1
|
Tobener E, Doettl S, Plyler P, McCaslin D, Lewis J. Effects of Noise Exposure on Video Ocular Counter Roll Measurements. Am J Audiol 2024:1-10. [PMID: 39560604 DOI: 10.1044/2024_aja-24-00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
PURPOSE The purpose of this study was to evaluate the effect of noise exposure on otolith function measures of video ocular counter roll (vOCR), ocular vestibular evoked myogenic potential (oVEMP), cervical VEMP (cVEMP), and subjective visual vertical (SVV). Additionally, this study compared the vOCR results with other otolith function measures: cVEMP, oVEMP, and SVV. METHOD This was a cross-sectional, between-group prospective study that compared otolith function tests between noise exposure groups. Thirty-three adults between the ages of 40-60 years with no middle ear pathology, history of balance disorder, neurologic pathology, systemic diseases, or receiving ototoxic medications were included in the study. Group 1 included 17 adults (34 ears) with low-risk noise exposure, and Group 2 included 16 adults (32 ears) with high-risk noise exposure. Independent samples t tests were used to assess group mean differences for dependent variables. The independent variable was group with two levels (low risk and high risk). The dependent variables were Noise Exposure Structured Interview (NESI) score, vOCR torsion, cVEMP amplitude, oVEMP amplitude, and SVV angle. Additional analyses were completed using Pearson correlation to evaluate the relationship of vOCR to the other otolith function tests and NESI score to the otolith function tests. RESULTS The results indicated significantly decreased vOCR torsion, cVEMP amplitude, and oVEMP amplitude in individuals with high-risk noise exposure compared with those in the low-risk group. Significant correlations were found for NESI scores as well as vOCR and oVEMP measures. CONCLUSIONS This study describes the concomitant degeneration of the auditory and vestibular systems from noise exposure affecting otolith function, as measured by audiologic testing and otolith testing. vOCR appears to be sensitive to this degeneration, indicating that vOCR could be used as a vestibular screening measure for patients with noise exposure and/or suspected utricle dysfunction.
Collapse
Affiliation(s)
- Elizabeth Tobener
- Department of Audiology and Speech Pathology, The University of Tennessee Health Science Center, Knoxville
| | - Steven Doettl
- Department of Audiology and Speech Pathology, The University of Tennessee Health Science Center, Knoxville
| | - Patrick Plyler
- Department of Audiology and Speech Pathology, The University of Tennessee Health Science Center, Knoxville
| | - Devin McCaslin
- Department of Otolaryngology-Head & Neck Surgery, University of Michigan Medical School, Ann Arbor
| | - James Lewis
- Department of Communication Disorders and Sciences, Viterbo University, La Crosse, WI
| |
Collapse
|
2
|
Sánchez-Sellero I, Soto-Varela A. Relationship Between Occupational Exposure to Noise and Vibrations and Vertigo: A Prospective Case-Control Study. J Clin Med 2024; 13:6650. [PMID: 39597794 PMCID: PMC11595169 DOI: 10.3390/jcm13226650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: It is known that balance disorders involve occupational hazards. However, the inverse relationship (between certain occupations and an increased incidence of vertigo or dizziness) has been scarcely studied. The objective of this work was to analyze the occupation of a group of patients with vertigo compared to the economically active general population and to evaluate the prevalence of occupational noise and/or vibration exposure in both groups. Methods: A prospective cross-sectional, observational, case-control study was carried out, including 393 patients (193: Meniere's disease; 63: vestibular migraine; 21: vestibular neuritis; 116: BPPV) (244 women and 149 men). These patients were compared to a control group from the general population obtained from 6th EWCS-Spain (2015). Possible differences regarding sex, age, occupation, exposure to noise, and exposure to mechanical vibrations were analyzed. Results: Differences in the distribution of occupations between patients with vertigo and the general population were observed (Chi-square, p = 4.065 × e-20). Patients with vertigo were significantly more exposed to noise (Fisher's exact test, p = 2.97 × e-10; OR = 2.595, CI95% (1.916;3.515)) and vibrations (Fisher's exact test, p = 6.23 × e-10; OR = 2.722, CI95% (1.963;3.775)) than the control group. These differences were observed both between men and women. Conclusions: A relationship between occupational exposure to noise and/or vibrations and the presence of vertigo was observed. Protective and preventive measures could help prevent the occurrence of some diseases involving vertigo.
Collapse
Affiliation(s)
- Inés Sánchez-Sellero
- Division of Toxicology, Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, and Pediatrics, School of Medicine, Forensic Sciences Institute, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain;
| | - Andrés Soto-Varela
- Division of Neurotology, Department of Otorhinolaryngology, Complexo Hospitalario Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain
- Department of Surgery and Medical-Surgical Specialities, School of Medicine, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Health Research Institute of Santiago (IDIS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
3
|
Berns MP, Nunez GM, Zhang X, Chavan A, Zemlianova K, Mowery TM, Yao JD. Auditory decision-making deficits after permanent noise-induced hearing loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614535. [PMID: 39386692 PMCID: PMC11463679 DOI: 10.1101/2024.09.23.614535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Loud noise exposure is one of the leading causes of permanent hearing loss. Individuals with noise-induced hearing loss (NIHL) suffer from speech comprehension deficits and experience impairments to cognitive functions such as attention and decision-making. Here, we tested whether a specific sensory deficit, NIHL, can directly impair auditory cognitive function. Gerbils were trained to perform an auditory decision-making task that involves discriminating between slow and fast presentation rates of amplitude-modulated (AM) noise. Decision-making task performance was assessed across pre-versus post-NIHL sessions within the same gerbils. A single exposure session (2 hours) to loud broadband noise (120 dB SPL) produced permanent NIHL with elevated threshold shifts in auditory brainstem responses (ABRs). Following NIHL, decision-making task performance was tested at sensation levels comparable to those prior to noise exposure in all animals. Our findings demonstrate NIHL diminished perceptual acuity, reduced attentional focus, altered choice bias, and slowed down evidence accumulation speed. Finally, video-tracking analysis of motor behavior during task performance demonstrates that NIHL can impact sensory-guided decision-based motor execution. Together, these results suggest that NIHL impairs the sensory, cognitive, and motor factors that support auditory decision-making.
Collapse
|
4
|
Hillesheim D, Scharlach RC, da Silva ED, Silva BA, Zucki F. Factors Related to Dizziness in Workers With Noise-Induced Hearing Loss in Brazil. Am J Audiol 2024:1-9. [PMID: 39151101 DOI: 10.1044/2024_aja-24-00066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024] Open
Abstract
OBJECTIVE The purpose of this study was to describe the factors related to dizziness in workers with noise-induced hearing loss in Brazil. METHOD A cross-sectional study was carried out with a sample from noise-induced hearing loss reports (2007-2019). The dependent variable in this study was dizziness, and the independent variables were sociodemographic characteristics, comorbidities, symptoms, and noise characteristics in the work environment. Logistic regression analysis was performed. RESULTS A total of 3,824 individuals with noise-induced hearing loss in Brazil were analyzed. The prevalence of dizziness was 23.4% in the sample. Factors associated with dizziness were women (odds ratio [OR]: 2.10; 95% confidence interval [CI] [1.64, 2.69]), hypertension (OR: 1.68; 95% CI [1.38, 2.06]), headache (OR: 6.31; 95% CI [5.26, 7.57]), tinnitus (OR: 3.46; 95% CI [2.82, 4.25]), and continuous noise at the work environment (OR: 1.54; 95% CI [1.22, 1.94]). CONCLUSIONS The factors associated with the outcome-dizziness-were gender (female), systemic arterial hypertension, headache, tinnitus, and continuous exposure to workplace noise. Such findings demonstrate the importance of promoting a multifactorial approach to understanding dizziness among workers exposed to occupational noise.
Collapse
Affiliation(s)
- Danúbia Hillesheim
- Postgraduate Program in Medical Sciences, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Renata Coelho Scharlach
- Department of Speech-Language Pathology and Audiology, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Eduarda Dandolini da Silva
- Department of Speech-Language Pathology and Audiology, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Bárbara Amaral Silva
- Department of Speech-Language Pathology and Audiology, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Fernanda Zucki
- Department of Speech-Language Pathology and Audiology, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| |
Collapse
|
5
|
Ryu W, Lee S, Park E. The Effect of Training on Localizing HoloLens-Generated 3D Sound Sources. SENSORS (BASEL, SWITZERLAND) 2024; 24:3442. [PMID: 38894232 PMCID: PMC11174390 DOI: 10.3390/s24113442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/21/2024]
Abstract
Sound localization is a crucial aspect of human auditory perception. VR (virtual reality) technologies provide immersive audio platforms that allow human listeners to experience natural sounds based on their ability to localize sound. However, the simulations of sound generated by these platforms, which are based on the general head-related transfer function (HRTF), often lack accuracy in terms of individual sound perception and localization due to significant individual differences in this function. In this study, we aimed to investigate the disparities between the perceived locations of sound sources by users and the locations generated by the platform. Our goal was to determine if it is possible to train users to adapt to the platform-generated sound sources. We utilized the Microsoft HoloLens 2 virtual platform and collected data from 12 subjects based on six separate training sessions arranged in 2 weeks. We employed three modes of training to assess their effects on sound localization, in particular for studying the impacts of multimodal error, visual, and sound guidance in combination with kinesthetic/postural guidance, on the effectiveness of the training. We analyzed the collected data in terms of the training effect between pre- and post-sessions as well as the retention effect between two separate sessions based on subject-wise paired statistics. Our findings indicate that, as far as the training effect between pre- and post-sessions is concerned, the effect is proven to be statistically significant, in particular in the case wherein kinesthetic/postural guidance is mixed with visual and sound guidance. Conversely, visual error guidance alone was found to be largely ineffective. On the other hand, as far as the retention effect between two separate sessions is concerned, we could not find any meaningful statistical implication on the effect for all three error guidance modes out of the 2-week session of training. These findings can contribute to the improvement of VR technologies by ensuring they are designed to optimize human sound localization abilities.
Collapse
Affiliation(s)
- Wonyeol Ryu
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| | - Sukhan Lee
- Artificial Intelligence Department, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Eunil Park
- Department of Intelligent Software, Sungkyunkwan University, Suwon 16419, Republic of Korea;
| |
Collapse
|
6
|
Chand A, Manoharan A, Kumari LR. An Exploratory Study on Self-Reported Auditory Symptoms and Hearing Loss among Workers in a Small-Scale LPG Plant. Indian J Occup Environ Med 2024; 28:94-99. [PMID: 39114100 PMCID: PMC11302531 DOI: 10.4103/ijoem.ijoem_44_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/28/2023] [Accepted: 07/16/2023] [Indexed: 08/10/2024] Open
Abstract
Background Occupational noise is considered a factor contributing to acquired hearing loss (HL) in adults. Frequent noise exposure can cause cochlear damage, leading to sensorineural HL, tinnitus, vertigo, and other non auditory effects as well. Although it is well known that liquefied petroleum gas (LPG) plants in India have become a workplace source for occupational noise pollution exposure, there are not many studies that probe into the auditory effects of workplace noise in LPG plants. Aim The study aims to document HL and self reported otological symptoms in employees with occupational noise exposure at a typical LPG plant in a suburban location in India. 53 employees who reported workplace noise exposure were assessed for HL and self reported auditory symptoms. Method Self reported symptoms were collected using a custom made case history questionnaire, and auditory sensitivity was measured using air conduction audiometers. Results Among the 53 participants, 27 tested positive for HL. A mild degree of HL was frequently observed, followed by a moderate and severe degree of HL. In the self reported otological complaints reported by 31 participants, HL and aural fullness were the most commonly reported auditory symptoms. Additionally, the use of ear protection devices and hearing conservation practices among the participants were poor. Conclusion Hearing loss and self-reported auditory symptoms were present in the study group indicating the effect of occupational noise in the auditory system.
Collapse
Affiliation(s)
- Arya Chand
- Department of Audiology and Speech Language Pathology, National Institute of Speech and Hearing, Trivandrum, Kerala, India
| | - Asha Manoharan
- Department of Audiology and Speech Language Pathology, National Institute of Speech and Hearing, Trivandrum, Kerala, India
| | - L Rejitha Kumari
- Department of Social Work, National Institute of Speech and Hearing, Trivandrum, Kerala, India
| |
Collapse
|
7
|
Saniasiaya J. Role of Video Head Impulse Test to Assess Noise Exposure. Indian J Otolaryngol Head Neck Surg 2024; 76:1461-1463. [PMID: 38440558 PMCID: PMC10909013 DOI: 10.1007/s12070-023-04244-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/21/2023] [Indexed: 03/06/2024] Open
Abstract
Noise exposure has been reported to exert numerous detrimental effects on the human population, although most research has centred around hearing damage. Vestibular and balance loss have been demonstrated among industrial workers, although reports on this are still scarce. Vestibular loss increases the risk of falls, especially among industrial workers who are at constant risk. Nonetheless, the ideal investigation tool to investigate vestibular function remains unknown. We aim to review the available literature to elucidate the effect of noise exposure on semicircular canals using a video head impulse test (vHIT). A literature search identified only three studies involving 137 patients (mean age: 44.4). Semicircular canal deficit was found in 50.4% of the included participants, with lateral canal predominantly affected (71%). We highlight the importance of assessing the effect of noise exposure on vestibular function, especially among those prone to occupation-related vestibular loss.
Collapse
Affiliation(s)
- Jeyasakthy Saniasiaya
- Department of Otorhinolaryngology, Faculty of Medicine, Universiti Malaya, Jalan Universiti, Kuala Lumpur, Wilayah Persekutuan Kuala Lumpur 50603 Malaysia
| |
Collapse
|
8
|
Hoppes CW, Lambert KH, Whitney SL, Erbele ID, Esquivel CR, Yuan TT. Leveraging Technology for Vestibular Assessment and Rehabilitation in the Operational Environment: A Scoping Review. Bioengineering (Basel) 2024; 11:117. [PMID: 38391603 PMCID: PMC10886105 DOI: 10.3390/bioengineering11020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
INTRODUCTION The vestibular system, essential for gaze and postural stability, can be damaged by threats on the battlefield. Technology can aid in vestibular assessment and rehabilitation; however, not all devices are conducive to the delivery of healthcare in an austere setting. This scoping review aimed to examine the literature for technologies that can be utilized for vestibular assessment and rehabilitation in operational environments. MATERIALS AND METHODS A comprehensive search of PubMed was performed. Articles were included if they related to central or peripheral vestibular disorders, addressed assessment or rehabilitation, leveraged technology, and were written in English. Articles were excluded if they discussed health conditions other than vestibular disorders, focused on devices or techniques not conducive to the operational environment, or were written in a language other than English. RESULTS Our search strategy yielded 32 articles: 8 articles met our inclusion and exclusion criteria whereas the other 24 articles were rejected. DISCUSSION There is untapped potential for leveraging technology for vestibular assessment and rehabilitation in the operational environment. Few studies were found in the peer-reviewed literature that described the application of technology to improve the identification of central and/or peripheral vestibular system impairments; triage of acutely injured patients; diagnosis; delivery and monitoring of rehabilitation; and determination of readiness for return to duty. CONCLUSIONS This scoping review highlighted technology for vestibular assessment and rehabilitation feasible for use in an austere setting. Such technology may be leveraged for prevention; monitoring exposure to mechanisms of injury; vestibular-ocular motor evaluation; assessment, treatment, and monitoring of rehabilitation progress; and return-to-duty determination after vestibular injury. FUTURE DIRECTIONS The future of vestibular assessment and rehabilitation may be shaped by austere manufacturing and 3D printing; artificial intelligence; drug delivery in combination with vestibular implantation; organ-on-chip and organoids; cell and gene therapy; and bioprinting.
Collapse
Affiliation(s)
- Carrie W Hoppes
- Army-Baylor University Doctoral Program in Physical Therapy, 3630 Stanley Road, Joint Base San Antonio-Fort Sam Houston, TX 78234, USA
| | - Karen H Lambert
- Hearing Center of Excellence, 2200 Bergquist Drive, Lackland Air Force Base, TX 78236, USA
| | - Susan L Whitney
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, University of Pittsburgh, Bridgeside Point 1, 100 Technology Drive, Pittsburgh, PA 15219, USA
| | - Isaac D Erbele
- Department of Otolaryngology-Head and Neck Surgery, San Antonio Uniformed Services Health Education Consortium, Brooke Army Medical Center, 3551 Roger Brooke Drive, Joint Base San Antonio-Fort Sam Houston, TX 78234, USA
- Department of Surgery, School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Carlos R Esquivel
- Wilford Hall Ambulatory Surgical Center, 2200 Bergquist Drive, Lackland Air Force Base, TX 78236, USA
| | - Tony T Yuan
- Department of Radiology and Radiological Sciences, School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| |
Collapse
|
9
|
Smith LJ, Wilkinson D, Bodani M, Surenthiran SS. Cognition in vestibular disorders: state of the field, challenges, and priorities for the future. Front Neurol 2024; 15:1159174. [PMID: 38304077 PMCID: PMC10830645 DOI: 10.3389/fneur.2024.1159174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024] Open
Abstract
Vestibular disorders are prevalent and debilitating conditions of the inner ear and brain which affect balance, coordination, and the integration of multisensory inputs. A growing body of research has linked vestibular disorders to cognitive problems, most notably attention, visuospatial perception, spatial memory, and executive function. However, the mechanistic bases of these cognitive sequelae remain poorly defined, and there is a gap between our theoretical understanding of vestibular cognitive dysfunction, and how best to identify and manage this within clinical practice. This article takes stock of these shortcomings and provides recommendations and priorities for healthcare professionals who assess and treat vestibular disorders, and for researchers developing cognitive models and rehabilitation interventions. We highlight the importance of multidisciplinary collaboration for developing and evaluating clinically relevant theoretical models of vestibular cognition, to advance research and treatment.
Collapse
Affiliation(s)
- Laura J. Smith
- Centre for Preventative Neurology, Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom
- School of Psychology, Keynes College, University of Kent, Kent, United Kingdom
| | - David Wilkinson
- School of Psychology, Keynes College, University of Kent, Kent, United Kingdom
| | - Mayur Bodani
- School of Psychology, Keynes College, University of Kent, Kent, United Kingdom
| | | |
Collapse
|
10
|
Cacace AT, Berri B. Blast Overpressures as a Military and Occupational Health Concern. Am J Audiol 2023; 32:779-792. [PMID: 37713532 DOI: 10.1044/2023_aja-23-00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2023] Open
Abstract
PURPOSE This tutorial reviews effects of environmental stressors like blast overpressures and other well-known acoustic contaminants (continuous, intermittent, and impulsive noise) on hearing, tinnitus, vestibular, and balance-related functions. Based on the overall outcome of these effects, detailed consideration is given to the health and well-being of individuals. METHOD Because hearing loss and tinnitus are consequential in affecting quality of life, novel neuromodulation paradigms are reviewed for their positive abatement and treatment-related effects. Examples of clinical data, research strategies, and methodological approaches focus on repetitive transcranial magnetic stimulation (rTMS) and electrical stimulation of the vagus nerve paired with tones (VNSt) for their unique contributions to this area. RESULTS Acoustic toxicants transmitted through the atmosphere are noteworthy for their propensity to induce hearing loss and tinnitus. Mounting evidence also indicates that high-level rapid onset changes in atmospheric sound pressure can significantly impact vestibular and balance function. Indeed, the risk of falling secondary to loss of, or damage to, sensory receptor cells in otolith organs (utricle and saccule) is a primary reason for this concern. As part of the complexities involved in VNSt treatment strategies, vocal dysfunction may also manifest. In addition, evaluation of temporospatial gait parameters is worthy of consideration based on their ability to detect and monitor incipient neurological disease, cognitive decline, and mortality. CONCLUSION Highlighting these respective areas underscores the need to enhance information exchange among scientists, clinicians, and caregivers on the benefits and complications of these outcomes.
Collapse
Affiliation(s)
- Anthony T Cacace
- Department of Communication Sciences & Disorders, Wayne State University, Detroit, MI
| | - Batoul Berri
- Department of Communication Sciences & Disorders, Wayne State University, Detroit, MI
- Department of Otolaryngology, University of Michigan, Ann Arbor
| |
Collapse
|
11
|
Talian DS, Eitel MM, Zion DJ, Kuchinsky SE, French LM, Brickell TA, Lippa SM, Lange RT, Brungart DS. Normative Ranges for, and Interrater Reliability of, Rotational Vestibular and Balance Tests in U.S. Military Service Members and Veterans. Am J Audiol 2023; 32:694-705. [PMID: 36796026 DOI: 10.1044/2022_aja-22-00128] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
PURPOSE The objectives of this study were to (a) describe normative ranges-expressed as reference intervals (RIs)-for vestibular and balance function tests in a cohort of Service Members and Veterans (SMVs) and (b) to describe the interrater reliability of these tests. METHOD As part of the Defense and Veterans Brain Injury Center (DVBIC)/Traumatic Brain Injury Center of Excellence 15-year Longitudinal Traumatic Brain Injury (TBI) Study, participants completed the following: vestibulo-ocular reflex suppression, visual-vestibular enhancement, subjective visual vertical, subjective visual horizontal, sinusoidal harmonic acceleration, the computerized rotational head impulse test (crHIT), and the sensory organization test. RIs were calculated using nonparametric methods and interrater reliability was assessed using intraclass correlation coefficients between three audiologists who independently reviewed and cleaned the data. RESULTS Reference populations for each outcome measure comprised 40 to 72 individuals, 19 to 61 years of age, who served either as noninjured controls (NIC) or injured controls (IC) in the 15-year study; none had a history of TBI or blast exposure. A subset of 15 SMVs from the NIC, IC, and TBI groups were included in the interrater reliability calculations. RIs are reported for 27 outcome measures from the seven rotational vestibular and balance tests. Interrater reliability was considered excellent for all tests except the crHIT, which was found to have good interrater reliability. CONCLUSION This study provides clinicians and scientists with important information regarding normative ranges and interrater reliability for rotational vestibular and balance tests in SMVs.
Collapse
Affiliation(s)
- Daniel S Talian
- Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, MD
- Department of Hearing, Speech and Language Sciences, Gallaudet University, Washington, DC
| | - Megan M Eitel
- Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, MD
- Traumatic Brain Injury Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD
| | - Danielle J Zion
- Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, MD
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD
| | - Stefanie E Kuchinsky
- Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, MD
| | - Louis M French
- Traumatic Brain Injury Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD
- Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Tracey A Brickell
- Traumatic Brain Injury Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD
- Department of Psychiatry, Uniformed Services University of the Health Sciences, Bethesda, MD
| | - Sara M Lippa
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD
| | - Rael T Lange
- Traumatic Brain Injury Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
- General Dynamics Information Technology, Silver Spring, MD
| | - Douglas S Brungart
- Audiology and Speech Pathology Center, Walter Reed National Military Medical Center, Bethesda, MD
| |
Collapse
|
12
|
Snapp HA, Vanlooy L, Kuzbyt B, Kolberg C, Laffitte-Lopez D, Rajguru S. Peripheral vestibular loss in noise-exposed firefighters. Front Integr Neurosci 2023; 17:1236661. [PMID: 37849955 PMCID: PMC10577377 DOI: 10.3389/fnint.2023.1236661] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/25/2023] [Indexed: 10/19/2023] Open
Abstract
Introduction Occupational workers are increasingly aware of the risk of noise overexposure to the auditory system but lack awareness about potential risks to the vestibular system. The purpose of this study was to investigate changes in vestibular end organ function in a known at-risk noise-exposed population, firefighters compared to age- and sex-matched controls using electrophysiologic measures of cervical vestibular evoked myogenic potentials (cVEMP). Methods A cross-sectional observational study compared cVEMP response characteristics in 38 noise-exposed firefighters. Firefighters were grouped by years of exposure in the fire service. The cVEMP responses were compared within firefighter groups and between firefighters and age- and sex-matched controls. Dependent variables included the response characteristics of amplitude, latency and threshold. Results cVEMP response amplitudes were significantly decreased in firefighters compared to their age- and sex-matched controls. Threshold of the cVEMP responses were significantly higher in firefighters compared to controls and firefighters had a higher incidence of absent cVEMP responses compared to controls. Response amplitudes decreased with increasing years in the fire-service at an increased rate compared to their age- and sex-matched controls. Latency of the cVEMP response was not significantly different in firefighters compared to controls. These findings are consistent with both animal and human studies suggesting noise-induced changes in the sacculocollic pathway. Discussion In the absence of any reported vestibular symptoms or auditory indicators of noise-induced hearing loss, these early effects on the vestibular system point to a potential hidden vestibular loss.
Collapse
Affiliation(s)
- Hillary Anne Snapp
- Department of Otolaryngology, University of Miami, Miami, FL, United States
| | - Lindsey Vanlooy
- Department of Otolaryngology, University of Miami, Miami, FL, United States
| | - Brianna Kuzbyt
- Department of Otolaryngology, University of Miami, Miami, FL, United States
| | - Courtney Kolberg
- Department of Otolaryngology, University of Miami, Miami, FL, United States
| | | | - Suhrud Rajguru
- Department of Otolaryngology, University of Miami, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
- Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, United States
| |
Collapse
|
13
|
Raciti FM, Morales Y, Snapp HA, Rajguru SM. A reliable and reproducible protocol for sound-evoked vestibular myogenic potentials in rattus norvegicus. Front Integr Neurosci 2023; 17:1236642. [PMID: 37731913 PMCID: PMC10508189 DOI: 10.3389/fnint.2023.1236642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Introduction Cervical vestibular evoked myogenic potentials (cVEMPs) provide an objective measure of the integrity of the sacculo-collic pathway leading to their widespread use as a clinical tool in the diagnostic vestibular test battery. Though the application of cVEMPs in preclinical models to assess vestibular function, as performed in relevant clinical populations, remains limited. The present study aimed to establish a rodent model of cVEMP with standardized methods and protocols, examine the neural basis of the responses, and characterize and validate important features for interpretation and assessment of vestibular function. Methods We compared air-conducted sound (ACS)-evoked VEMPs from the sternocleidomastoid muscles in naïve Brown Norway rats. A custom setup facilitated repeatable and reliable measurements which were carried out at multiple intensities with ACS between 1 and 16 kHz and over 7 days. The myogenic potentials were identified by the presence of a positive (P1)-negative (N1) waveform at 3-5 ms from the stimulus onset. Threshold, amplitude, and latency were compared with intensity- and frequency-matched responses within and between animals. Results cVEMP responses were repeatedly evoked with stimulus intensities between 50-100 dB SPL with excellent test-retest reliability and across multiple measurements over 7 days for all frequencies tested. Suprathreshold, cVEMP responses at 90 dB SPL for 6-10 kHz stimuli demonstrated significantly larger amplitudes (p < 0.01) and shorter latencies (p < 0.001) compared to cVEMP responses for 1-4 kHz stimuli. Latency of cVEMP showed sex-dependent variability, but no significant differences in threshold or amplitude between males and females was observed. Discussion The results provide a replicable and reliable setup, test protocol, and comprehensive characterization of cVEMP responses in a preclinical model which can be used in future studies to elucidate pathophysiological characteristics of vestibular dysfunctions or test efficacy of therapeutics.
Collapse
Affiliation(s)
- Federica M. Raciti
- Department of Otolaryngology, University of Miami, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Yasniary Morales
- Department of Otolaryngology, University of Miami, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Hillary A. Snapp
- Department of Otolaryngology, University of Miami, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
| | - Suhrud M. Rajguru
- Department of Otolaryngology, University of Miami, Miami, FL, United States
- Department of Biomedical Engineering, University of Miami, Miami, FL, United States
- Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, FL, United States
| |
Collapse
|
14
|
Manno FAM, Cheung P, Basnet V, Khan MS, Mao Y, Pan L, Ma V, Cho WC, Tian S, An Z, Feng Y, Cai YL, Pienkowski M, Lau C. Subtle alterations of vestibulomotor functioning in conductive hearing loss. Front Neurosci 2023; 17:1057551. [PMID: 37706156 PMCID: PMC10495589 DOI: 10.3389/fnins.2023.1057551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 06/08/2023] [Indexed: 09/15/2023] Open
Abstract
Introduction Conductive hearing loss (CHL) attenuates the ability to transmit air conducted sounds to the ear. In humans, severe hearing loss is often accompanied by alterations to other neural systems, such as the vestibular system; however, the inter-relations are not well understood. The overall goal of this study was to assess vestibular-related functioning proxies in a rat CHL model. Methods Male Sprague-Dawley rats (N=134, 250g, 2months old) were used in a CHL model which produced a >20dB threshold shift induced by tympanic membrane puncture. Auditory brainstem response (ABRs) recordings were used to determine threshold depth at different times before and after CHL. ABR threshold depths were assessed both manually and by an automated ABR machine learning algorithm. Vestibular-related functioning proxy assessment was performed using the rotarod, balance beam, elevator vertical motion (EVM) and Ferris-wheel rotation (FWR) assays. Results The Pre-CHL (control) threshold depth was 27.92dB±11.58dB compared to the Post-CHL threshold depth of 50.69dB±13.98dB (mean±SD) across the frequencies tested. The automated ABR machine learning algorithm determined the following threshold depths: Pre-CHL=24.3dB, Post-CHL same day=56dB, Post-CHL 7 days=41.16dB, and Post-CHL 1 month=32.5dB across the frequencies assessed (1, 2, 4, 8, 16, and 32kHz). Rotarod assessment of motor function was not significantly different between pre and post-CHL (~1week) rats for time duration (sec) or speed (RPM), albeit the former had a small effect size difference. Balance beam time to transverse was significantly longer for post-CHL rats, likely indicating a change in motor coordination. Further, failure to cross was only noted for CHL rats. The defection count was significantly reduced for CHL rats compared to control rats following FWR, but not EVM. The total distance traveled during open-field examination after EVM was significantly different between control and CHL rats, but not for FWR. The EVM is associated with linear acceleration (acting in the vertical plane: up-down) stimulating the saccule, while the FWR is associated with angular acceleration (centrifugal rotation about a circular axis) stimulating both otolith organs and semicircular canals; therefore, the difference in results could reflect the specific vestibular-organ functional role. Discussion Less movement (EVM) and increase time to transverse (balance beam) may be associated with anxiety and alterations to defecation patterns (FWR) may result from autonomic disturbances due to the impact of hearing loss. In this regard, vestibulomotor deficits resulting in changes in balance and motion could be attributed to comodulation of auditory and vestibular functioning. Future studies should manipulate vestibular functioning directly in rats with CHL.
Collapse
Affiliation(s)
- Francis A. M. Manno
- Department of Physics, East Carolina University, Greenville, NC, United States
- Department of Biomedical Engineering, Center for Imaging Science, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Pikting Cheung
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Vardhan Basnet
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | | | - Yuqi Mao
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Leilei Pan
- Department of Nautical Injury Prevention, Faculty of Navy Medicine, Second Military Medical University, Shanghai, China
| | - Victor Ma
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| | - Shile Tian
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Ziqi An
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing and Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yi-Ling Cai
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Martin Pienkowski
- Osborne College of Audiology, Salus University, Elkins Park, PA, United States
| | - Condon Lau
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Kowloon, Hong Kong SAR, China
- Department of Physics, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
15
|
Tighilet B, Trico J, Xavier F, Chabbert C. [Animal models of balance pathologies: New tools to study peripheral vestibulopathies]. Med Sci (Paris) 2023; 39:632-642. [PMID: 37695153 DOI: 10.1051/medsci/2023097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023] Open
Abstract
The different types of peripheral vestibulopathies (PVs) or peripheral vestibular disorders (PVDs) are essentially diagnosed on the basis of their clinical expression. The heterogeneity of vestibular symptoms makes it difficult to stratify patients for therapeutic management. Animal models of PVs are a good mean to search for clinical evaluation criteria allowing to objectively analyze the kinetics of expression of the vertigo syndrome and to evaluate the benefits of therapeutic strategies, whether they are pharmacological or rehabilitative. The question of the predictability of these animal models is therefore crucial for the identification of behavioral and biological biomarkers that could then be used in the human clinic. In this review, we propose an overview of the different animal models of PVs, and discuss their relevance for the understanding of the underlying pathophysiological mechanisms and the development of new and more targeted therapeutic approaches.
Collapse
Affiliation(s)
- Brahim Tighilet
- Aix Marseille université-CNRS, Laboratoire de neurosciences cognitives, LNC UMR 7291, Marseille, France - Groupements de recherche (GDR) Vertige, Unité CNRS GDR2074, Marseille, France
| | - Jessica Trico
- Aix Marseille université-CNRS, Laboratoire de neurosciences cognitives, LNC UMR 7291, Marseille, France - Groupements de recherche (GDR) Vertige, Unité CNRS GDR2074, Marseille, France
| | - Frédéric Xavier
- Aix Marseille université-CNRS, Laboratoire de neurosciences cognitives, LNC UMR 7291, Marseille, France - Groupements de recherche (GDR) Vertige, Unité CNRS GDR2074, Marseille, France
| | - Christian Chabbert
- Aix Marseille université-CNRS, Laboratoire de neurosciences cognitives, LNC UMR 7291, Marseille, France - Groupements de recherche (GDR) Vertige, Unité CNRS GDR2074, Marseille, France
| |
Collapse
|
16
|
Emami SF. Central Representation of Cervical Vestibular Evoked Myogenic Potentials. Indian J Otolaryngol Head Neck Surg 2023; 75:1-7. [PMID: 37362135 PMCID: PMC10163579 DOI: 10.1007/s12070-023-03829-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 06/28/2023] Open
Abstract
Sensitivity of vestibular system to sounds (SVSS) can be measureable by cervical vestibular evoked myogenic potentials (cVEMPs). The aim of this study is to investigate central representation of vestibular system sensitivity to sound. The research was conducted in 2022-2023 by searching English language databases. The criterion for selecting documents was their overlap with the aim of this work. The animals studies were not included. The saccule is stimulated by sounds, that are transmitted through air and bone conduction. Utricle and semicircular canals are activated only by the vibrations. The afferent nerve fibers of the vestibular system project to the temporal, frontal, parietal, primary visual cortex, insula and the cingulate cortex. There is a relationship between normal results of the cVEMPs and these parameters. Improved phonemes recognition scores and word recognition scores in white noise, the efficiency of auditory training, incraed amplitude of the auditory brainstem responses to 500 HZ tone burst. Learning the first words is not only based on the hearing and other senses participate. The auditory object is a three-dimensional imaging in people's minds, when they hear a word. The words expressed by a speaker create different auditory objects in people's minds. Each of these auditory objects has its own color, shape, aroma and characteristics. For the formation of the auditory objects, all senses and whole areas of the brain contribute. Like other senses, central representation of vestibular system sensitivity to sound are also involved in the formation of auditory objects.
Collapse
Affiliation(s)
- Seyede Faranak Emami
- Department of Audiology, School of Rehabilitation Sciences, Hearing Disorder Research Center, Hamadan University of Medical Sciences, Hamedan, Iran
| |
Collapse
|
17
|
Lacquaniti F, La Scaleia B, Zago M. Noise and vestibular perception of passive self-motion. Front Neurol 2023; 14:1159242. [PMID: 37181550 PMCID: PMC10169592 DOI: 10.3389/fneur.2023.1159242] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 03/29/2023] [Indexed: 05/16/2023] Open
Abstract
Noise defined as random disturbances is ubiquitous in both the external environment and the nervous system. Depending on the context, noise can degrade or improve information processing and performance. In all cases, it contributes to neural systems dynamics. We review some effects of various sources of noise on the neural processing of self-motion signals at different stages of the vestibular pathways and the resulting perceptual responses. Hair cells in the inner ear reduce the impact of noise by means of mechanical and neural filtering. Hair cells synapse on regular and irregular afferents. Variability of discharge (noise) is low in regular afferents and high in irregular units. The high variability of irregular units provides information about the envelope of naturalistic head motion stimuli. A subset of neurons in the vestibular nuclei and thalamus are optimally tuned to noisy motion stimuli that reproduce the statistics of naturalistic head movements. In the thalamus, variability of neural discharge increases with increasing motion amplitude but saturates at high amplitudes, accounting for behavioral violation of Weber's law. In general, the precision of individual vestibular neurons in encoding head motion is worse than the perceptual precision measured behaviorally. However, the global precision predicted by neural population codes matches the high behavioral precision. The latter is estimated by means of psychometric functions for detection or discrimination of whole-body displacements. Vestibular motion thresholds (inverse of precision) reflect the contribution of intrinsic and extrinsic noise to perception. Vestibular motion thresholds tend to deteriorate progressively after the age of 40 years, possibly due to oxidative stress resulting from high discharge rates and metabolic loads of vestibular afferents. In the elderly, vestibular thresholds correlate with postural stability: the higher the threshold, the greater is the postural imbalance and risk of falling. Experimental application of optimal levels of either galvanic noise or whole-body oscillations can ameliorate vestibular function with a mechanism reminiscent of stochastic resonance. Assessment of vestibular thresholds is diagnostic in several types of vestibulopathies, and vestibular stimulation might be useful in vestibular rehabilitation.
Collapse
Affiliation(s)
- Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Systems Medicine, Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy
| | - Barbara La Scaleia
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Myrka Zago
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Civil Engineering and Computer Science Engineering, Centre of Space Bio-medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
18
|
Nadri H, Khavanin A, Kim IJ, Akbari M, Nadri F. Association between Simultaneous Occurrence of Occupational Noise-Induced Hearing Loss and Noise-Induced Vestibular Dysfunction: A Systematic Review. IRANIAN JOURNAL OF PUBLIC HEALTH 2023; 52:683-694. [PMID: 37551182 PMCID: PMC10404310 DOI: 10.18502/ijph.v52i4.12436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/19/2022] [Indexed: 08/09/2023]
Abstract
Background Background: Because of functional and structural similarities between the cochlea and vestibular sensory receptors, vestibular dysfunction could be accompanied by noise-induced hearing loss (NIHL) due to occupational noise exposure. We aimed to evaluate the occurrence of vestibular dysfunction (VD) in individuals with NIHL and occupational noise exposure. Methods A systematic literature research was carried out within the databases of PubMed, Scopus, Science Direct, and Web of Science for published articles between 1980 and Jan 5, 2023 using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The methodological quality of the included systematic reviews was assessed with the Joanna Briggs Institute (JBI) checklist. Vestibular system dysfunction parameters were considered as primary outcomes in subjects with NIHL. Results We reviewed the evidence (from 19 eligible articles) for VD from noise-induced damage to peripheral vestibular structures. VD can occur after occupational noise exposure or concomitantly with NIHL. Furthermore, this study showed that the saccular organ has a higher susceptibility to noise damage than the vestibular organs of the utricle and semicircular canals (SCCs). Conclusion Our results support the role of occupational noise exposure and NIHL as risk factors for developing VD. Further research is needed to investigate the association between the occurrence of VD due to occupational noise exposure or concomitantly with NIHL.
Collapse
Affiliation(s)
- Hamed Nadri
- Department of Occupational Health Engineering, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Ali Khavanin
- Department of Occupational Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - In-Ju Kim
- Department of Industrial Engineering and Engineering Management, College of Engineering, University of Sharjah, Sharjah, United Arab Emirates
| | - Mehdi Akbari
- Department of Audiology, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Farshad Nadri
- Department of Occupational Health Engineering, Faculty of Health, Kermanshah Medical Sciences University, Kermanshah, Iran
| |
Collapse
|
19
|
Natarajan N, Batts S, Stankovic KM. Noise-Induced Hearing Loss. J Clin Med 2023; 12:2347. [PMID: 36983347 PMCID: PMC10059082 DOI: 10.3390/jcm12062347] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Noise-induced hearing loss (NIHL) is the second most common cause of sensorineural hearing loss, after age-related hearing loss, and affects approximately 5% of the world's population. NIHL is associated with substantial physical, mental, social, and economic impacts at the patient and societal levels. Stress and social isolation in patients' workplace and personal lives contribute to quality-of-life decrements which may often go undetected. The pathophysiology of NIHL is multifactorial and complex, encompassing genetic and environmental factors with substantial occupational contributions. The diagnosis and screening of NIHL are conducted by reviewing a patient's history of noise exposure, audiograms, speech-in-noise test results, and measurements of distortion product otoacoustic emissions and auditory brainstem response. Essential aspects of decreasing the burden of NIHL are prevention and early detection, such as implementation of educational and screening programs in routine primary care and specialty clinics. Additionally, current research on the pharmacological treatment of NIHL includes anti-inflammatory, antioxidant, anti-excitatory, and anti-apoptotic agents. Although there have been substantial advances in understanding the pathophysiology of NIHL, there remain low levels of evidence for effective pharmacotherapeutic interventions. Future directions should include personalized prevention and targeted treatment strategies based on a holistic view of an individual's occupation, genetics, and pathology.
Collapse
Affiliation(s)
- Nirvikalpa Natarajan
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Shelley Batts
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Konstantina M. Stankovic
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Wu Tsai Neuroscience Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
20
|
Anastasios G, Magioula G, Konstantinos K, Ioannis A. Noise and Health: Review. Indian J Otolaryngol Head Neck Surg 2022; 74:5482-5491. [PMID: 36742745 PMCID: PMC9895353 DOI: 10.1007/s12070-021-02797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/01/2021] [Indexed: 02/07/2023] Open
Abstract
Noise in human societies is unavoidable, but it tends to become a modern epidemic that induces various detrimental effects to several organs and functions in humans. Increased cardiovascular danger, anxiety and sleep disturbance are just few of these effects. It is noteworthy that children, even neonates and their developing organism are especially vulnerable to noise-related health problems. Noise is measured with special noise-meters. These devices express results in decibels by transforming random noise to a continuous sound. This sound is characterized by equivalent acoustic energy to the random noise for a defined time interval. Human auditory apparatus is principally endangered by acute noises but also by chronic noise exposure, in the context of both occupational and recreational activities. Various mechanisms are implicated in the pathogenesis of noise-induced hearing loss that can cause either temporary or permanent damage. Among them, emphasis is given to the impairment by free radicals and inflammatory mediators, to the activation of apoptotic molecular pathways, but also to glutamate excitotoxicity. A hidden hearing loss, synaptopathy, is attributed to the latter. The irreversible nature of hearing loss, as well as the idiosyncratic sensitivity of individuals, imposes the necessity of early diagnosis of auditory impairment by noise. Super high frequency audiograms, otoacoustic emissions and electrophysiological examinations can address diagnosis. Thankfully, there is extensive research on acoustic trauma therapeutic approaches. However, until we succeed in regenerating the sensory organ of hearing, chronic noise-induced hearing loss cannot be treated. Thus, it is fundamental that society protects people from noise, by laws and regulations.
Collapse
Affiliation(s)
- Goulioumis Anastasios
- Department of Otorhinolaryngology, Pediatric Hospital “Karamandanio”, Patras, Greece
| | | | - Kourelis Konstantinos
- Department of Otorhinolaryngology, Pediatric Hospital “Karamandanio”, Patras, Greece
| | - Athanasopoulos Ioannis
- Department of Otorhinolaryngology, Pediatric Center of “Iatriko Athinon” Hospital, Athens, Greece
| |
Collapse
|
21
|
What Predictability for Animal Models of Peripheral Vestibular Disorders? Biomedicines 2022; 10:biomedicines10123097. [PMID: 36551852 PMCID: PMC9775358 DOI: 10.3390/biomedicines10123097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/04/2022] Open
Abstract
The different clinical entities grouped under the term peripheral vestibulopathies (PVs) or peripheral vestibular disorders (PVDs) are distinguished mainly based on their symptoms/clinical expression. Today, there are very few commonly accepted functional and biological biomarkers that can confirm or refute whether a vestibular disorder belongs to a precise classification. Consequently, there is currently a severe lack of reliable and commonly accepted clinical endpoints, either to precisely follow the course of the vertigo syndrome of vestibular origin or to assess the benefits of therapeutic approaches, whether they are pharmacological or re-educational. Animal models of PV are a good means to identify biomarkers that could subsequently be exploited in human clinical practice. The question of their predictability is therefore crucial. Ten years ago, we had already raised this question. We revisit this concept today in order to take into account the animal models of peripheral vestibular pathology that have emerged over the last decade, and the new technological approaches available for the behavioral assessment of vestibular syndrome in animals and its progression over time. The questions we address in this review are the following: are animal models of PV predictive of the different types and stages of vestibular pathologies, and if so, to what extent? Are the benefits of the pharmacological or reeducational therapeutic approaches achieved on these different models of PV (in particular the effects of attenuation of the acute vertigo, or acceleration of central compensation) predictive of those expected in the vertiginous patient, and if so, to what extent?
Collapse
|
22
|
Chen HL, Tan CT, Wu CC, Liu TC. Effects of Diet and Lifestyle on Audio-Vestibular Dysfunction in the Elderly: A Literature Review. Nutrients 2022; 14:nu14224720. [PMID: 36432406 PMCID: PMC9698578 DOI: 10.3390/nu14224720] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The world's age-related health concerns continue to rise. Audio-vestibular disorders, such as hearing loss, tinnitus, and vertigo, are common complaints in the elderly and are associated with social and public health burdens. Various preventative measures can ease their impact, including healthy food consumption, nutritional supplementation, and lifestyle modification. We aim to provide a comprehensive summary of current possible strategies for preventing the age-related audio-vestibular dysfunction. METHODS A PubMed, Embase, and Cochrane review databases search was conducted to identify the relationship between diet, lifestyle, and audio-vestibular dysfunction. "Diet", "nutritional supplement", "lifestyle", "exercise", "physical activity", "tinnitus", "vertigo" and "age-related hearing loss" were used as keywords. RESULTS Audio-vestibular dysfunction develops and progresses as a result of age-related inflammation and oxidative stress. Diets with anti-inflammatory and antioxidant effects have been proposed to alleviate this illness. A high-fat diet may induce oxidative stress and low protein intake is associated with hearing discomfort in the elderly. Increased carbohydrate and sugar intake positively correlate with the incidence of audio-vestibular dysfunction, whereas a Mediterranean-style diet can protect against the disease. Antioxidants in the form of vitamins A, C, and E; physical activity; good sleep quality; smoking cessation; moderate alcohol consumption; and avoiding noise exposure are also beneficial. CONCLUSIONS Adequate diet or nutritional interventions with lifestyle modification may protect against developing audio-vestibular dysfunction in elderly individuals.
Collapse
Affiliation(s)
- Hsin-Lin Chen
- Department of Surgical Oncology, National Taiwan University Cancer Center Hospital, Taipei 100, Taiwan
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Ching-Ting Tan
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan
- Department of Medical Research, National Taiwan University Hospital Hsin-Chu Branch, Hsinchu 302, Taiwan
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 100, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei 100, Taiwan
- Correspondence: (C.-C.W.); (T.-C.L.)
| | - Tien-Chen Liu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan
- Correspondence: (C.-C.W.); (T.-C.L.)
| |
Collapse
|
23
|
Effects of pyrroloquinoline quinone on noise-induced and age-related hearing loss in mice. Sci Rep 2022; 12:15911. [PMID: 36151123 PMCID: PMC9508078 DOI: 10.1038/s41598-022-19842-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/05/2022] [Indexed: 11/10/2022] Open
Abstract
We investigated whether the oxidoreductase cofactor pyrroloquinoline quinone (PQQ) prevents noise-induced and age-related hearing loss (NIHL and ARHL) in mice. To assess NIHL, 8 week-old mice with and without PQQ administration were exposed to noise for 4 h. PQQ was orally administered for one week before and after noise exposure and subcutaneously once before noise exposure. For ARHL evaluation, mice were given drinking water with or without PQQ starting at 2 months of age. In the NIHL model, PQQ-treated mice had auditory brainstem response (ABR) thresholds of significantly reduced elevation at 8 kHz, a significantly increased number of hair cells at the basal turn, and significantly better maintained synapses beneath the inner hair cells compared to controls. In the ARHL model, PQQ significantly attenuated the age-related increase in ABR thresholds at 8 and 32 kHz at 10 months of age compared to controls. In addition, the hair cells, spiral ganglion cells, ribbon synapses, stria vascularis and nerve fibers were all significantly better maintained in PQQ-treated animals compared to controls at 10 months of age. These physiological and histological results demonstrate that PQQ protects the auditory system from NIHL and ARHL in mice.
Collapse
|
24
|
Macena Duarte VO, Neves-Lobo IF, Samelli AG. Effects of noise on the vestibular system of normal-hearing workers. Work 2022; 73:1217-1225. [DOI: 10.3233/wor-211088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND: Studies in noise-exposed animals have shown changes in vestibular structures. Likewise, studies in humans have been suggesting that noise can damage the vestibular system, even with normal assessment results. OBJECTIVE: To assess the vestibular system of workers exposed to noise and to compare with individuals not exposed. METHODS: Twenty normal-hearing male adults were divided in the study group (SG), exposed to occupational noise, and control group (CG). We conducted the following procedures: medical history, Dizziness Handicap Inventory (DHI), Dix-Hallpike maneuver, and electronystagmography (eye and caloric tests). RESULTS: The DHI score did not differ between groups. The Dix-Hallpike maneuver was normal for both groups. All individuals had normal responses in the eye tests. 50% of the SG had hyperreflexia in the caloric tests, with a significant difference between the groups. There was a trend towards a statistical significance in the absolute values of angular speed of the slow component in the cold-air test, which were higher in the SG. There was a significant difference between the groups in the relative values of labyrinthine preponderance, which were higher in the SG. CONCLUSION: Our findings showed that 70% of the workers exposed to occupational noise had vestibular alterations identified with electronystagmography, whereas 100% of the individuals in the CG had normal results in the vestibular assessment. Moreover, only 20% of the sample in both groups had vestibular complaints, indicating the presence of subclinical vestibular changes in 50% of the individuals exposed to occupational noise.
Collapse
Affiliation(s)
- Victor Octávio Macena Duarte
- Department of Physical Therapy, Speech-Language-Hearing Pathology, and Occupational Therapy, Faculty of Medicine (FMUSP), University of São Paulo, São Paulo, Brazil
| | - Ivone Ferreira Neves-Lobo
- Department of Physical Therapy, Speech-Language-Hearing Pathology, and Occupational Therapy, Faculty of Medicine (FMUSP), University of São Paulo, São Paulo, Brazil
| | - Alessandra Giannella Samelli
- Department of Physical Therapy, Speech-Language-Hearing Pathology, and Occupational Therapy, Faculty of Medicine (FMUSP), University of São Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
Snapp HA, Schaefer Solle N, Millet B, Rajguru SM. Subclinical Hearing Deficits in Noise-Exposed Firefighters. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11028. [PMID: 36078744 PMCID: PMC9518181 DOI: 10.3390/ijerph191711028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Noise-induced hearing loss (NIHL) is the most prevalent occupational disease in the world and firefighters are at increased risk of NIHL due to their frequent exposure to hazardous levels of noise during service. Adverse effects of NIHL include acceleration of age-related hearing loss and an increased risk of cognitive decline. A critical challenge in addressing NIHL is the delayed clinical presentation of symptoms and lack of sensitive tools for early detection. To study the early clinical symptoms of NIHL in this high-risk group, we collected hearing function data including behavioral audiometric thresholds and distortion product otoacoustic emissions (DPOAEs) in 176 firefighters during annual physical assessments. Results revealed significant deficits in cochlear outer hair cell function in the presence of normal audiograms. Additionally, 55% of firefighters self-reported changes in hearing, while 20% self-reported concerns about their balance. This study is the first to characterize DPOAEs in firefighters who display decreased DPOAE amplitudes with increasing years in the fire service. These effects were observed even when controlling for hearing loss and age and are suggestive of a link between hearing loss and occupational exposure to hazardous noise.
Collapse
Affiliation(s)
- Hillary A. Snapp
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA or
| | - Natasha Schaefer Solle
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Barbara Millet
- Department of Interactive Media, University of Miami, Coral Gables, FL 33146, USA
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
| | - Suhrud M. Rajguru
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL 33136, USA or
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146, USA
- RestorEar Devices LLC, Kirkland, WA 98033, USA
| |
Collapse
|
26
|
Matsugi A, Shiozaki T, Tanaka H. Vestibulo-Ocular Reflex Is Modulated by Noisy Galvanic Vestibular Stimulation. Front Neurol 2022; 13:826739. [PMID: 35250830 PMCID: PMC8893018 DOI: 10.3389/fneur.2022.826739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 11/24/2022] Open
Abstract
We investigated whether noisy galvanic vestibular stimulation (nGVS) modulates the vestibulo-ocular reflex (VOR) and whether this effect is correlated with the effect of nGVS on body sway. Thirty healthy young adults participated. The video head impulse test (vHIT) was used to estimate the ratio of eye motion velocity/head motion velocity to VOR-gain. The gain 60 ms after the start of head motion (VOR-gain-60 ms) and regression slope (RS) (i.e., gain in eye and head motion; VOR-gain-RS) were calculated. The total path length of the foot center of pressure (COP-TL) during upright standing was calculated to estimate body sway. Noisy Galvanic Vestibular Stimulation at 0.2, 0.6, 1.2 mA, or sham stimulation (direct current: 0 mA) was delivered to the bilateral mastoid process in random order during vHIT and COP measurements. Application of nGVS at 0.2 mA significantly reduced VOR-gain-RS, while application of nGVS at 0.6 mA significantly increased COP-TL. Vestibulo-ocular reflex-gain-60 ms differed significantly between 0.2 and 1.2 mA. There was no significant correlation between COP-TL and VOR-related parameters. These findings suggest that nGVS at 0.2 mA inhibits the VOR, while nGVS at 0.6 mA increases body sway during upright standing, although there may be no relationship between the respective effects in healthy individuals.
Collapse
Affiliation(s)
- Akiyoshi Matsugi
- Faculty of Rehabilitation, Shijonawate Gakuen University, Daitou, Japan
- *Correspondence: Akiyoshi Matsugi
| | - Tomoyuki Shiozaki
- Department of Otolaryngology-Head and Neck Surgery, Nara Medical University, Kashihara, Japan
| | - Hiroaki Tanaka
- Department of Physical Medicine and Rehabilitation, Kansai Medical University, Hirakata, Japan
| |
Collapse
|
27
|
Das S, Kalidoss V, Bakshi S, Ramesh S. A Cross-Sectional Study on the Effect of Chronic Noise Exposure on the Vestibular Function of Traffic Policemen and Automobile Drivers. Noise Health 2022; 24:231-236. [PMID: 36537447 PMCID: PMC10088428 DOI: 10.4103/nah.nah_40_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Introduction Noise is a preventable occupational hazard for certain professions like automobile drivers and traffic police personnel. The harmful auditory effects of noise are well known. However, little is known about the status of the vestibular function in chronic noise exposure without noise induced hearing loss. Our objective was to assess the vestibular function in chronic noise exposure. Methodology : The study was conducted with a sample size of 242 (chronic noise exposure group - 121, group without chronic noise exposure - 121). Noise estimation was carried out across various traffic intersections to assess the noise exposure levels of the exposed group. All participants underwent a detailed vestibular evaluation in the clinical vestibulometry laboratory. Results There was no difference in nystagmus, saccades, caloric function between the two groups. The latency and amplitude of vestibular evoked myogenic potentials (VEMP) were similar in both the groups. However, dynamic posturography showed a significant difference in the Adaptation test between the two groups (P < 0.05). We also found a statistically significant difference between the static and dynamic subjective visual vertical (SVV) and the dynamic visual acuity (DVA) between the two groups (P < 0.05). Conclusion We did not find any clinical evidence of vestibular dysfunction in the noise exposed group. However, the statistical significance of SVV and DVA as seen in this study needs to be evaluated further as an early marker for vestibular dysfunction. It remains to be seen whether the statistically significant prolongation is reversible after the noise exposure is withdrawn.
Collapse
|
28
|
Hearing loss versus vestibular loss as contributors to cognitive dysfunction. J Neurol 2022; 269:87-99. [PMID: 33387012 DOI: 10.1007/s00415-020-10343-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/23/2020] [Accepted: 12/04/2020] [Indexed: 02/02/2023]
Abstract
In the last 5 years, there has been a surge in evidence that hearing loss (HL) may be a risk factor for cognitive dysfunction, including dementia. At the same time, there has been an increase in the number of studies implicating vestibular loss in cognitive dysfunction. Due to the fact that vestibular disorders often present with HL and other auditory disorders such as tinnitus, it has been suggested that, in many cases, what appears to be vestibular-related cognitive dysfunction may be due to HL (e.g., Dobbels et al. Front Neurol 11:710, 2020). This review analyses the studies of vestibular-related cognitive dysfunction which have controlled HL. It is suggested that despite the fact that many studies in the area have not controlled HL, many other studies have (~ 19/44 studies or 43%). Therefore, although there is certainly a need for further studies controlling HL, there is evidence to suggest that vestibular loss is associated with cognitive dysfunction, especially related to spatial memory. This is consistent with the overwhelming evidence from animal studies that the vestibular system transmits specific types of information about self-motion to structures such as the hippocampus.
Collapse
|
29
|
Stewart CE, Bauer DS, Altschuler RA, King WM. Transient peripheral vestibular hypofunction measured with vestibular short-latency evoked potentials following noise exposure in rats. J Neurophysiol 2021; 126:1547-1554. [PMID: 34550030 PMCID: PMC8782663 DOI: 10.1152/jn.00131.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Exposure to 120 dB sound pressure level (SPL) band-limited noise results in delayed onset latency and reduced vestibular short-latency evoked potential (VsEP) responses. These changes are still present 4 wk after noise overstimulation. Noise-induced hearing loss (NIHL) has been shown to vary in extent and duration based on the noise intensity. This study investigated whether noise-induced peripheral vestibular hypofunction (NPVH) would also decrease in extent and/or duration with less intense noise exposure. In the present study, rats were exposed to a less intense noise (110 dB SPL) but for the same duration (6 h) and frequency range (500–4,000 Hz) as used in previous studies. The VsEP was assessed 1, 3, 7, 14, 21, and 28 days after noise exposure. In contrast to 120 dB SPL noise exposure, the 110 dB SPL noise exposures produced smaller deficits in VsEP responses that fully recovered in 62% (13/21) of animals within 1 wk. These findings suggest that NPVH, a loss or attenuation of VsEP responses with a requirement for elevated stimulus intensity to elicit measurable responses, is similar to NIHL, that is, lower sound levels produce a smaller or transient deficit. These results show that it will be important to determine the extent and duration of vestibular hypofunction for different noise exposure conditions and their impact on balance. NEW & NOTEWORTHY This is the first study to show a temporary noise-induced peripheral vestibular hypofunction that recovers following exposure to continuous noise.
Collapse
Affiliation(s)
- Courtney E Stewart
- VA Ann Arbor Healthcare System, Ann Arbor, Michigan.,Department of Otolaryngology/Head-Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, Michigan
| | - David S Bauer
- Department of Otolaryngology/Head-Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, Michigan
| | - Richard A Altschuler
- VA Ann Arbor Healthcare System, Ann Arbor, Michigan.,Department of Otolaryngology/Head-Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, Michigan
| | - William Michael King
- Department of Otolaryngology/Head-Neck Surgery, Kresge Hearing Research Institute, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
30
|
Paplou V, Schubert NMA, Pyott SJ. Age-Related Changes in the Cochlea and Vestibule: Shared Patterns and Processes. Front Neurosci 2021; 15:680856. [PMID: 34539328 PMCID: PMC8446668 DOI: 10.3389/fnins.2021.680856] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022] Open
Abstract
Both age-related hearing loss (ARHL) and age-related loss in vestibular function (ARVL) are prevalent conditions with deleterious consequences on the health and quality of life. Age-related changes in the inner ear are key contributors to both conditions. The auditory and vestibular systems rely on a shared sensory organ - the inner ear - and, like other sensory organs, the inner ear is susceptible to the effects of aging. Despite involvement of the same sensory structure, ARHL and ARVL are often considered separately. Insight essential for the development of improved diagnostics and treatments for both ARHL and ARVL can be gained by careful examination of their shared and unique pathophysiology in the auditory and vestibular end organs of the inner ear. To this end, this review begins by comparing the prevalence patterns of ARHL and ARVL. Next, the normal and age-related changes in the structure and function of the auditory and vestibular end organs are compared. Then, the contributions of various molecular mechanisms, notably inflammaging, oxidative stress, and genetic factors, are evaluated as possible common culprits that interrelate pathophysiology in the cochlea and vestibular end organs as part of ARHL and ARVL. A careful comparison of these changes reveals that the patterns of pathophysiology show similarities but also differences both between the cochlea and vestibular end organs and among the vestibular end organs. Future progress will depend on the development and application of new research strategies and the integrated investigation of ARHL and ARVL using both clinical and animal models.
Collapse
Affiliation(s)
- Vasiliki Paplou
- Department of Otorhinolaryngology and Head/Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Nick M A Schubert
- Department of Otorhinolaryngology and Head/Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Research School of Behavioural and Cognitive Neurosciences, Graduate School of Medical Sciences, University of Groningen, Groningen, Netherlands
| | - Sonja J Pyott
- Department of Otorhinolaryngology and Head/Neck Surgery, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Research School of Behavioural and Cognitive Neurosciences, Graduate School of Medical Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
31
|
Cullen KE, Wei RH. Differences in the Structure and Function of the Vestibular Efferent System Among Vertebrates. Front Neurosci 2021; 15:684800. [PMID: 34248486 PMCID: PMC8260987 DOI: 10.3389/fnins.2021.684800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/13/2021] [Indexed: 11/13/2022] Open
Abstract
The role of the mammalian vestibular efferent system in everyday life has been a long-standing mystery. In contrast to what has been reported in lower vertebrate classes, the mammalian vestibular efferent system does not appear to relay inputs from other sensory modalities to the vestibular periphery. Furthermore, to date, the available evidence indicates that the mammalian vestibular efferent system does not relay motor-related signals to the vestibular periphery to modulate sensory coding of the voluntary self-motion generated during natural behaviors. Indeed, our recent neurophysiological studies have provided insight into how the peripheral vestibular system transmits head movement-related information to the brain in a context independent manner. The integration of vestibular and extra-vestibular information instead only occurs at next stage of the mammalian vestibular system, at the level of the vestibular nuclei. The question thus arises: what is the physiological role of the vestibular efferent system in mammals? We suggest that the mammalian vestibular efferent system does not play a significant role in short-term modulation of afferent coding, but instead plays a vital role over a longer time course, for example in calibrating and protecting the functional efficacy of vestibular circuits during development and aging in a role analogous the auditory efferent system.
Collapse
Affiliation(s)
- Kathleen E. Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
- Department of Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, United States
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Rui-Han Wei
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|