilepsia 2022; 63:1297-1313. [PMID: 35218208 PMCID: PMC9321014 DOI: 10.1111/epi.17210] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 11/30/2022]
Abstract
The term neurovascular unit (NVU) describes the structural and functional liaison between specialized brain endothelium, glial and mural cells, and neurons. Within the NVU, the blood‐brain barrier (BBB) is the microvascular structure regulating neuronal physiology and immune cross‐talk, and its properties adapt to brain aging. Here, we analyze a research framework where NVU dysfunction, caused by acute insults or disease progression in the aging brain, represents a converging mechanism underlying late‐onset seizures or epilepsy and neurological or neurodegenerative sequelae. Furthermore, seizure activity may accelerate brain aging by sustaining regional NVU dysfunction, and a cerebrovascular pathology may link seizures to comorbidities. Next, we focus on NVU diagnostic approaches that could be tailored to seizure conditions in the elderly. We also examine the impending disease‐modifying strategies based on the restoration of the NVU and, more in general, the homeostatic control of anti‐ and pro‐inflammatory players. We conclude with an outlook on current pre‐clinical knowledge gaps and clinical challenges pertinent to seizure onset and conditions in an aging population.
Collapse
Affiliation(s)
- Erwin A van Vliet
- Amsterdam UMC, University of Amsterdam, dept. of (Neuro)pathology, Amsterdam, the Netherlands.,University of Amsterdam, Swammerdam Institute for Life Sciences, Center for Neuroscience, Amsterdam, the Netherlands
| | - Nicola Marchi
- Cerebrovascular and Glia Research, Department of Neuroscience, Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
11
|
Moon MJ, McFadyen JD, Peter K. Caught at the Scene of the Crime: Platelets and Neutrophils Are Conspirators in Thrombosis. Arterioscler Thromb Vasc Biol 2021; 42:63-66. [PMID: 34852641 DOI: 10.1161/atvbaha.121.317187] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mitchell J Moon
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (M.J.M., J.D.M., K.P.).,Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia (M.J.M., J.D.M., K.P.)
| | - James D McFadyen
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (M.J.M., J.D.M., K.P.).,Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia (M.J.M., J.D.M., K.P.).,Department of Clinical Hematology (J.D.M.), The Alfred Hospital, Melbourne, Victoria, Australia.,Departments of Medicine (J.D.M., K.P.), Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Karlheinz Peter
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia (M.J.M., J.D.M., K.P.).,Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia (M.J.M., J.D.M., K.P.).,Department of Cardiology (K.P.), The Alfred Hospital, Melbourne, Victoria, Australia.,Departments of Medicine (J.D.M., K.P.), Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Immunology (K.P.), Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Aliena-Valero A, Baixauli-Martín J, Torregrosa G, Tembl JI, Salom JB. Clot Composition Analysis as a Diagnostic Tool to Gain Insight into Ischemic Stroke Etiology: A Systematic Review. J Stroke 2021; 23:327-342. [PMID: 34649378 PMCID: PMC8521257 DOI: 10.5853/jos.2021.02306] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/24/2021] [Accepted: 09/02/2021] [Indexed: 12/22/2022] Open
Abstract
Mechanical thrombectomy renders the occluding clot available for analysis. Insights into thrombus composition could help establish the stroke cause. We aimed to investigate the value of clot composition analysis as a complementary diagnostic tool in determining the etiology of large vessel occlusion (LVO) ischemic strokes (International Prospective Register of Systematic Reviews [PROSPERO] registration # CRD42020199436). Following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, we ran searches on Medline (using the PubMed interface) and Web of Science for studies reporting analyses of thrombi retrieved from LVO stroke patients subjected to mechanical thrombectomy (January 1, 2006 to September 21, 2020). The PubMed search was updated weekly up to February 22, 2021. Reference lists of included studies and relevant reviews were hand-searched. From 1,714 identified studies, 134 eligible studies (97 cohort studies, 31 case reports, and six case series) were included in the qualitative synthesis. Physical, histopathological, biological, and microbiological analyses provided information about the gross appearance, mechanical properties, structure, and composition of the thrombi. There were non-unanimous associations of thrombus size, structure, and composition (mainly proportions of fibrin and blood formed elements) with the Trial of Org 10172 in Acute Stroke Treatment (TOAST) etiology and underlying pathologies, and similarities between cryptogenic thrombi and those of known TOAST etiology. Individual thrombus analysis contributed to the diagnosis, mainly in atypical cases. Although cohort studies report an abundance of quantitative rates of main thrombus components, a definite clot signature for accurate diagnosis of stroke etiology is still lacking. Nevertheless, the qualitative examination of the embolus remains an invaluable tool for diagnosing individual cases, particularly regarding atypical stroke causes.
Collapse
Affiliation(s)
- Alicia Aliena-Valero
- Joint Cerebrovascular Research Unit, La Fe Health Research Institute, University of Valencia, Valencia, Spain
| | | | - Germán Torregrosa
- Joint Cerebrovascular Research Unit, La Fe Health Research Institute, University of Valencia, Valencia, Spain
| | - José I. Tembl
- Stroke Unit, Neurology Service, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Juan B. Salom
- Joint Cerebrovascular Research Unit, La Fe Health Research Institute, University of Valencia, Valencia, Spain
- Department of Physiology, University of Valencia, Valencia, Spain
| |
Collapse
|
13
|
Abbasi M, Fitzgerald S, Ayers-Ringler J, Espina V, Mueller C, Rucker S, Kadirvel R, Kallmes D, Brinjikji W. Proteomic Analysis of Cardioembolic and Large Artery Atherosclerotic Clots Using Reverse Phase Protein Array Technology Reveals Key Cellular Interactions Within Clot Microenvironments. Cureus 2021; 13:e13499. [PMID: 33777584 PMCID: PMC7990677 DOI: 10.7759/cureus.13499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/20/2021] [Indexed: 01/29/2023] Open
Abstract
Thrombus characteristics are dependent on clot composition, but identification of the etiology based on histological analysis has proved inconclusive. Identification of proteomic signatures may help to differentiate between clots of different etiologies such as cardioembolic, large artery atherosclerotic, and other known etiologies, information that could enhance an individualized medicine approach to secondary stroke prevention. In this study, total protein extracts from cardioembolic (n=25) and large artery atherosclerotic (n=23) thrombus specimens were arrayed in quadruplicate on nitrocellulose slides and immunostained for 31 proteins using a Dako Autostainer (Agilent Technologies, Inc., Santa Clara, USA). We quantified 31 proteins involved in platelet and/or endothelial function, inflammation, oxidative stress, and metabolism. Pathway analysis showed more heterogeneity and protein network interactions in the cardioembolic clots but no specific correlations with clot etiology. Reverse-phase protein arrays are a powerful tool for assessing cellular interactions within the clot microenvironment and may enhance understanding of clot formation and origination. This tool could be further explored to help in identifying stroke etiology in large vessel occlusion patients with embolic stroke of an undetermined source.
Collapse
Affiliation(s)
| | - Sean Fitzgerald
- Physiology, National University of Ireland Galway, Galway, IRL
| | | | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, USA
| | - Claudius Mueller
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, USA
| | - Sally Rucker
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, USA
| | | | | | | |
Collapse
|