1
|
Ye C, Ho R, Moberg KH, Zheng JQ. Adverse impact of female reproductive signaling on age-dependent neurodegeneration after mild head trauma in Drosophila. eLife 2024; 13:RP97908. [PMID: 39213032 PMCID: PMC11364438 DOI: 10.7554/elife.97908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Environmental insults, including mild head trauma, significantly increase the risk of neurodegeneration. However, it remains challenging to establish a causative connection between early-life exposure to mild head trauma and late-life emergence of neurodegenerative deficits, nor do we know how sex and age compound the outcome. Using a Drosophila model, we demonstrate that exposure to mild head trauma causes neurodegenerative conditions that emerge late in life and disproportionately affect females. Increasing age-at-injury further exacerbates this effect in a sexually dimorphic manner. We further identify sex peptide signaling as a key factor in female susceptibility to post-injury brain deficits. RNA sequencing highlights a reduction in innate immune defense transcripts specifically in mated females during late life. Our findings establish a causal relationship between early head trauma and late-life neurodegeneration, emphasizing sex differences in injury response and the impact of age-at-injury. Finally, our findings reveal that reproductive signaling adversely impacts female response to mild head insults and elevates vulnerability to late-life neurodegeneration.
Collapse
Affiliation(s)
- Changtian Ye
- Department of Cell Biology, Emory University School of MedicineAtlantaUnited States
| | - Ryan Ho
- College of Art and Science, Emory UniversityAtlantaUnited States
| | - Kenneth H Moberg
- Department of Cell Biology, Emory University School of MedicineAtlantaUnited States
| | - James Q Zheng
- Department of Cell Biology, Emory University School of MedicineAtlantaUnited States
- Department of Neurology, Emory University School of MedicineAtlantaUnited States
- Center for Neurodegenerative Diseases, Emory University School of MedicineAtlantaUnited States
| |
Collapse
|
2
|
Ye C, Ho R, Moberg KH, Zheng JQ. Sexual Dimorphism in Age-Dependent Neurodegeneration After Mild Head Trauma in Drosophila : Unveiling the Adverse Impact of Female Reproductive Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583747. [PMID: 38496515 PMCID: PMC10942469 DOI: 10.1101/2024.03.06.583747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Environmental insults, including mild head trauma, significantly increase the risk of neurodegeneration. However, it remains challenging to establish a causative connection between early-life exposure to mild head trauma and late-life emergence of neurodegenerative deficits, nor do we know how sex and age compound the outcome. Using a Drosophila model, we demonstrate that exposure to mild head trauma causes neurodegenerative conditions that emerge late in life and disproportionately affect females. Increasing age-at-injury further exacerbates this effect in a sexually dimorphic manner. We further identify Sex Peptide (SP) signaling as a key factor in female susceptibility to post-injury brain deficits. RNA sequencing highlights a reduction in innate immune defense transcripts specifically in mated females during late life. Our findings establish a causal relationship between early head trauma and late-life neurodegeneration, emphasizing sex differences in injury response and the impact of age-at-injury. Finally, our findings reveal that reproductive signaling adversely impacts female response to mild head insults and elevates vulnerability to late-life neurodegeneration.
Collapse
|
3
|
Green TRF, Rowe RK. Quantifying microglial morphology: an insight into function. Clin Exp Immunol 2024; 216:221-229. [PMID: 38456795 PMCID: PMC11097915 DOI: 10.1093/cei/uxae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/17/2024] [Accepted: 03/06/2024] [Indexed: 03/09/2024] Open
Abstract
Microglia are specialized immune cells unique to the central nervous system (CNS). Microglia have a highly plastic morphology that changes rapidly in response to injury or infection. Qualitative and quantitative measurements of ever-changing microglial morphology are considered a cornerstone of many microglia-centric research studies. The distinctive morphological variations seen in microglia are a useful marker of inflammation and severity of tissue damage. Although a wide array of damage-associated microglial morphologies has been documented, the exact functions of these distinct morphologies are not fully understood. In this review, we discuss how microglia morphology is not synonymous with microglia function, however, morphological outcomes can be used to make inferences about microglial function. For a comprehensive examination of the reactive status of a microglial cell, both histological and genetic approaches should be combined. However, the importance of quality immunohistochemistry-based analyses should not be overlooked as they can succinctly answer many research questions.
Collapse
Affiliation(s)
- Tabitha R F Green
- Department of Integrative Physiology, The University of Colorado Boulder, Boulder, CO, USA
| | - Rachel K Rowe
- Department of Integrative Physiology, The University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
4
|
Mavroudis I, Balmus IM, Ciobica A, Hogas M. A Narrative Review Of Risk Factors And Predictors For Poor Outcome And Prolonged Recovery After A Mild Traumatic Brain Injury. Int J Neurosci 2024:1-22. [PMID: 38465501 DOI: 10.1080/00207454.2024.2328710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
MATERIAL AND METHODS A comprehensive search of the main scientific databases (PubMed, Web of Science, Embase, and Cochrane Library) was performed using keywords, such as: "prolonged post-concussion syndrome", combined with "risk factors", "predictors", and "outcomes". RESULTS Multiple studies reported more than one risk factor for PPCS development following mTBIs that were generally the results of sports-related concussions and car accidents. The most prevalent risk factor associated with PPCS was the female sex. Social factors/personality traits, anxiety, mental health disorders, or other health conditions from their past medical history, the occurrence of headache/migraines during TBI recovery, somatization, physical activity, and litigation were also reported to contribute to PPCS risk. CONCLUSIONS An exhaustive approach is required to mitigate the risk of PPCS and to ensure optimal recovery after concussive events. However, larger prospective cohort studies evaluating patients that were examined and treated with standardized protocols could be needed to further validate these associations and mandate the highest risk factors for delayed recovery.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Department of Neurology, Leeds Teaching Hospitals, NHS Trust, Leeds, UK
| | - Ioana-Miruna Balmus
- Department of Exact Sciences and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iași, 700057 Iași, Romania
- CENEMED Platform for Interdisciplinary Research, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, B dul Carol I, No. 11, 700506 Iasi, Romania
- Academy of Romanian Scientists, Splaiul Independentei nr. 54, Sector 5, 050094 Bucuresti, Romania
- Centre of Biomedical Research, Romanian Academy, B dul Carol I, No. 8, 700506 Iasi, Romania
- Preclinical Department, Apollonia University, Păcurari Street 11, 700511 Iasi, Romania
| | - Mihai Hogas
- Department of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
5
|
Leonard J, Ladner L, Harris EA, de Jager C, Theus MH. The Neuroimmune Interface: Age-Related Responses to Traumatic Brain Injury. ADVANCES IN NEUROBIOLOGY 2024; 42:241-262. [PMID: 39432046 DOI: 10.1007/978-3-031-69832-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Traumatic Brain Injury (TBI) is a significant public health issue, with diverse consequences across the lifespan. This comprehensive review explores the complex interplay between age-related responses and the immune system following TBI. TBI exhibits distinct effects in pediatric, adult, and elderly populations, with profound implications for recovery and long-term outcomes. The immune system, as a key player in the post-TBI inflammatory cascade, exerts age-dependent influences on inflammation, neuroinflammation, and tissue repair. We examine the evolving understanding of age-related neuroinflammatory responses, cytokine profiles, and the role of immune cells, such as microglia and T cells, in the context of TBI. Furthermore, we evaluate the therapeutic implications of age-specific immunomodulation strategies toward mitigating TBI-associated neuropathology. This review consolidates the current knowledge on age-related immune responses in TBI, shedding light on potential avenues for tailored therapeutic interventions across the age spectrum. Understanding these nuanced responses is crucial for optimizing patient care and enhancing recovery outcomes in the aftermath of traumatic brain injury.
Collapse
Affiliation(s)
- John Leonard
- Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - Liliana Ladner
- Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - Elizabeth A Harris
- Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - Caroline de Jager
- Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, USA
| | - Michelle H Theus
- The Department of Biomedical Sciences and Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, USA.
| |
Collapse
|
6
|
Ortiz JB, Tellez S, Rampal G, Mannino GS, Couillard N, Mendez M, Green TRF, Murphy SM, Rowe RK. Diffuse traumatic brain injury substantially alters plasma growth hormone in the juvenile rat. J Endocrinol 2024; 260:e230157. [PMID: 37855319 PMCID: PMC10692649 DOI: 10.1530/joe-23-0157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/18/2023] [Indexed: 10/20/2023]
Abstract
Traumatic brain injury (TBI) can damage the hypothalamus and cause improper activation of the growth hormone (GH) axis, leading to growth hormone deficiency (GHD). GHD is one of the most prevalent endocrinopathies following TBI in adults; however, the extent to which GHD affects juveniles remains understudied. We used postnatal day 17 rats (n = 83), which model the late infantile/toddler period, and assessed body weights, GH levels, and number of hypothalamic somatostatin neurons at acute (1, 7 days post injury (DPI)) and chronic (18, 25, 43 DPI) time points. We hypothesized that diffuse TBI would alter circulating GH levels because of damage to the hypothalamus, specifically somatostatin neurons. Data were analyzed with generalized linear and mixed effects models with fixed effects interactions between the injury and time. Despite similar growth rates over time with age, TBI rats weighed less than shams at 18 DPI (postnatal day 35; P = 0.03, standardized effect size [d] = 1.24), which is around the onset of puberty. Compared to shams, GH levels were lower in the TBI group during the acute period (P = 0.196; d = 12.3) but higher in the TBI group during the chronic period (P = 0.10; d = 52.1). Although not statistically significant, TBI-induced differences in GH had large standardized effect sizes, indicating biological significance. The mean number of hypothalamic somatostatin neurons (an inhibitor of GH) positively predicted GH levels in the hypothalamus but did not predict GH levels in the somatosensory cortex. Understanding TBI-induced alterations in the GH axis may identify therapeutic targets to improve the quality of life of pediatric survivors of TBI.
Collapse
Affiliation(s)
- J Bryce Ortiz
- Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, Arizona, USA
- Department of Child Health, University of Arizona College of Medicine, Phoenix, Arizona, USA
| | - Sebastian Tellez
- Arizona State University, School of Life Sciences, Tempe, Arizona, USA
| | - Giri Rampal
- Department of Child Health, University of Arizona College of Medicine, Phoenix, Arizona, USA
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Grant S Mannino
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado, USA
| | - Nicole Couillard
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado, USA
| | - Matias Mendez
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado, USA
| | - Tabitha R F Green
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado, USA
| | - Sean M Murphy
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado, USA
| | - Rachel K Rowe
- Department of Integrative Physiology, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
7
|
Krieg JL, Leonard AV, Turner RJ, Corrigan F. Identifying the Phenotypes of Diffuse Axonal Injury Following Traumatic Brain Injury. Brain Sci 2023; 13:1607. [PMID: 38002566 PMCID: PMC10670443 DOI: 10.3390/brainsci13111607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Diffuse axonal injury (DAI) is a significant feature of traumatic brain injury (TBI) across all injury severities and is driven by the primary mechanical insult and secondary biochemical injury phases. Axons comprise an outer cell membrane, the axolemma which is anchored to the cytoskeletal network with spectrin tetramers and actin rings. Neurofilaments act as space-filling structural polymers that surround the central core of microtubules, which facilitate axonal transport. TBI has differential effects on these cytoskeletal components, with axons in the same white matter tract showing a range of different cytoskeletal and axolemma alterations with different patterns of temporal evolution. These require different antibodies for detection in post-mortem tissue. Here, a comprehensive discussion of the evolution of axonal injury within different cytoskeletal elements is provided, alongside the most appropriate methods of detection and their temporal profiles. Accumulation of amyloid precursor protein (APP) as a result of disruption of axonal transport due to microtubule failure remains the most sensitive marker of axonal injury, both acutely and chronically. However, a subset of injured axons demonstrate different pathology, which cannot be detected via APP immunoreactivity, including degradation of spectrin and alterations in neurofilaments. Furthermore, recent work has highlighted the node of Ranvier and the axon initial segment as particularly vulnerable sites to axonal injury, with loss of sodium channels persisting beyond the acute phase post-injury in axons without APP pathology. Given the heterogenous response of axons to TBI, further characterization is required in the chronic phase to understand how axonal injury evolves temporally, which may help inform pharmacological interventions.
Collapse
Affiliation(s)
| | | | | | - Frances Corrigan
- Translational Neuropathology Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5000, Australia; (J.L.K.)
| |
Collapse
|
8
|
Panchenko PE, Hippauf L, Konsman JP, Badaut J. Do astrocytes act as immune cells after pediatric TBI? Neurobiol Dis 2023; 185:106231. [PMID: 37468048 PMCID: PMC10530000 DOI: 10.1016/j.nbd.2023.106231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/28/2023] [Accepted: 07/15/2023] [Indexed: 07/21/2023] Open
Abstract
Astrocytes are in contact with the vasculature, neurons, oligodendrocytes and microglia, forming a local network with various functions critical for brain homeostasis. One of the primary responders to brain injury are astrocytes as they detect neuronal and vascular damage, change their phenotype with morphological, proteomic and transcriptomic transformations for an adaptive response. The role of astrocytic responses in brain dysfunction is not fully elucidated in adult, and even less described in the developing brain. Children are vulnerable to traumatic brain injury (TBI), which represents a leading cause of death and disability in the pediatric population. Pediatric brain trauma, even with mild severity, can lead to long-term health complications, such as cognitive impairments, emotional disorders and social dysfunction later in life. To date, the underlying pathophysiology is still not fully understood. In this review, we focus on the astrocytic response in pediatric TBI and propose a potential immune role of the astrocyte in response to trauma. We discuss the contribution of astrocytes in the local inflammatory cascades and secretion of various immunomodulatory factors involved in the recruitment of local microglial cells and peripheral immune cells through cerebral blood vessels. Taken together, we propose that early changes in the astrocytic phenotype can alter normal development of the brain, with long-term consequences on neurological outcomes, as described in preclinical models and patients.
Collapse
Affiliation(s)
| | - Lea Hippauf
- CNRS UMR 5536 RMSB-University of Bordeaux, Bordeaux, France
| | | | - Jerome Badaut
- CNRS UMR 5536 RMSB-University of Bordeaux, Bordeaux, France; Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| |
Collapse
|
9
|
Zangbar HS, Fallahi S, Hosseini L, Ghorbani M, Jafarzadehgharehziaaddin M, Shahabi P. Spinal cord injury leads to more neurodegeneration in the hippocampus of aged male rats compared to young rats. Exp Brain Res 2023; 241:1569-1583. [PMID: 37129669 DOI: 10.1007/s00221-023-06577-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 02/14/2023] [Indexed: 05/03/2023]
Abstract
Although the disruptive effects of spinal cord injury (SCI) on the hippocampus have been confirmed in some animal studies, no study has investigated its retrograde manifestations in the hippocampus of aged subjects. Herein, we compared the aged rats with young ones 3 weeks after the induction of SCI (Groups: Sham.Young, SCI.Young, Sham.Aged, SCI.Aged). The locomotion, hippocampal apoptosis, hippocampal rhythms (Delta, Theta, Beta, Gamma) max frequency (Max.rf) and power, hippocampal neurogenesis, and hippocampal receptors (NMDA, GABA A, Muscarinic1/M1), which are important in the generation of rhythms and neurogenesis, were compared in aged rats in contrast to young rats. At the end of the third week, the number of apoptotic (Tunel+) cells in the hippocampus (CA1, DG) of SCI animals was significantly higher compared to the sham animals, and also, it was significantly higher in the SCI.Aged group compared to SCI.Young group. Moreover, the rate of neurogenesis (DCX+, BrdU+ cells) and expression of M1 and NMDA receptors were significantly lower in the SCI.Aged group compared to SCI.Young group. The power and Max.fr of all rhythms were significantly lower in SCI groups compared to sham groups. Despite the decrease in the power of rhythms in the SCI.Aged group compared to SCI.Young group, there was no significant difference between them, and in terms of Max.fr index, only the Max.fr of theta and beta rhythms were significantly lower in the SCI.Aged group compared to SCI.Young group. This study showed that SCI could cause more neurodegeneration in the hippocampus of aged animals compared to young animals.
Collapse
Affiliation(s)
- Hamid Soltani Zangbar
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Golgasht Street, East Azarbayjan, Tabriz, Iran.
| | - Solmaz Fallahi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Golgasht Street, East Azarbayjan, 51666-14766, Tabriz, Iran
| | - Leila Hosseini
- Research Center of Psychiatry and Behavioral Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Meysam Ghorbani
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Golgasht Street, East Azarbayjan, 51666-14766, Tabriz, Iran
| | | | - Parviz Shahabi
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Golgasht Street, East Azarbayjan, 51666-14766, Tabriz, Iran.
| |
Collapse
|
10
|
Ye C, Behnke JA, Hardin KR, Zheng JQ. Drosophila melanogaster as a model to study age and sex differences in brain injury and neurodegeneration after mild head trauma. Front Neurosci 2023; 17:1150694. [PMID: 37077318 PMCID: PMC10106652 DOI: 10.3389/fnins.2023.1150694] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/09/2023] [Indexed: 04/05/2023] Open
Abstract
Repetitive physical insults to the head, including those that elicit mild traumatic brain injury (mTBI), are a known risk factor for a variety of neurodegenerative conditions including Alzheimer's disease (AD), Parkinson's disease (PD), and chronic traumatic encephalopathy (CTE). Although most individuals who sustain mTBI typically achieve a seemingly full recovery within a few weeks, a subset experience delayed-onset symptoms later in life. As most mTBI research has focused on the acute phase of injury, there is an incomplete understanding of mechanisms related to the late-life emergence of neurodegeneration after early exposure to mild head trauma. The recent adoption of Drosophila-based brain injury models provides several unique advantages over existing preclinical animal models, including a tractable framework amenable to high-throughput assays and short relative lifespan conducive to lifelong mechanistic investigation. The use of flies also provides an opportunity to investigate important risk factors associated with neurodegenerative conditions, specifically age and sex. In this review, we survey current literature that examines age and sex as contributing factors to head trauma-mediated neurodegeneration in humans and preclinical models, including mammalian and Drosophila models. We discuss similarities and disparities between human and fly in aging, sex differences, and pathophysiology. Finally, we highlight Drosophila as an effective tool for investigating mechanisms underlying head trauma-induced neurodegeneration and for identifying therapeutic targets for treatment and recovery.
Collapse
Affiliation(s)
- Changtian Ye
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Joseph A. Behnke
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Katherine R. Hardin
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - James Q. Zheng
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
11
|
Doust YV, Bindoff A, Holloway OG, Wilson R, King AE, Ziebell JM. Temporal changes in the microglial proteome of male and female mice after a diffuse brain injury using label-free quantitative proteomics. Glia 2023; 71:880-903. [PMID: 36468604 PMCID: PMC10952308 DOI: 10.1002/glia.24313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
Abstract
Traumatic brain injury (TBI) triggers neuroinflammatory cascades mediated by microglia, which promotes tissue repair in the short-term. These cascades may exacerbate TBI-induced tissue damage and symptoms in the months to years post-injury. However, the progression of the microglial function across time post-injury and whether this differs between biological sexes is not well understood. In this study, we examined the microglial proteome at 3-, 7-, or 28-days after a midline fluid percussion injury (mFPI) in male and female mice using label-free quantitative proteomics. Data are available via ProteomeXchange with identifier PXD033628. We identified a reduction in microglial proteins involved with clearance of neuronal debris via phagocytosis at 3- and 7-days post-injury. At 28 days post-injury, pro-inflammatory proteins were decreased and anti-inflammatory proteins were increased in microglia. These results indicate a reduction in microglial clearance of neuronal debris in the days post-injury with a shift to anti-inflammatory function by 28 days following TBI. The changes in the microglial proteome that occurred across time post-injury did not differ between biological sexes. However, we did identify an increase in microglial proteins related to pro-inflammation and phagocytosis as well as insulin and estrogen signaling in males compared with female mice that occurred with or without a brain injury. Although the microglial response was similar between males and females up to 28 days following TBI, biological sex differences in the microglial proteome, regardless of TBI, has implications for the efficacy of treatment strategies targeting the microglial response post-injury.
Collapse
Affiliation(s)
- Yasmine V. Doust
- Wicking Dementia Research and Education Centre, College of Health and MedicineUniversity of TasmaniaHobartTasmaniaAustralia
| | - Aidan Bindoff
- Wicking Dementia Research and Education Centre, College of Health and MedicineUniversity of TasmaniaHobartTasmaniaAustralia
| | - Olivia G. Holloway
- Wicking Dementia Research and Education Centre, College of Health and MedicineUniversity of TasmaniaHobartTasmaniaAustralia
| | - Richard Wilson
- Central Science Laboratory (CSL)University of TasmaniaHobartTasmaniaAustralia
| | - Anna E. King
- Wicking Dementia Research and Education Centre, College of Health and MedicineUniversity of TasmaniaHobartTasmaniaAustralia
| | - Jenna M. Ziebell
- Wicking Dementia Research and Education Centre, College of Health and MedicineUniversity of TasmaniaHobartTasmaniaAustralia
| |
Collapse
|
12
|
Sabetta Z, Krishna G, Curry T, Adelson PD, Thomas TC. Aging with TBI vs. Aging: 6-month temporal profiles for neuropathology and astrocyte activation converge in behaviorally relevant thalamocortical circuitry of male and female rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.06.527058. [PMID: 36798182 PMCID: PMC9934568 DOI: 10.1101/2023.02.06.527058] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Traumatic brain injury (TBI) manifests late-onset and persisting clinical symptoms with implications for sex differences and increased risk for the development of age-related neurodegenerative diseases. Few studies have evaluated chronic temporal profiles of neuronal and glial pathology that include sex as a biological variable. After experimental diffuse TBI, late-onset and persisting somatosensory hypersensitivity to whisker stimulation develops at one-month post-injury and persists to at least two months post-injury in male rats, providing an in vivo model to evaluate the temporal profile of pathology responsible for morbidity. Whisker somatosensation is dependent on signaling through the thalamocortical relays of the whisker barrel circuit made up of glutamatergic projections between the ventral posteromedial nucleus of the thalamus (VPM) and primary somatosensory barrel cortex (S1BF) with inhibitory (GABA) innervation from the thalamic reticular nucleus (TRN) to the VPM. To evaluate the temporal profiles of pathology, male and female Sprague Dawley rats ( n = 5-6/group) were subjected to sham surgery or midline fluid percussion injury (FPI). At 7-, 56-, and 168-days post-injury (DPI), brains were processed for amino-cupric silver stain and glial fibrillary acidic protein (GFAP) immunoreactivity, where pixel density of staining was quantified to determine the temporal profile of neuropathology and astrocyte activation in the VPM, S1BF, and TRN. FPI induced significant neuropathology in all brain regions at 7 DPI. At 168 DPI, neuropathology remained significantly elevated in the VPM and TRN, but returned to sham levels in the S1BF. GFAP immunoreactivity was increased as a function of FPI and DPI, with an FPI × DPI interaction in all regions and an FPI × Sex interaction in the S1BF. The interactions were driven by increased GFAP immunoreactivity in shams over time in the VPM and TRN. In the S1BF, GFAP immunoreactivity increased at 7 DPI and declined to age-matched sham levels by 168 DPI, while GFAP immunoreactivity in shams significantly increased between 7 and 168 days. The FPI × Sex interaction was driven by an overall greater level of GFAP immunoreactivity in FPI males compared to FPI females. Increased GFAP immunoreactivity was associated with an increased number of GFAP-positive soma, predominantly at 7 DPI. Overall, these findings indicate that FPI, time post-injury, sex, region, and aging with injury differentially contribute to chronic changes in neuronal pathology and astrocyte activation after diffuse brain injury. Thus, our results highlight distinct patterns of pathological alterations associated with the development and persistence of morbidity that supports chronic neuropathology, especially within the thalamus. Further, data indicate a convergence between TBI-induced and age-related pathology where further investigation may reveal a role for divergent astrocytic phenotypes associated with increased risk for neurodegenerative diseases.
Collapse
|
13
|
Choi M, Lim C, Lee BK, Cho S. Amelioration of Brain Damage after Treatment with the Methanolic Extract of Glycyrrhizae Radix et Rhizoma in Mice. Pharmaceutics 2022; 14:pharmaceutics14122776. [PMID: 36559268 PMCID: PMC9781260 DOI: 10.3390/pharmaceutics14122776] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/22/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Glycyrrhizae Radix et Rhizoma (GR) is a traditional herbal medicine widely used in Asian countries. GR was the most frequently used medicine among stroke patients in Donguibogam, the most representative book in Korean medicine. In the present study, we investigated the neuroprotective effects of the GR methanolic extract (GRex) on an ischemic stroke mice model. Ischemic stroke was induced by a 90 min transient middle cerebral artery occlusion (MCAO), and GRex was administered to mice with oral gavage after reperfusion of MCA blood flow. The MCAO-induced edema and infarction volume was measured, and behavioral changes were evaluated by a novel object recognition test (NORT). Immunofluorescence stains and Western blotting identified underlying mechanisms of the protective effects of GRex. GRex post-treatment in mice with MCAO showed potent effects in reducing cerebral edema and infarction at 125 mg/kg but no effects when the dosage was much lower or higher than 125 mg/kg. GRex inhibited the decrease of spontaneous motor activity and novel object recognition functions. The neuroprotective effects of GRex on ischemic stroke were due to its regulation of inflammation-related neuronal cells, such as microglia and astrocytes.
Collapse
Affiliation(s)
- Myeongjin Choi
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Chiyeon Lim
- Department of Medicine, College of Medicine, Dongguk University, Goyang 10326, Republic of Korea
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
- Correspondence: (C.L.); (S.C.); Tel.: +82-31-961-5270 (C.L.); +82-51-510-8457 (S.C.)
| | - Boo-Kyun Lee
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Suin Cho
- Department of Korean Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, Republic of Korea
- Correspondence: (C.L.); (S.C.); Tel.: +82-31-961-5270 (C.L.); +82-51-510-8457 (S.C.)
| |
Collapse
|
14
|
Green TRF, Murphy SM, Ortiz JB, Rowe RK. Age-At-Injury Influences the Glial Response to Traumatic Brain Injury in the Cortex of Male Juvenile Rats. Front Neurol 2022; 12:804139. [PMID: 35111130 PMCID: PMC8802670 DOI: 10.3389/fneur.2021.804139] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/14/2021] [Indexed: 11/29/2022] Open
Abstract
Few translational studies have examined how age-at-injury affects the glial response to traumatic brain injury (TBI). We hypothesized that rats injured at post-natal day (PND) 17 would exhibit a greater glial response, that would persist into early adulthood, compared to rats injured at PND35. PND17 and PND35 rats (n = 75) received a mild to moderate midline fluid percussion injury or sham surgery. In three cortical regions [peri-injury, primary somatosensory barrel field (S1BF), perirhinal], we investigated the glial response relative to age-at-injury (PND17 or PND35), time post-injury (2 hours, 1 day, 7 days, 25 days, or 43 days), and post-natal age, such that rats injured at PND17 or PND35 were compared at the same post-natal-age (e.g., PND17 + 25D post-injury = PND42; PND35 + 7D post-injury = PND42). We measured Iba1 positive microglia cells (area, perimeter) and quantified their activation status using skeletal analysis (branch length/cell, mean processes/cell, cell abundance). GFAP expression was examined using immunohistochemistry and pixel analysis. Data were analyzed using Bayesian multivariate multi-level models. Independent of age-at-injury, TBI activated microglia (shorter branches, fewer processes) in the S1BF and perirhinal cortex with more microglia in all regions compared to uninjured shams. TBI-induced microglial activation (shorter branches) was sustained in the S1BF into early adulthood (PND60). Overall, PND17 injured rats had more microglial activation in the perirhinal cortex than PND35 injured rats. Activation was not confounded by age-dependent cell size changes, and microglial cell body sizes were similar between PND17 and PND35 rats. There were no differences in astrocyte GFAP expression. Increased microglial activation in PND17 brain-injured rats suggests that TBI upregulates the glial response at discrete stages of development. Age-at-injury and aging with an injury are translationally important because experiencing a TBI at an early age may trigger an exaggerated glial response.
Collapse
Affiliation(s)
- Tabitha R. F. Green
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - Sean M. Murphy
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - J. Bryce Ortiz
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
- Phoenix Veterans Affairs (VA) Health Care System, Phoenix, AZ, United States
| | - Rachel K. Rowe
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
- Department of Integrative Physiology, University of Colorado, Boulder, CO, United States
- BARROW Neurological Institute at Phoenix Children's Hospital, Phoenix, AZ, United States
| |
Collapse
|
15
|
Houle S, Kokiko-Cochran ON. A Levee to the Flood: Pre-injury Neuroinflammation and Immune Stress Influence Traumatic Brain Injury Outcome. Front Aging Neurosci 2022; 13:788055. [PMID: 35095471 PMCID: PMC8790486 DOI: 10.3389/fnagi.2021.788055] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Increasing evidence demonstrates that aging influences the brain's response to traumatic brain injury (TBI), setting the stage for neurodegenerative pathology like Alzheimer's disease (AD). This topic is often dominated by discussions of post-injury aging and inflammation, which can diminish the consideration of those same factors before TBI. In fact, pre-TBI aging and inflammation may be just as critical in mediating outcomes. For example, elderly individuals suffer from the highest rates of TBI of all severities. Additionally, pre-injury immune challenges or stressors may alter pathology and outcome independent of age. The inflammatory response to TBI is malleable and influenced by previous, coincident, and subsequent immune insults. Therefore, pre-existing conditions that elicit or include an inflammatory response could substantially influence the brain's ability to respond to traumatic injury and ultimately affect chronic outcome. The purpose of this review is to detail how age-related cellular and molecular changes, as well as genetic risk variants for AD affect the neuroinflammatory response to TBI. First, we will review the sources and pathology of neuroinflammation following TBI. Then, we will highlight the significance of age-related, endogenous sources of inflammation, including changes in cytokine expression, reactive oxygen species processing, and mitochondrial function. Heightened focus is placed on the mitochondria as an integral link between inflammation and various genetic risk factors for AD. Together, this review will compile current clinical and experimental research to highlight how pre-existing inflammatory changes associated with infection and stress, aging, and genetic risk factors can alter response to TBI.
Collapse
Affiliation(s)
- Samuel Houle
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States,Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, Columbus, OH, United States
| | - Olga N. Kokiko-Cochran
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, United States,Institute for Behavioral Medicine Research, Neurological Institute, The Ohio State University, Columbus, OH, United States,*Correspondence: Olga N. Kokiko-Cochran
| |
Collapse
|