1
|
Barboza VR, Kubota GT, da Silva VA, Barbosa LM, Arnaut D, Rodrigues ALDL, Galhardoni R, Barbosa ER, Brunoni AR, Teixeira MJ, Cury RG, de Andrade DC. Posterior insula repetitive transcranial magnetic stimulation for chronic pain in patients with Parkinson disease - pain type matters: A double-blinded randomized sham-controlled trial. Neurophysiol Clin 2024; 54:102994. [PMID: 39024845 DOI: 10.1016/j.neucli.2024.102994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/01/2024] [Accepted: 06/01/2024] [Indexed: 07/20/2024] Open
Abstract
OBJECTIVES Altered somatosensory processing in the posterior insula may play a role in chronic pain development and contribute to Parkinson disease (PD)-related pain. Posterior-superior insula (PSI) repetitive transcranial magnetic stimulation (rTMS) has been demonstrated to have analgesic effects among patients with some chronic pain conditions. This study aimed at assessing the efficacy of PSI-rTMS for treating PD-related pain. METHODS This was a double-blinded, randomized, sham-controlled, parallel-arm trial (NCT03504748). People with PD (PwP)-related chronic pain underwent five daily PSI-rTMS sessions for a week, followed by once weekly maintenance stimulations for seven weeks. rTMS was delivered at 10 Hz and 80% of the resting motor threshold. The primary outcome was a ≥ 30% pain intensity reduction at 8 weeks compared to baseline. Functionality, mood, cognitive, motor status, and somatosensory thresholds were also assessed. RESULTS Twenty-five patients were enrolled. Mean age was 55.2 ± 9.5 years-old, and 56% were female. Nociceptive pain accounted for 60%, and neuropathic and nociplastic for 20% each. No significant difference was found for 30% pain reduction response rates between active (42.7%) and sham groups (14.6%, p = 0.26). Secondary clinical outcomes and sensory thresholds also did not differ significantly. In a post hoc analysis, PwP with nociceptive pain sub-type experienced more pain relief after active (85.7%) compared to sham PSI-rTMS (25%, p = 0.032). CONCLUSION Our preliminary results suggest that different types of PD-related pain may respond differently to treatment, and therefore people with PD may benefit from having PD-related pain well characterized in research trials and in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | - Debora Arnaut
- Pain Center, Department of Neurology, University of São Paulo, São Paulo, Brazil
| | | | - Ricardo Galhardoni
- Pain Center, Department of Neurology, University of São Paulo, São Paulo, Brazil
| | - Egberto Reis Barbosa
- Movement Disorders Group, Department of Neurology, University of São Paulo., Av. Dr. Enéas Carvalho de Aguiar, 255 - Cerqueira Cesar, Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Andre Russowsky Brunoni
- Laboratory of Neuroscience and National Institute of Biomarkers in Psychiatry, Department and Institute of Psychiatry, Center for Clinical and Epidemiological Research & Interdisciplinary Center for Applied Neuromodulation, University Hospital, University of São Paulo, R. Dr. Ovídio Pires de Campos, 785 - Cerqueira Cesar, Sao Paulo, Sao Paulo 05403-903, Brazil
| | - Manoel Jacobsen Teixeira
- Pain Center, Department of Neurology, University of São Paulo, São Paulo, Brazil; Movement Disorders Group, Department of Neurology, University of São Paulo., Av. Dr. Enéas Carvalho de Aguiar, 255 - Cerqueira Cesar, Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Rubens Gisbert Cury
- Movement Disorders Group, Department of Neurology, University of São Paulo., Av. Dr. Enéas Carvalho de Aguiar, 255 - Cerqueira Cesar, Sao Paulo, Sao Paulo 05403-000, Brazil
| | - Daniel Ciampi de Andrade
- Pain Center, Department of Neurology, University of São Paulo, São Paulo, Brazil; Center for Neuroplasticity and Pain, Department of Health Sciences and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
2
|
Stoyanova-Piroth G, Milanov I, Stambolieva K. Association between pain threshold and manifested pain assessed using a PD-specific pain scale in Parkinson's disease. Front Neurol 2024; 15:1420696. [PMID: 39131046 PMCID: PMC11312374 DOI: 10.3389/fneur.2024.1420696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/28/2024] [Indexed: 08/13/2024] Open
Abstract
Background The neurodegenerative process in Parkinson's disease (PD) affects both dopaminergic and non-dopaminergic structures, which determine the wide range of motor and non-motor symptoms (NMS), including different types of pain. Diverse mechanisms contribute to pain in PD. Abnormal nociceptive processing is considered a distinctive feature of the disease. Objective In the present study, we used a validated PD-specific pain assessment tool to investigate self-reported pain in PD patients and to analyze the association with the objective pain threshold. Methods The RIII component of the nociceptive flexor reflex was assessed in 35 patients with PD and was compared to 40 healthy controls. Self-reported pain was measured using the Bulgarian version of the King's Parkinson's Disease Pain Scale (KPPS-BG). A correlation analysis was used to investigate the relationship between the objective nociceptive threshold and PD pain as assessed by KPPS-BG. Results PD patients had a significantly lower RIII threshold than control individuals (the mean SD value was 6.24 ± 1.39 vs. 10.33 ± 1.64) when assessed in the "off" state. A statistically significant (p < 0.05) fairly negative Spearman's correlation was observed between the decreased spinal nociceptive threshold and fluctuation-related pain (-0.31). Domain 4, "nocturnal pain" (-0.21), and the KPPS-BG total score (-0.21) showed a weak negative correlation. An insignificant positive correlation was found between domain 6-"discoloration, edema/swelling"-and the RIII threshold. A higher Movement Disorders Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS) part III score and modified Hoehn and Yahr (H&Y) scale are associated with a decreased nociceptive flexor reflex threshold. Conclusion The results of the present study demonstrate the important role of increased spinal nociception in the occurrence of pain, which is associated with fluctuations and, to a lesser extent, nocturnal pain.
Collapse
Affiliation(s)
- Galina Stoyanova-Piroth
- St. Naum Hospital of Neurology and Psychiatry, Medical University, Sofia, Bulgaria
- ZURZACH Care, Neurorehabilitation, Rehaklinik Baden Dättwil, Baden, Switzerland
| | - Ivan Milanov
- St. Naum Hospital of Neurology and Psychiatry, Medical University, Sofia, Bulgaria
| | | |
Collapse
|
3
|
Salabasidou E, Binder T, Volkmann J, Kuzkina A, Üçeyler N. Pain in Parkinson disease: a deep phenotyping study. Pain 2024; 165:1642-1654. [PMID: 38314763 DOI: 10.1097/j.pain.0000000000003173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 12/04/2023] [Indexed: 02/07/2024]
Abstract
ABSTRACT In our prospective cross-sectional study, we comprehensively characterized Parkinson disease (PD)-related pain in monocentrically recruited patients with PD using standardized tools of pain assessment and categorization. One hundred fifty patients were systematically interviewed and filled in questionnaires for pain, depression, motor, and nonmotor symptoms. Patients with PD-related pain (PD pain), patients without PD-related pain (no PD pain), and patients without pain (no pain) were compared. Pain was present in 108/150 (72%) patients with PD, and 90/150 (60%) patients were classified as having PD-related pain. Most of the patients with PD (67/90, 74%) reported nociceptive pain, which was episodic (64/90, 71%), primarily nocturnal (56/90, 62%), and manifested as cramps (32/90, 36%). Parkinson disease-related pain was most frequently located in the feet (51/90, 57%), mainly at the toe joints (22/51, 43%). 38/90 (42%) patients with PD-related pain received analgesic medication with nonsteroidal anti-inflammatory drugs being the most frequently used (31/42, 82%) and opioids most effective (70% pain reduction of individual maximum pain intensities, range 22%-100%, confidence interval 50%-90%). All patients received oral PD treatment; however, levodopa equivalent dose showed no correlation with mean pain intensities (Spearman ρ = 0.027, P > 0.05). Our data provide a comprehensive analysis of PD-related pain, giving evidence for mainly non-neuropathic podalgia, which bears the potential to rethink assessment and analgesic treatment of pain in PD in clinical practice.
Collapse
Affiliation(s)
- Elena Salabasidou
- Department of Neurology, University Hospital of Würzburg, Würzburg, Germany. Kuzkina is now with the Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | | | | | | | | |
Collapse
|
4
|
Nardelli D, Gambioli F, De Bartolo MI, Mancinelli R, Biagioni F, Carotti S, Falato E, Leodori G, Puglisi-Allegra S, Vivacqua G, Fornai F. Pain in Parkinson's disease: a neuroanatomy-based approach. Brain Commun 2024; 6:fcae210. [PMID: 39130512 PMCID: PMC11311710 DOI: 10.1093/braincomms/fcae210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 04/23/2024] [Accepted: 06/17/2024] [Indexed: 08/13/2024] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disorder characterized by the deposition of misfolded alpha-synuclein in different regions of the central and peripheral nervous system. Motor impairment represents the signature clinical expression of Parkinson's disease. Nevertheless, non-motor symptoms are invariably present at different stages of the disease and constitute an important therapeutic challenge with a high impact for the patients' quality of life. Among non-motor symptoms, pain is frequently experienced by patients, being present in a range of 24-85% of Parkinson's disease population. Moreover, in more than 5% of patients, pain represents the first clinical manifestation, preceding by decades the exordium of motor symptoms. Pain implies a complex biopsychosocial experience with a downstream complex anatomical network involved in pain perception, modulation, and processing. Interestingly, all the anatomical areas involved in pain network can be affected by a-synuclein pathology, suggesting that pathophysiology of pain in Parkinson's disease encompasses a 'pain spectrum', involving different anatomical and neurochemical substrates. Here the various anatomical sites recruited in pain perception, modulation and processing are discussed, highlighting the consequences of their possible degeneration in course of Parkinson's disease. Starting from peripheral small fibres neuropathy and pathological alterations at the level of the posterior laminae of the spinal cord, we then describe the multifaceted role of noradrenaline and dopamine loss in driving dysregulated pain perception. Finally, we focus on the possible role of the intertwined circuits between amygdala, nucleus accumbens and habenula in determining the psycho-emotional, autonomic and cognitive experience of pain in Parkinson's disease. This narrative review provides the first anatomically driven comprehension of pain in Parkinson's disease, aiming at fostering new insights for personalized clinical diagnosis and therapeutic interventions.
Collapse
Affiliation(s)
- Domiziana Nardelli
- Laboratory of Microscopic and Ultrastructural Anatomy, Campus Biomedico University of Roma, Rome 00128, Italy
| | - Francesco Gambioli
- Laboratory of Microscopic and Ultrastructural Anatomy, Campus Biomedico University of Roma, Rome 00128, Italy
| | | | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Roma, Rome 00161, Italy
| | | | - Simone Carotti
- Laboratory of Microscopic and Ultrastructural Anatomy, Campus Biomedico University of Roma, Rome 00128, Italy
| | - Emma Falato
- Laboratory of Microscopic and Ultrastructural Anatomy, Campus Biomedico University of Roma, Rome 00128, Italy
| | - Giorgio Leodori
- IRCCS Neuromed, Pozzilli, IS 86077, Italy
- Department of Human Neuroscience, Sapienza University of Roma, Rome 00185, Italy
| | | | - Giorgio Vivacqua
- Laboratory of Microscopic and Ultrastructural Anatomy, Campus Biomedico University of Roma, Rome 00128, Italy
| | - Francesco Fornai
- IRCCS Neuromed, Pozzilli, IS 86077, Italy
- Department of Experimental Morphology and Applied Biology, University of Pisa, Pisa 56122, Italy
| |
Collapse
|
5
|
Cai X, Jin Z, Zhang S, Liu J, Jiang Z, Tang F, Lan T. Sjögren's syndrome and Parkinson's Disease: A bidirectional two-sample Mendelian randomization study. PLoS One 2024; 19:e0298778. [PMID: 38568911 PMCID: PMC10990169 DOI: 10.1371/journal.pone.0298778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/30/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Previous observational studies have reported an association between Sjögren's syndrome (SS) and an increased risk of Parkinson's Disease (PD). However, the causal relationship between these conditions remains unclear. The objective of this study was to investigate the causal impact of SS on the risk of developing PD, utilizing the Mendelian randomization (MR) approach. METHODS We conducted a bidirectional MR analysis using publicly available genome-wide association studies (GWAS) data. The primary analysis utilized the inverse-variance weighted (IVW) method. Complementary methods, such as MR-Egger regression, weighted mode, weighted median, and MR-pleiotropy residual sum and outlier (MR-PRESSO), were utilized to identify and correct for the presence of horizontal pleiotropy. RESULTS The IVW MR analysis revealed no significant association between SS and PD (IVW: OR = 1.00, 95% CI = 0.94-1.07, P = 0.95). Likewise, the reverse MR analysis did not identify any significant causal relationship between PD and SS (IVW: OR = 0.98, 95% CI = 0.85-1.12, P = 0.73). The results from MR-Egger regression, weighted median, and weighted mode approaches were consistent with the IVW method. Sensitivity analyses suggested that horizontal pleiotropy is unlikely to introduce bias to the causal estimates. CONCLUSION This study does not provide evidence to support the assertion that SS has a conclusive impact on the risk of PD, which contradicts numerous existing observational reports. Further investigation is necessary to determine the possible mechanisms behind the associations observed in these observational studies.
Collapse
Affiliation(s)
- Xin Cai
- Department of Rheumatology, The First People’s Hospital of Guiyang, Guiyang, Guizhou Province, China
| | - Zexu Jin
- Department of Rheumatology, The First People’s Hospital of Guiyang, Guiyang, Guizhou Province, China
| | - Shaoqin Zhang
- Department of Dermatology, The First People’s Hospital of Guiyang, Guiyang, Guizhou Province, China
| | - Jiajun Liu
- Department of Rheumatology, The First People’s Hospital of Guiyang, Guiyang, Guizhou Province, China
| | - Zong Jiang
- Department of Rheumatology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Fang Tang
- Department of Rheumatology, The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China
| | - Tianzuo Lan
- Department of Rheumatology, The First People’s Hospital of Guiyang, Guiyang, Guizhou Province, China
| |
Collapse
|
6
|
WANG S, SUN J, FENG Q, LI B, WANG X, YUAN F, CUI Y. Effectivenss of electroacupuncture for skeletal muscle pain in Parkinson's disease: a Clinical randomized controlled trial. J TRADIT CHIN MED 2024; 44:388-395. [PMID: 38504545 PMCID: PMC10927396 DOI: 10.19852/j.cnki.jtcm.20240203.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 12/12/2023] [Indexed: 03/21/2024]
Abstract
OBJECTIVE To explore the effect of electroacupuncture on skeletal muscle pain in Parkinson's disease (PD). METHODS A single-center randomized controlled trial was conducted with sixty patients with Parkinson's disease with skeletal muscle pain were randomly divided into electroacupuncture group and sham acupuncture control group with 30 patients each. The electric acupuncture group was treated with electric acupuncture, while the control group was treated with Park needle pseudoacupuncture. Both groups were treated 5 times a week for a total of 4 weeks, and both groups completed 20 treatments. King's Parkinson's Pain Scale (KPPS) and visual analog scale (VAS) were used before and after treatment to evaluate the pain degree of patients. Real-time shear wave elastography (SWE) and modified Ashworth score (MAS) were used to evaluate the changes of muscle tone. Parkinson's comprehensive Score Scale (MDS-UPDRS, including UPDRSⅡ and UPDRS Ⅲ) was used to evaluate exercise ability. Hamilton Depression Scale (HAMD) score was used to evaluate the emotional changes of patients. Spearman correlation analysis was used to explore the correlation between pain degree and muscle tone, exercise ability and emotion. RESULTS During the study, one case fell off in the control group, and 30 cases were eventually included in the analysis and treatment group and 29 cases in the control group. After treatment, Young's modulus of biceps and quadriceps and shear wave velocity of biceps were decreased in electroacupuncture group compared with before treatment, while KPPS score, VAS score, UPDRSⅡ, UPDRS Ⅲ and modified Ashworth score were decreased, with statistical significance (P < 0.05). There was no statistical significance in control group (P > 0.05). After treatment, KPPS score, VAS score, UPDRSⅡ and UPDRS Ⅲ, MAS, HAMD score, Young's modulus of biceps and shear wave velocity in electroacupuncture group were significantly lower than those in control group (P < 0.05). Spearman correlation analysis showed that KPPS score was positively correlated with UPDRS Ⅲ (r = 0.414, P < 0.05). KPPS score was positively correlated with HAMD score (r = 0.576, P < 0.01). CONCLUSION Electroacupuncture therapy can effectively improve skeletal muscle pain in patients with Parkinson's disease, reduce the muscle hardness of patients, improve patients' daily life ability, and improve patients' emotional disorders. The degree of skeletal muscle pain in PD patients is correlated with motor ability and emotional disorders, but there is no significant correlation between the degree of skeletal muscle pain and the muscle tone of PD patients.
Collapse
Affiliation(s)
- Shaosong WANG
- Department of acupuncture, Beijing Hospital of Traditional Chinese Medicine, Beijing 100010, China
| | - Jingqing SUN
- Department of acupuncture, Beijing Hospital of Traditional Chinese Medicine, Beijing 100010, China
| | - Qingyin FENG
- Department of acupuncture, Beijing Hospital of Traditional Chinese Medicine, Beijing 100010, China
| | - Bin LI
- Department of acupuncture, Beijing Hospital of Traditional Chinese Medicine, Beijing 100010, China
| | - Xin WANG
- Department of acupuncture, Beijing Hospital of Traditional Chinese Medicine, Beijing 100010, China
| | - Fan YUAN
- Department of acupuncture, Beijing Hospital of Traditional Chinese Medicine, Beijing 100010, China
| | - Yingxue CUI
- Department of acupuncture, Beijing Hospital of Traditional Chinese Medicine, Beijing 100010, China
| |
Collapse
|
7
|
Rukavina K, Mulholland N, Corcoran B, Skoric MK, Staunton J, Rota S, Zinzalias P, Wu K, Fieldwalker A, Bannister K, Rizos A, Chaudhuri KR. Musculoskeletal pain in Parkinson's disease: Association with dopaminergic deficiency in the caudate nucleus. Eur J Pain 2024; 28:244-251. [PMID: 37587725 DOI: 10.1002/ejp.2172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/09/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Musculoskeletal (MSK) pain affects over 80% of People with Parkinson's (PD, PwP) and may, in part, be dopaminergic in origin, as dopaminergic medication often leads to its relief. METHODS PwP who underwent striatal dopamine transporter visualization with a radiopharmaceutical DaTscan™ (123 I-Ioflupane Injection) using a single-photon emission computed tomography (SPECT) as a part of their clinical-diagnostic work up were enrolled in the "Non-motor International Longitudinal Study" (NILS; UK National Institute for Health Research Clinical Research Network Number 10084) and included in this cross-sectional analysis. The association between specific DaTscan binding ratios for each striatum, the caudate nucleus and putamen and clinical ratings for MSK pain (assessed using the King's Parkinson's Disease Pain Scale (KPPS)) were analysed. RESULTS 53 PwP (30.2% female; age: 63.79 ± 11.31 years; disease duration (DD): 3.32 (0.31-14.41) years; Hoehn & Yahr stage (H&Y): 2 (1-4); Levodopa Equivalent Daily Dose (LEDD): 543.08 ± 308.94 mg) were assessed and included in this analysis. MSK pain was highly prevalent (71.7% of all participants, mean KPPS Item 1 score 5.34 ± 4.76) and did not correlate with the motor symptoms burden (SCOPA-Motor total score; p = 0.783) but showed a significant correlation with quality of life (PDQ-8, rs = 0.290, p = 0.035). z-scores for the caudate nucleus (Exp (B) = 0.367, 95% CI for Exp (B) 0.148-0.910, p = 0.031) and striatum (Exp (B) = 0.338, 95% CI for Exp (B) 0.123-0.931, p = 0.036), adjusted for DD, H&Y and LEDD, were significant determinants of MSK pain. CONCLUSIONS Our findings suggest an association between MSK pain in PwP and the severity of dopaminergic deficiency in the caudate nucleus. SIGNIFICANCE In People with Parkinson's, musculoskeletal pain does not arise simply as a direct sequel to motor symptoms-instead, it is linked to the severity of dopaminergic depletion in the caudate nucleus.
Collapse
Affiliation(s)
- Katarina Rukavina
- Institute of Psychiatry, Psychology & Neuroscience at King's College London, London, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, UK
| | - Nicola Mulholland
- Department of Nuclear Medicine, King's College Hospital NHS Foundation Trust, London, UK
| | - Benjamin Corcoran
- Department of Nuclear Medicine, King's College Hospital NHS Foundation Trust, London, UK
| | - Magdalena Krbot Skoric
- Laboratory for Cognitive and Experimental Neurophysiology, Department of Neurology, University Hospital Center Zagreb, Zagreb, Croatia
| | - Juliet Staunton
- Institute of Psychiatry, Psychology & Neuroscience at King's College London, London, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, UK
| | - Silvia Rota
- Institute of Psychiatry, Psychology & Neuroscience at King's College London, London, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, UK
| | - Pavlos Zinzalias
- Institute of Psychiatry, Psychology & Neuroscience at King's College London, London, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, UK
| | - Kit Wu
- Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, UK
| | - Anna Fieldwalker
- Institute of Psychiatry, Psychology & Neuroscience at King's College London, London, UK
| | - Kirsty Bannister
- Institute of Psychiatry, Psychology & Neuroscience at King's College London, London, UK
| | - Alexandra Rizos
- Institute of Psychiatry, Psychology & Neuroscience at King's College London, London, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, UK
| | - K Ray Chaudhuri
- Institute of Psychiatry, Psychology & Neuroscience at King's College London, London, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital NHS Foundation Trust, London, UK
| |
Collapse
|
8
|
Allen NE, Romaliiska O, Naisby J. Pain and the Non-Pharmacological Management of Pain in People with Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:S65-S80. [PMID: 38457146 PMCID: PMC11380256 DOI: 10.3233/jpd-230227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Pain is a distressing and universal experience, yet everyone's pain experience is influenced by a complex array of biological, psychological, and social factors. For people with Parkinson's disease (PwP), these biopsychosocial factors include neurodegeneration and the psychological and social factors that accompany living with a chronic, neurodegenerative condition in addition to the factors experienced by those in the general population (e.g., living with co-morbidities such as osteoarthritis). The way these factors influence each individual is likely to determine which pain management strategies are optimal for them. This review first describes pain and the biopsychosocial model of pain. It explores how pain is classified in Parkinson's disease (PD) and describes the three main types of pain: nociceptive, neuropathic, and nociplastic pain. This background provides context for a discussion of non-pharmacological pain management strategies that may aid in the management of pain in PwP; exercise, psychological strategies, acupuncture and massage. While there is little PD-specific research to inform the non-pharmacological management of pain, findings from current PD research are combined with that from chronic pain research to present recommendations for clinical practice. Recommendations include assessment that incorporates potential biopsychosocial contributors to pain that will then guide a holistic, multi-modal approach to management. As exercise provides overall benefits for PwP, those with chronic pain should be carefully monitored with exercise prescribed and adjusted accordingly. Research is needed to develop and evaluate multi-modal approaches to pain management that are delivered in a biopsychosocial framework.
Collapse
Affiliation(s)
- Natalie Elizabeth Allen
- Discipline of Physiotherapy, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Oksana Romaliiska
- Department of Neurology, Center of Expertise for Parkinson & Movement Disorders, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jenni Naisby
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| |
Collapse
|
9
|
Barboza VR, Kubota GT, da Silva VA, Barbosa LM, Arnaut D, Rodrigues ALDL, Galhardoni R, Cury RG, Barbosa ER, Brunoni AR, Teixeira MJ, de Andrade DC. Parkinson's Disease-related Pains are Not Equal: Clinical, Somatosensory and Cortical Excitability Findings in Individuals With Nociceptive Pain. THE JOURNAL OF PAIN 2023; 24:2186-2198. [PMID: 37442404 DOI: 10.1016/j.jpain.2023.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/21/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023]
Abstract
Chronic pain is a frequent and burdensome nonmotor symptom of Parkinson's disease (PD). PD-related chronic pain can be classified as nociceptive, neuropathic, or nociplastic, the former being the most frequent subtype. However, differences in neurophysiologic profiles between these pain subtypes, and their potential prognostic and therapeutic implications have not been explored yet. This is a cross-sectional study on patients with PD (PwP)-related chronic pain (ie, started with or was aggravated by PD). Subjects were assessed for clinical and pain characteristics through questionnaires and underwent quantitative sensory tests and motor corticospinal excitability (CE) evaluations. Data were then compared between individuals with nociceptive and non-nociceptive (ie, neuropathic or nociplastic) pains. Thirty-five patients were included (51.4% male, 55.7 ± 11.0 years old), 20 of which had nociceptive pain. Patients with nociceptive PD-related pain had lower warm detection threshold (WDT, 33.34 ± 1.39 vs 34.34 ± 1.72, P = .019) and mechanical detection threshold (MDT, 2.55 ± 1.54 vs 3.86 ± .97, P = .007) compared to those with non-nociceptive pains. They also presented a higher proportion of low rest motor threshold values than the non-nociceptive pain ones (64.7% vs 26.6%, P = .048). In non-nociceptive pain patients, there was a negative correlation between WDT and non-motor symptoms scores (r = -.612, P = .045) and a positive correlation between MDT and average pain intensity (r = .629, P = .038), along with neuropathic pain symptom scores (r = .604, P = .049). It is possible to conclude that PD-related chronic pain subtypes have distinctive somatosensory and CE profiles. These preliminary data may help better frame previous contradictory findings in PwP and may have implications for future trial designs aiming at developing individually-tailored therapies. PERSPECTIVE: This work showed that PwP-related nociceptive chronic pain may have distinctive somatosensory and CE profiles than those with non-nociceptive pain subtypes. These data may help shed light on previous contradictory findings in PwP and guide future trials aiming at developing individually-tailored management strategies.
Collapse
Affiliation(s)
| | | | | | | | - Debora Arnaut
- Pain Center, Department of Neurology, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Ricardo Galhardoni
- Pain Center, Department of Neurology, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Rubens Gisbert Cury
- Movement Disorders Group, Department of Neurology, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Egberto Reis Barbosa
- Movement Disorders Group, Department of Neurology, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Andre Russowsky Brunoni
- Laboratory of Neuroscience and National Institute of Biomarkers in Psychiatry, Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, São Paulo, Brazil; Center for Clinical and Epidemiological Research & Interdisciplinary Center for Applied Neuromodulation, University Hospital, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Manoel Jacobsen Teixeira
- Pain Center, Department of Neurology, University of São Paulo, São Paulo, São Paulo, Brazil; Movement Disorders Group, Department of Neurology, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Daniel Ciampi de Andrade
- Pain Center, Department of Neurology, University of São Paulo, São Paulo, São Paulo, Brazil; Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg E, Denmark
| |
Collapse
|
10
|
de Andrade DC, Mylius V, Perez-Lloret S, Cury RG, Bannister K, Moisset X, Taricani Kubota G, Finnerup NB, Bouhassira D, Chaudhuri KR, Graven-Nielsen T, Treede RD. Pain in Parkinson disease: mechanistic substrates, main classification systems, and how to make sense out of them. Pain 2023; 164:2425-2434. [PMID: 37318012 DOI: 10.1097/j.pain.0000000000002968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023]
Abstract
ABSTRACT Parkinson disease (PD) affects up to 2% of the general population older than 65 years and is a major cause of functional loss. Chronic pain is a common nonmotor symptom that affects up to 80% of patients with (Pw) PD both in prodromal phases and during the subsequent stages of the disease, negatively affecting patient's quality of life and function. Pain in PwPD is rather heterogeneous and may occur because of different mechanisms. Targeting motor symptoms by dopamine replacement or with neuromodulatory approaches may only partially control PD-related pain. Pain in general has been classified in PwPD according to the motor signs, pain dimensions, or pain subtypes. Recently, a new classification framework focusing on chronic pain was introduced to group different types of PD pains according to mechanistic descriptors: nociceptive, neuropathic, or neither nociceptive nor neuropathic. This is also in line with the International Classification of Disease-11 , which acknowledges the possibility of chronic secondary musculoskeletal or nociceptive pain due to disease of the CNS. In this narrative review and opinion article, a group of basic and clinical scientists revise the mechanism of pain in PD and the challenges faced when classifying it as a stepping stone to discuss an integrative view of the current classification approaches and how clinical practice can be influenced by them. Knowledge gaps to be tackled by coming classification and therapeutic efforts are presented, as well as a potential framework to address them in a patient-oriented manner.
Collapse
Affiliation(s)
- Daniel Ciampi de Andrade
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Veit Mylius
- Department of Neurology, Centre for Neurorehabilitation, Valens, Switzerland
- Department of Neurology, Philipps University, Marburg, Germany
- Department of Neurology, Kantonsspital, St. Gallen, Switzerland
| | - Santiago Perez-Lloret
- Observatorio de Salud Pública, Universidad Católica Argentina, Consejo de Investigaciones Científicas y Técnicas (UCA-CONICET), Buenos Aires, Argentina
- Facultad de Medicina, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Rubens G Cury
- Movement Disorders Center, Department of Neurology, University of Sao Paulo, Sao Paulo, Brazil
| | - Kirsty Bannister
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Xavier Moisset
- Université Clermont Auvergne, CHU de Clermont-Ferrand, Inserm, Neuro-Dol, Clermont-Ferrand, France
| | - Gabriel Taricani Kubota
- Department of Neurology, Centre for Neurorehabilitation, Valens, Switzerland
- Pain Center, University of Sao Paulo Clinics Hospital, Sao Paulo, Brazil
- Center for Pain Treatment, Institute of Cancer of the State of Sao Paulo, University of Sao Paulo Clinics Hospital, Sao Paulo, Brazil
| | - Nanna B Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Didier Bouhassira
- Inserm U987, APHP, UVSQ, Paris-Saclay University, Ambroise Pare Hospital, Boulogne-Billancourt, France
| | - Kallol Ray Chaudhuri
- Division of Neuroscience, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Parkinson Foundation Centre of Excellence in Care and Research, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Thomas Graven-Nielsen
- Center for Neuroplasticity and Pain (CNAP), Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Mannheim Center for Translational Neurosciences, Heidelberg University, Mannheim, Germany
| |
Collapse
|