1
|
Wolf HN, Guempelein L, Schikora J, Pauly D. Inter-tissue differences in oxidative stress susceptibility reveal a less stable endothelial barrier in the brain than in the retina. Exp Neurol 2024; 380:114919. [PMID: 39142370 DOI: 10.1016/j.expneurol.2024.114919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/22/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
Oxidative stress can impair the endothelial barrier and thereby enable autoantibody migration in Neuromyelitis optica spectrum disorder (NMOSD). Tissue-specific vulnerability to autoantibody-mediated damage could be explained by a differential, tissue-dependent endothelial susceptibility to oxidative stress. In this study, we aim to investigate the barrier integrity and complement profiles of brain and retinal endothelial cells under oxygen-induced oxidative stress to address the question of whether the pathomechanism of NMOSD preferentially affects the brain or the retina. Primary human brain microvascular endothelial cells (HBMEC) and primary human retinal endothelial cells (HREC) were cultivated at different cell densities (2.5*104 to 2*105 cells/cm2) for real-time cell analysis. Both cell types were exposed to 100, 500 and 2500 μM H2O2. Immunostaining (CD31, VE-cadherin, ZO-1) and Western blot, as well as complement protein secretion using multiplex ELISA were performed. HBMEC and HREC cell growth phases were cell type-specific. While HBMEC cell growth could be categorized into an initial peak, proliferation phase, plateau phase, and barrier breakdown phase, HREC showed no proliferation phase, but entered the plateau phase immediately after an initial peak. The plateau phase was 7 h shorter in HREC. Both cell types displayed a short-term, dose-dependent adaptive response to H2O2. Remarkably, at 100 μM H2O2, the transcellular resistance of HBMEC exceeded that of untreated cells. 500 μM H2O2 exerted a more disruptive effect on the HBMEC transcellular resistance than on HREC. Both cell types secreted complement factors H (FH) and I (FI), with FH secretion remaining stable after 2 h, but FI secretion decreasing at higher H2O2 concentrations. The observed differences in resistance to oxidative stress between primary brain and retinal endothelial cells may have implications for further studies of NMOSD and other autoimmune diseases affecting the eye and brain. These findings may open novel perspectives for the understanding and treatment of such diseases.
Collapse
Affiliation(s)
- Hannah Nora Wolf
- Department of Experimental Ophthalmology, University Marburg, Marburg 35043, Germany.
| | - Larissa Guempelein
- Department of Experimental Ophthalmology, University Marburg, Marburg 35043, Germany.
| | - Juliane Schikora
- Department of Experimental Ophthalmology, University Marburg, Marburg 35043, Germany.
| | - Diana Pauly
- Department of Experimental Ophthalmology, University Marburg, Marburg 35043, Germany.
| |
Collapse
|
2
|
Zhao M, Li X, Li F, Hu X, Wang J, Liu Y, Zhang C, Bai J, Edden RAE, Gao F, Su M, Ren F. Identification of neurotransmitter imbalances in the cingulate cortex of NMOSD patients using magnetic resonance spectroscopy. Cereb Cortex 2024; 34:bhae304. [PMID: 39073381 DOI: 10.1093/cercor/bhae304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024] Open
Abstract
Cognitive impairment affects 29-67% of patients with neuromyelitis optica spectrum disorder. Previous studies have reported glutamate homeostasis disruptions in astrocytes, leading to imbalances in gamma-aminobutyric acid levels. However, the association between these neurotransmitter changes and cognitive deficits remains inadequately elucidated. Point RESolved Spectroscopy and Hadamard Encoding and Reconstruction of MEGA-Edited Spectroscopy techniques were utilized to evaluate gamma-aminobutyric acid, glutamate, glutathione levels, and excitation/inhibition balance in the anterior cingulate cortex, posterior cingulate cortex, and occipital cortex of 39 neuromyelitis optica spectrum disorder patients and 41 healthy controls. Cognitive function was assessed using neurocognitive scales. Results showed decreased gamma-aminobutyric acid levels alongside increased glutamate, glutathione, and excitation/inhibition ratio in the anterior cingulate cortex and posterior cingulate cortex of neuromyelitis optica spectrum disorder patients. Specifically, within the posterior cingulate cortex of neuromyelitis optica spectrum disorder patients, decreased gamma-aminobutyric acid levels and increased excitation/inhibition ratio correlated significantly with anxiety scores, whereas glutathione levels predicted diminished executive function. The results suggest that neuromyelitis optica spectrum disorder patients exhibit dysregulation in the GABAergic and glutamatergic systems in their brains, where the excitation/inhibition imbalance potentially acts as a neuronal metabolic factor contributing to emotional disorders. Additionally, glutathione levels in the posterior cingulate cortex region may serve as predictors of cognitive decline, highlighting the potential benefits of reducing oxidative stress to safeguard cognitive function in neuromyelitis optica spectrum disorder patients.
Collapse
Affiliation(s)
- Min Zhao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Department of Radiology, Linyi Central Hospital, Linyi, China
| | - Xiao Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Liaocheng People's Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Fuyan Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Xin Hu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Jing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Yuxi Liu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Chuanchen Zhang
- Liaocheng People's Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Jie Bai
- Liaocheng People's Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Fei Gao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Meixia Su
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Fuxin Ren
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
- Liaocheng People's Hospital Affiliated to Shandong First Medical University, Liaocheng, China
| |
Collapse
|
3
|
Jiménez-Jiménez FJ, Alonso-Navarro H, Salgado-Cámara P, García-Martín E, Agúndez JAG. Oxidative Stress Markers in Multiple Sclerosis. Int J Mol Sci 2024; 25:6289. [PMID: 38927996 PMCID: PMC11203935 DOI: 10.3390/ijms25126289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/10/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
The pathogenesis of multiple sclerosis (MS) is not completely understood, but genetic factors, autoimmunity, inflammation, demyelination, and neurodegeneration seem to play a significant role. Data from analyses of central nervous system autopsy material from patients diagnosed with multiple sclerosis, as well as from studies in the main experimental model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE), suggest the possibility of a role of oxidative stress as well. In this narrative review, we summarize the main data from studies reported on oxidative stress markers in patients diagnosed with MS and in experimental models of MS (mainly EAE), and case-control association studies on the possible association of candidate genes related to oxidative stress with risk for MS. Most studies have shown an increase in markers of oxidative stress, a decrease in antioxidant substances, or both, with cerebrospinal fluid and serum/plasma malonyl-dialdehyde being the most reliable markers. This topic requires further prospective, multicenter studies with a long-term follow-up period involving a large number of patients with MS and controls.
Collapse
Affiliation(s)
- Félix Javier Jiménez-Jiménez
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, E-28500 Madrid, Spain; (H.A.-N.); (P.S.-C.)
| | - Hortensia Alonso-Navarro
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, E-28500 Madrid, Spain; (H.A.-N.); (P.S.-C.)
| | - Paula Salgado-Cámara
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, E-28500 Madrid, Spain; (H.A.-N.); (P.S.-C.)
| | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E-10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - José A. G. Agúndez
- University Institute of Molecular Pathology Biomarkers, Universidad de Extremadura, E-10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| |
Collapse
|
4
|
Turan Ç, Şenormancı G, Neşelioğlu S, Budak Y, Erel Ö, Şenormancı Ö. Oxidative Stress and Inflammatory Biomarkers in People with Methamphetamine Use Disorder. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2023; 21:572-582. [PMID: 37424424 PMCID: PMC10335902 DOI: 10.9758/cpn.22.1047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/03/2023] [Accepted: 03/06/2023] [Indexed: 07/11/2023]
Abstract
Objective This study aimed to investigate the blood serum levels of biomarkers specifying oxidative stress status and systemic inflammation between people using methamphetamine (METH) and the control group (CG). Serum thiol/disulfide balance and ischemia-modified albumin levels were studied to determine oxidative stress, and serum interleukin-6 (IL-6) levels and complete blood count (CBC) were to assess inflammation. Methods Fifty patients with METH use disorder (MUD) and 36 CG participants were included in the study. Two tubes of venous blood samples were taken to measure oxidative stress, serum thiol/disulfide balance, ischemia-modified albumin, and IL-6 levels between groups. The correlation of parameters measuring oxidative stress and inflammation between groups with sociodemographic data was investigated. Results In this study, serum total thiol, free thiol levels, disulfide/native thiol percentage ratios, and serum ischemia- modified albumin levels of the patients were statistically significantly higher than the healthy controls. No difference was observed between the groups in serum disulfide levels and serum IL-6 levels. Considering the regression analysis, only the duration of substance use was a statistically significant factor in explaining serum IL-6 levels. The parameters showing inflammation in the CBC were significantly higher in the patients than in the CG. Conclusion CBC can be used to evaluate systemic inflammation in patients with MUD. Parameters measuring thiol/disulfide homeostasis and ischemia-modified albumin can be, also, used to assess oxidative stress.
Collapse
Affiliation(s)
- Çetin Turan
- Department of Psychiatry, University of Health Sciences Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Güliz Şenormancı
- Department of Psychiatry, University of Health Sciences Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Salim Neşelioğlu
- Clinic of Clinical Biochemistry, Yıldırım Beyazıt University, Ankara City Hospital, Ankara, Turkey
| | - Yasemin Budak
- Department of Biochemistry, University of Health Sciences Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Özcan Erel
- Clinic of Clinical Biochemistry, Yıldırım Beyazıt University, Ankara City Hospital, Ankara, Turkey
| | - Ömer Şenormancı
- Department of Clinical Psychology, University of Beykent, Istanbul, Turkey
| |
Collapse
|
5
|
Peng F, She H, Wang Y, Xu L, Shan Y, Chang Y, Zhong X, Li R, Qiu W, Shu Y, Tan S. Decreased kynurenine in cerebrospinal fluid and potential role in neuromyelitis optica spectrum disorder. J Neurochem 2023; 165:259-267. [PMID: 36718502 DOI: 10.1111/jnc.15772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/28/2022] [Accepted: 01/19/2023] [Indexed: 02/01/2023]
Abstract
Tryptophan (Trp) metabolism has been implicated in neuroinflammatory and neurodegenerative disorders, but its relationship with neuromyelitis optica spectrum disorder (NMOSD) is unclear. In this pilot study, cerebrospinal fluid (CSF) was prospectively collected from 26 NMOSD patients in relapse and 16 controls with noninflammatory diseases and 6 neurometabolites in the tryptophan metabolic pathway, including 5-hydroxytryptamine (5-HT), kynurenine (KYN), melatonin (MLT), 5-hydroxyindoleacetic acid (5HIAA), 3-hydroxy-o-aminobenzoic acid (3-HAA), and kynurenic acid (KYA), were measured by ultrahigh-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The association of Trp metabolites with NMOSD and its clinical parameters was evaluated. The role of KYN, which is a Trp metabolite involved in the binding of NMOSD-IgG antibody to aquaporin 4 (AQP4), was also evaluated in vitro. CSF KYN was significantly decreased in patients with relapsing NMOSD compared to controls, and CSF KYN was associated with CSF white blood cells in NMOSD. In vitro experiments showed that NMOSD-IgG specifically recognized KYN, which reversed the NMOSD-IgG-induced downregulation of AQP4 expression. Our results show that abnormal Trp metabolism occurs in NMOSD and that KYN might be a potential target for the treatment of AQP4-IgG-positive NMOSD patients.
Collapse
Affiliation(s)
- Fuhua Peng
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Mental and Neurological Diseases Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Hongda She
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Mental and Neurological Diseases Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuge Wang
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Mental and Neurological Diseases Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Li Xu
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Mental and Neurological Diseases Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yilong Shan
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yanyu Chang
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Mental and Neurological Diseases Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaonan Zhong
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Mental and Neurological Diseases Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Rui Li
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Mental and Neurological Diseases Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wei Qiu
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Mental and Neurological Diseases Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yaqing Shu
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Mental and Neurological Diseases Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Sha Tan
- Multiple Sclerosis Center, Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Mental and Neurological Diseases Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Paar M, Seifried K, Cvirn G, Buchmann A, Khalil M, Oettl K. Redox State of Human Serum Albumin in Multiple Sclerosis: A Pilot Study. Int J Mol Sci 2022; 23:ijms232415806. [PMID: 36555448 PMCID: PMC9779316 DOI: 10.3390/ijms232415806] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
Like in many other pathologies, oxidative stress is involved in the development of neurodegenerative disorders. Human serum albumin (HSA) is the main protein in different body fluids including cerebrospinal fluid (CSF). By its redox state in terms of cysteine-34, albumin serves as marker for oxidative burden. We aimed to evaluate the redox state of HSA in patients with multiple sclerosis in serum and CSF in comparison to controls to identify possible correlations with disease activity and severity. Samples were stored at -70 °C until analysis by HPLC for the determination of albumin redox state in terms of the fractions of human mercaptalbumin (HMA), human nonmercaptalbumin1 (HNA1), and human nonmercaptalbumin2 (HNA2). Albumin in CSF showed significantly higher fractions of the reduced form HMA and decreased HNA1 and HNA2. There was no difference between albumin redox states in serum of patients and controls. In CSF of patients HNA2 showed a trend to higher fractions compared to controls. Albumin redox state in serum was associated with physical disability in remission while albumin redox state in CSF was related to disease activity. Thus, albumin redox state in serum and CSF of patients in relation to disease condition merits further investigation.
Collapse
Affiliation(s)
- Margret Paar
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Katharina Seifried
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Gerhard Cvirn
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Arabella Buchmann
- Department of Neurology, Medical University of Graz, 8036 Graz, Austria
| | - Michael Khalil
- Department of Neurology, Medical University of Graz, 8036 Graz, Austria
- Correspondence: (M.K.); (K.O.); Tel.: +43-(0)316-385-30313 (M.K.); +43-(0)316-385-72121 (K.O.)
| | - Karl Oettl
- Division of Medicinal Chemistry, Otto Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
- Correspondence: (M.K.); (K.O.); Tel.: +43-(0)316-385-30313 (M.K.); +43-(0)316-385-72121 (K.O.)
| |
Collapse
|
7
|
Arslan B, Ayhan Arslan G, Tuncer A, Karabudak R, Sepici Dinçel A. Evaluation of cerebrospinal fluid neurofilament light chain levels in multiple sclerosis and non-demyelinating diseases of the central nervous system: clinical and biochemical perspective. Bosn J Basic Med Sci 2022; 22:699-706. [PMID: 35490364 PMCID: PMC9519158 DOI: 10.17305/bjbms.2021.7326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
The neurofilament light chain (NfL) is a promising biomarker in the diagnosis, prognosis, and treatment response evaluation of neurological diseases. The aims of this study were to compare the cerebrospinal fluid (CSF) NfL levels in multiple sclerosis (MS) and certain non-demyelinating diseases of the central nervous system (NDCNS); to determine the relationship between clinical and radiological features and CSF NfL levels in patients with MS; and to compare the enzyme-linked immunosorbent assay (ELISA) and single molecule array (SIMOA) methods for NfL measurement using paired CSF and serum samples. We retrospectively analyzed the clinical data and performed NfL measurements in CSF and serum samples of newly diagnosed and treatment-naive patients with CNS diseases evaluated between 1 January 2019 and 1 January 2020. Eligible patients were divided into three groups: MS (n=23), differential diagnosis of MS (n=19), and NDCNS (n=42). First, we compared the CSF NfL levels among the three groups using the previously validated CSF ELISA assay. Next, we evaluated the relationship between CSF NfL levels and the clinical and radiological findings in MS group. Finally, we compared CSF and serum samples from patients of the MS groups (paired serum and CSF samples, n=19) using two different methods (ELISA and SIMOA). The CSF NfL level was the highest in the NDCNS group (1169.64 [535.92-5120.11] pg/mL, p=0.025). There was a strong positive correlation between the number of T2 lesions and CSF NfL level (r=0.786, p<0.001) in the MS group. There was excellent consistency between ELISA and SIMOA for CSF samples, but not for serum samples. Our results indicated that CSF NfL levels may also be used in the management of NDCNS and that SIMOA is the most reliable method for serum NfL determination.
Collapse
Affiliation(s)
- Burak Arslan
- Department of Medical Biochemistry, Gazi University Faculty of Medicine, Ankara, Turkey; Department of Medical Biochemistry, Erciş State Hospital, Van, Turkey
| | | | - Aslı Tuncer
- Department of Neurology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Rana Karabudak
- Department of Neurology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Aylin Sepici Dinçel
- Department of Medical Biochemistry, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
8
|
LoPresti P. Serum-Based Biomarkers in Neurodegeneration and Multiple Sclerosis. Biomedicines 2022; 10:biomedicines10051077. [PMID: 35625814 PMCID: PMC9138270 DOI: 10.3390/biomedicines10051077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple Sclerosis (MS) is a debilitating disease with typical onset between 20 and 40 years of age, so the disability associated with this disease, unfortunately, occurs in the prime of life. At a very early stage of MS, the relapsing-remitting mobility impairment occurs in parallel with a progressive decline in cognition, which is subclinical. This stage of the disease is considered the beginning of progressive MS. Understanding where a patient is along such a subclinical phase could be critical for therapeutic efficacy and enrollment in clinical trials to test drugs targeted at neurodegeneration. Since the disease course is uneven among patients, biomarkers are needed to provide insights into pathogenesis, diagnosis, and prognosis of events that affect neurons during this subclinical phase that shapes neurodegeneration and disability. Thus, subclinical cognitive decline must be better understood. One approach to this problem is to follow known biomarkers of neurodegeneration over time. These biomarkers include Neurofilament, Tau and phosphotau protein, amyloid-peptide-β, Brl2 and Brl2-23, N-Acetylaspartate, and 14-3-3 family proteins. A composite set of these serum-based biomarkers of neurodegeneration might provide a distinct signature in early vs. late subclinical cognitive decline, thus offering additional diagnostic criteria for progressive neurodegeneration and response to treatment. Studies on serum-based biomarkers are described together with selective studies on CSF-based biomarkers and MRI-based biomarkers.
Collapse
Affiliation(s)
- Patrizia LoPresti
- Department of Psychology, The University of Illinois at Chicago, 1007 West Harrison Street, Chicago, IL 60607, USA
| |
Collapse
|
9
|
Zarzuelo-Romero MJ, Pérez-Ramírez C, Cura Y, Carrasco-Campos MI, Marangoni-Iglecias LM, Ramírez-Tortosa MC, Jiménez-Morales A. Influence of Genetic Polymorphisms on Clinical Outcomes of Glatiramer Acetate in Multiple Sclerosis Patients. J Pers Med 2021; 11:jpm11101032. [PMID: 34683173 PMCID: PMC8540092 DOI: 10.3390/jpm11101032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic, inflammatory, demyelinating disease of autoimmune origin, in which inflammation and demyelination lead to neurodegeneration and progressive disability. Treatment is aimed at slowing down the course of the disease and mitigating its symptoms. One of the first-line treatments used in patients with MS is glatiramer acetate (GA). However, in clinical practice, a response rate of between 30% and 55% is observed. This variability in the effectiveness of the medication may be influenced by genetic factors such as polymorphisms in the genes involved in the pathogenesis of MS. Therefore, this review assesses the impact of genetic variants on the response to GA therapy in patients diagnosed with MS. The results suggest that a relationship exists between the effectiveness of the treatment with GA and the presence of polymorphisms in the following genes: CD86, CLEC16A, CTSS, EOMES, MBP, FAS, TRBC1, IL1R1, IL12RB2, IL22RA2, PTPRT, PVT1, ALOX5AP, MAGI2, ZAK, RFPL3, UVRAG, SLC1A4, and HLA-DRB1*1501. Consequently, the identification of polymorphisms in these genes can be used in the future as a predictive marker of the response to GA treatment in patients diagnosed with MS. Nevertheless, there is a lack of evidence for this and more validation studies need to be conducted to apply this information to clinical practice.
Collapse
Affiliation(s)
- María José Zarzuelo-Romero
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18001 Granada, Spain;
| | - Cristina Pérez-Ramírez
- Center of Biomedical Research, Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., 18016 Armilla, Granada, Spain;
- Pharmacogenetics Unit, Pharmacy Service, Virgen de las Nieves University Hospital, 18012 Granada, Spain; (Y.C.); (M.I.C.-C.); (L.M.M.-I.); (A.J.-M.)
- Correspondence:
| | - Yasmín Cura
- Pharmacogenetics Unit, Pharmacy Service, Virgen de las Nieves University Hospital, 18012 Granada, Spain; (Y.C.); (M.I.C.-C.); (L.M.M.-I.); (A.J.-M.)
| | - María Isabel Carrasco-Campos
- Pharmacogenetics Unit, Pharmacy Service, Virgen de las Nieves University Hospital, 18012 Granada, Spain; (Y.C.); (M.I.C.-C.); (L.M.M.-I.); (A.J.-M.)
| | - Luciana María Marangoni-Iglecias
- Pharmacogenetics Unit, Pharmacy Service, Virgen de las Nieves University Hospital, 18012 Granada, Spain; (Y.C.); (M.I.C.-C.); (L.M.M.-I.); (A.J.-M.)
| | - María Carmen Ramírez-Tortosa
- Center of Biomedical Research, Department of Biochemistry and Molecular Biology II, Institute of Nutrition and Food Technology “José Mataix”, University of Granada, Avda. del Conocimiento s/n., 18016 Armilla, Granada, Spain;
| | - Alberto Jiménez-Morales
- Pharmacogenetics Unit, Pharmacy Service, Virgen de las Nieves University Hospital, 18012 Granada, Spain; (Y.C.); (M.I.C.-C.); (L.M.M.-I.); (A.J.-M.)
| |
Collapse
|