1
|
Park J, Shin J, Lee J, Jeong J. Inter-Brain Synchrony Pattern Investigation on Triadic Board Game Play-Based Social Interaction: An fNIRS Study. IEEE Trans Neural Syst Rehabil Eng 2023; 31:2923-2932. [PMID: 37410649 DOI: 10.1109/tnsre.2023.3292844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Recent advances in functional neuroimaging techniques, including methodologies such as fNIRS, have enabled the evaluation of inter-brain synchrony (IBS) induced by interpersonal interactions. However, the social interactions assumed in existing dyadic hyperscanning studies do not sufficiently emulate polyadic social interactions in the real world. Therefore, we devised an experimental paradigm that incorporates the Korean folk board game "Yut-nori" to reproduce social interactions that emulate social activities in the real world. We recruited 72 participants aged 25.2 ± 3.9 years (mean ± standard deviation) and divided them into 24 triads to play Yut-nori, following the standard or modified rules. The participants either competed against an opponent (standard rule) or cooperated with an opponent (modified rule) to achieve a goal efficiently. Three different fNIRS devices were employed to record cortical hemodynamic activations in the prefrontal cortex both individually and simultaneously. Wavelet transform coherence (WTC) analyses were performed to assess prefrontal IBS within a frequency range of 0.05-0.2 Hz. Consequently, we observed that cooperative interactions increased prefrontal IBS across overall frequency bands of interest. In addition, we also found that different purposes for cooperation generated different spectral characteristics of IBS depending on the frequency bands. Moreover, IBS in the frontopolar cortex (FPC) reflected the influence of verbal interactions. The findings of our study suggest that future hyperscanning studies should consider polyadic social interactions to reveal the properties of IBS in real-world interactions.
Collapse
|
2
|
Zhang Q, Liu Z, Qian H, Hu Y, Gao X. Interpersonal Competition in Elderly Couples: A Functional Near-Infrared Spectroscopy Hyperscanning Study. Brain Sci 2023; 13:brainsci13040600. [PMID: 37190565 DOI: 10.3390/brainsci13040600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/14/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Elderly people tend not to compete with others, and if they do, the mechanism behind the competition is not clear. In this study, groups of elderly couples and matched cross-sex controls were recruited to perform a competitive button-pressing task, while their brain signals were simultaneously collected using functional near-infrared spectroscopy (fNIRS) hyperscanning. Several fundamental observations were made. First, controls showed attenuated interpersonal competition across task processes, but couples held the competition with each other. Second, couples demonstrated increased inter-brain synchronization (IBS) between the middle temporal cortex and the temporoparietal junction across task processes. Third, Granger causality analysis in couples revealed significant differences between the directions (i.e., from men to women, and from women to men) in the first half of the competitive task, whereas there was no significant difference in the second half. Finally, the groups of couples and controls could be successfully discriminated against based on IBS by using a machine-learning approach. In sum, these findings indicate that elderly couples can maintain interpersonal competition, and such maintenance might be associated with changes in the IBS of the mentalizing system. It suggests the possible positive impact of long-term spouse relationships on interpersonal interactions, both behaviorally and neurally, in terms of competition.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Psychology, Education College, Shanghai Normal University, Shanghai 200234, China
| | - Zhennan Liu
- Department of Psychology, Education College, Shanghai Normal University, Shanghai 200234, China
| | - Haoyue Qian
- Institute of Neuroscience, Key Laboratory of Primate Neurobiology, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Shanghai Institute of Early Childhood Education, Shanghai Normal University, Shanghai 200234, China
| | - Yinying Hu
- Department of Psychology, Education College, Shanghai Normal University, Shanghai 200234, China
| | - Xiangping Gao
- Department of Psychology, Education College, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
3
|
Cheng X, Guo B, Hu Y. Distinct neural couplings to shared goal and action coordination in joint action: evidence based on fNIRS hyperscanning. Soc Cogn Affect Neurosci 2022; 17:956-964. [PMID: 35325237 PMCID: PMC9527463 DOI: 10.1093/scan/nsac022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/19/2022] [Accepted: 03/23/2022] [Indexed: 11/15/2022] Open
Abstract
Joint action is central to human nature, enabling individuals to coordinate in time and space to achieve a joint outcome. Such interaction typically involves two key elements: shared goal and action coordination. Yet, the substrates entrained to these two components in joint action remained unclear. In the current study, dyads performed two tasks involving both sharing goal and action coordination, i.e. complementary joint action and imitative joint action, a task only involving shared goal and a task only involving action coordination, while their brain activities were recorded by the functional near-infrared spectroscopy hyperscanning technique. The results showed that both complementary and imitative joint action (i.e. involving shared goal and action coordination) elicited better behavioral performance than the task only involving shared goal/action coordination. We observed that the interbrain synchronization (IBS) at the right inferior frontal cortex (IFC) entrained more to shared goal, while left-IFC IBS entrained more to action coordination. We also observed that the right-IFC IBS was greater during completing a complementary action than an imitative action. Our results suggest that IFC plays an important role in joint action, with distinct lateralization for the sub-components of joint action.
Collapse
Affiliation(s)
- Xiaojun Cheng
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Bing Guo
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Yinying Hu
- Institute of Brain and Education Innovation, East China Normal University, Shanghai 200062, China
| |
Collapse
|
4
|
Hu Y, Zhu M, Liu Y, Wang Z, Cheng X, Pan Y, Hu Y. Musical Meter Induces Interbrain Synchronization during Interpersonal Coordination. eNeuro 2022; 9:ENEURO.0504-21.2022. [PMID: 36280287 PMCID: PMC9616439 DOI: 10.1523/eneuro.0504-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022] Open
Abstract
Music induces people to coordinate with one another. Here, we conduct two experiments to examine the underlying mechanism of the interbrain synchronization (IBS) that is induced by interpersonal coordination when people are exposed to musical beat and meter. In experiment 1, brain signals at the frontal cortex were recorded simultaneously from two participants of a dyad by using functional near-infrared spectroscopy (fNIRS) hyperscanning, while each tapped their fingers to aural feedback from their partner (coordination task) or from themselves (independence task) with and without the musical meter. The results showed enhanced IBS at the left-middle frontal cortex in case of the coordination task with musical beat and meter. The IBS was significantly correlated with the participants performance in terms of coordination. In experiment 2, we further examined the IBS while the participants coordinated their behaviors in various metrical contexts, such as strong and weak meters (i.e., high/low loudness of acoustically accenting beats). The results showed that strong meters elicited higher IBS at the middle frontal cortex than weak meters. These findings reveal that the musical beat and meter can affect brain-to-brain coupling in action coordination between people, and provide insights into the interbrain mechanism underlying the effects of music on cooperation.
Collapse
Affiliation(s)
- Yinying Hu
- Shanghai Key Laboratory of Mental Health and Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Min Zhu
- College of Emergency Management, Nanjing Tech University, Nanjing 211816, China
| | - Yang Liu
- Shanghai Key Laboratory of Mental Health and Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Zixuan Wang
- Shanghai Key Laboratory of Mental Health and Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Xiaojun Cheng
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Yafeng Pan
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi Hu
- Shanghai Key Laboratory of Mental Health and Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| |
Collapse
|
5
|
Su WC, Culotta M, Tsuzuki D, Bhat A. Cortical activation during cooperative joint actions and competition in children with and without an autism spectrum condition (ASC): an fNIRS study. Sci Rep 2022; 12:5177. [PMID: 35338178 PMCID: PMC8956636 DOI: 10.1038/s41598-022-08689-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/25/2022] [Indexed: 11/21/2022] Open
Abstract
Children with an Autism Spectrum Condition (ASC) have social communication and perceptuomotor difficulties that affect their ability to engage in dyadic play. In this study, we compared spatio-temporal errors and fNIRS-related cortical activation between children with and without an ASC during a Lincoln Log dyadic game requiring them to play leader or follower roles, move in synchrony or while taking turns, and move cooperatively or competitively with an adult partner. Children with an ASC had greater motor, planning, and spatial errors and took longer to complete the building tasks compared to typically developing (TD) children. Children with an ASC had lower superior temporal sulcus (STS) activation during Turn-take and Compete, and greater Inferior Parietal Lobe (IPL) activation during Lead and Turn-take compared to TD children. As dyadic play demands increased, TD children showed greater STS activation during Turn-take (vs. Synchrony) and Compete (vs. Cooperate) whereas children with an ASC showed greater IPL activation during Lead and Compete (vs. Cooperate). Our findings suggest that children with an ASC rely on self-generated action plans (i.e., increased IPL activation) more than relying on their partner’s action cues (i.e., reduced STS activation) when engaging in dyadic play including joint actions and competition.
Collapse
Affiliation(s)
- Wan-Chun Su
- Department of Physical Therapy, University of Delaware, 540 S College Avenue, Newark, DE, USA.,Biomechanics and Movement Science Program, University of Delaware, Newark, DE, USA
| | - McKenzie Culotta
- Department of Physical Therapy, University of Delaware, 540 S College Avenue, Newark, DE, USA.,Biomechanics and Movement Science Program, University of Delaware, Newark, DE, USA
| | - Daisuke Tsuzuki
- Department of Language Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Anjana Bhat
- Department of Physical Therapy, University of Delaware, 540 S College Avenue, Newark, DE, USA. .,Biomechanics and Movement Science Program, University of Delaware, Newark, DE, USA. .,Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, USA.
| |
Collapse
|
6
|
Park J, Shin J, Jeong J. Inter-Brain Synchrony Levels According to Task Execution Modes and Difficulty Levels: an fNIRS/GSR Study. IEEE Trans Neural Syst Rehabil Eng 2022; 30:194-204. [PMID: 35041606 DOI: 10.1109/tnsre.2022.3144168] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hyperscanning is a brain imaging technique that measures brain synchrony caused by social interactions. Recent research on hyperscanning has revealed substantial inter-brain synchrony (IBS), but little is known about the link between IBS and mental workload. To study this link, we conducted an experiment consisting of button-pressing tasks of three different difficulty levels for the cooperation and competition modes with 56 participants aged 23.7±3.8 years (mean±standard deviation). We attempted to observe IBS using functional near-infrared spectroscopy (fNIRS) and galvanic skin response (GSR) to assess the activities of the human autonomic nervous system. We found that the IBS levels increased in a frequency band of 0.075-0.15 Hz, which was unrelated to the task repetition frequency in the cooperation mode according to the task difficulty level. Significant relative inter-brain synchrony (RIBS) increases were observed in three and 10 channels out of 15 for the hard tasks compared to the normal and easy tasks, respectively. We observed that the average GSR values increased with increasing task difficulty levels for the competition mode only. Thus, our results suggest that the IBS revealed by fNIRS and GSR is not related to the hemodynamic changes induced by mental workload, simple behavioral synchrony such as button-pressing timing, or autonomic nervous system activity. IBS is thus explicitly caused by social interactions such as cooperation.
Collapse
|
7
|
Miguel HO, Condy EE, Nguyen T, Zeytinoglu S, Blick E, Bress K, Khaksari K, Dashtestani H, Millerhagen J, Shahmohammadi S, Fox NA, Gandjbakhche A. Cerebral hemodynamic response during a live action-observation and action-execution task: A fNIRS study. PLoS One 2021; 16:e0253788. [PMID: 34388157 PMCID: PMC8362964 DOI: 10.1371/journal.pone.0253788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/14/2021] [Indexed: 11/25/2022] Open
Abstract
Although many studies have examined the location of the action observation network (AON) in human adults, the shared neural correlates of action-observation and action-execution are still unclear partially due to lack of ecologically valid neuroimaging measures. In this study, we aim to demonstrate the feasibility of using functional near infrared spectroscopy (fNIRS) to measure the neural correlates of action-observation and action execution regions during a live task. Thirty adults reached for objects or observed an experimenter reaching for objects while their cerebral hemodynamic responses including oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) were recorded in the sensorimotor and parietal regions. Our results indicated that the parietal regions, including bilateral superior parietal lobule (SPL), bilateral inferior parietal lobule (IPL), right supra-marginal region (SMG) and right angular gyrus (AG) share neural activity during action-observation and action-execution. Our findings confirm the applicability of fNIRS for the study of the AON and lay the foundation for future work with developmental and clinical populations.
Collapse
Affiliation(s)
- Helga O. Miguel
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Emma E. Condy
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thien Nguyen
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Selin Zeytinoglu
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, Maryland, United States of America
| | - Emily Blick
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kimberly Bress
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kosar Khaksari
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hadis Dashtestani
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John Millerhagen
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sheida Shahmohammadi
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nathan A. Fox
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, Maryland, United States of America
| | - Amir Gandjbakhche
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
8
|
Sciaraffa N, Liu J, Aricò P, Flumeri GD, Inguscio BMS, Borghini G, Babiloni F. Multivariate model for cooperation: bridging social physiological compliance and hyperscanning. Soc Cogn Affect Neurosci 2021; 16:193-209. [PMID: 32860692 PMCID: PMC7812636 DOI: 10.1093/scan/nsaa119] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/30/2020] [Accepted: 08/26/2020] [Indexed: 01/06/2023] Open
Abstract
The neurophysiological analysis of cooperation has evolved over the past 20 years, moving towards the research of common patterns in neurophysiological signals of people interacting. Social physiological compliance (SPC) and hyperscanning represent two frameworks for the joint analysis of autonomic and brain signals, respectively. Each of the two approaches allows to know about a single layer of cooperation according to the nature of these signals: SPC provides information mainly related to emotions, and hyperscanning that related to cognitive aspects. In this work, after the analysis of the state of the art of SPC and hyperscanning, we explored the possibility to unify the two approaches creating a complete neurophysiological model for cooperation considering both affective and cognitive mechanisms We synchronously recorded electrodermal activity, cardiac and brain signals of 14 cooperative dyads. Time series from these signals were extracted, and multivariate Granger causality was computed. The results showed that only when subjects in a dyad cooperate there is a statistically significant causality between the multivariate variables representing each subject. Moreover, the entity of this statistical relationship correlates with the dyad’s performance. Finally, given the novelty of this approach and its exploratory nature, we provided its strengths and limitations.
Collapse
Affiliation(s)
- Nicolina Sciaraffa
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,BrainSigns srl, Rome, Italy
| | - Jieqiong Liu
- School of Psychology and Cognitive Science, Shanghai Changning-ECNU Mental Health Center, East China Normal University, Shanghai, China
| | - Pietro Aricò
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,BrainSigns srl, Rome, Italy.,IRCCS Fondazione Santa Lucia, Neuroelectrical Imaging and BCI Lab, Rome, Italy
| | - Gianluca Di Flumeri
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,BrainSigns srl, Rome, Italy.,IRCCS Fondazione Santa Lucia, Neuroelectrical Imaging and BCI Lab, Rome, Italy
| | - Bianca M S Inguscio
- BrainSigns srl, Rome, Italy.,Department of Sense Organs, Sapienza University of Rome, Rome, Italy
| | - Gianluca Borghini
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,BrainSigns srl, Rome, Italy.,IRCCS Fondazione Santa Lucia, Neuroelectrical Imaging and BCI Lab, Rome, Italy
| | - Fabio Babiloni
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,BrainSigns srl, Rome, Italy.,College of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou Zhejiang Province, People's Republic of China
| |
Collapse
|
9
|
Nguyen T, Miguel HO, Condy EE, Park S, Gandjbakhche A. Using Functional Connectivity to Examine the Correlation between Mirror Neuron Network and Autistic Traits in a Typically Developing Sample: A fNIRS Study. Brain Sci 2021; 11:397. [PMID: 33804774 PMCID: PMC8004055 DOI: 10.3390/brainsci11030397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
Mirror neuron network (MNN) is associated with one's ability to recognize and interpret others' actions and emotions and has a crucial role in cognition, perception, and social interaction. MNN connectivity and its relation to social attributes, such as autistic traits have not been thoroughly examined. This study aimed to investigate functional connectivity in the MNN and assess relationship between MNN connectivity and subclinical autistic traits in neurotypical adults. Hemodynamic responses, including oxy- and deoxy-hemoglobin were measured in the central and parietal cortex of 30 healthy participants using a 24-channel functional Near-Infrared spectroscopy (fNIRS) system during a live action-observation and action-execution task. Functional connectivity was derived from oxy-hemoglobin data. Connections with significantly greater connectivity in both tasks were assigned to MNN connectivity. Correlation between connectivity and autistic traits were performed using Pearson correlation. Connections within the right precentral, right supramarginal, left inferior parietal, left postcentral, and between left supramarginal-left angular regions were identified as MNN connections. In addition, individuals with higher subclinical autistic traits present higher connectivity in both action-execution and action-observation conditions. Positive correlation between MNN connectivity and subclinical autistic traits can be used in future studies to investigate MNN in a developing population with autism spectrum disorder.
Collapse
Affiliation(s)
| | | | | | | | - Amir Gandjbakhche
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, 49 Convent Drive, Bethesda, MD 20892-4480, USA; (T.N.); (H.O.M.); (E.E.C.); (S.P.)
| |
Collapse
|
10
|
Condy EE, Miguel HO, Millerhagen J, Harrison D, Khaksari K, Fox N, Gandjbakhche A. Characterizing the Action-Observation Network Through Functional Near-Infrared Spectroscopy: A Review. Front Hum Neurosci 2021; 15:627983. [PMID: 33679349 PMCID: PMC7930074 DOI: 10.3389/fnhum.2021.627983] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) is a neuroimaging technique that has undergone tremendous growth over the last decade due to methodological advantages over other measures of brain activation. The action-observation network (AON), a system of brain structures proposed to have “mirroring” abilities (e.g., active when an individual completes an action or when they observe another complete that action), has been studied in humans through neural measures such as fMRI and electroencephalogram (EEG); however, limitations of these methods are problematic for AON paradigms. For this reason, fNIRS is proposed as a solution to investigating the AON in humans. The present review article briefly summarizes previous neural findings in the AON and examines the state of AON research using fNIRS in adults. A total of 14 fNIRS articles are discussed, paying particular attention to methodological choices and considerations while summarizing the general findings to aid in developing better protocols to study the AON through fNIRS. Additionally, future directions of this work are discussed, specifically in relation to researching AON development and potential multimodal imaging applications.
Collapse
Affiliation(s)
- Emma E Condy
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, United States
| | - Helga O Miguel
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, United States
| | - John Millerhagen
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, United States
| | - Doug Harrison
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, United States
| | - Kosar Khaksari
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, United States
| | - Nathan Fox
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD, United States
| | - Amir Gandjbakhche
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
11
|
Cerullo S, Fulceri F, Muratori F, Contaldo A. Acting with shared intentions: A systematic review on joint action coordination in Autism Spectrum Disorder. Brain Cogn 2021; 149:105693. [PMID: 33556847 DOI: 10.1016/j.bandc.2021.105693] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 12/30/2020] [Accepted: 01/08/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND Joint actions, described as a form of social interaction in which individuals coordinate their actions in space and time to bring about a change in the environment, rely on sensory-motor processes that play a role in the development of social skills. Two brain networks, associated with "mirroring" and "mentalizing", are engaged during these actions: the mirror neuron and the theory of mind systems. People with autism spectrum disorder (ASD) showed impairment in interpersonal coordination during joint actions. Studying joint action coordination in ASD will contribute to clarify the interplay between sensory-motor and social processes throughout development and the interactions between the brain and the behavior. METHOD This review focused on empirical studies that reported behavioral and kinematic findings related to joint action coordination in people with ASD. RESULTS Literature on mechanisms involved in the joint action coordination impairment in ASD is still limited. Data are controversial. Different key-components of joint action coordination may be impaired, such as cooperative behavior, temporal coordination, and motor planning. CONCLUSIONS Interpersonal coordination during joint actions relies on early sensory-motor processes that have a key role in guiding social development. Early intervention targeting the sensory-motor processes involved in the development of joint action coordination could positively support social skills.
Collapse
Affiliation(s)
- Sonia Cerullo
- IRCCS Stella Maris Foundation, 331 Viale del Tirreno, 56018 Pisa, Italy
| | - Francesca Fulceri
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Filippo Muratori
- IRCCS Stella Maris Foundation, 331 Viale del Tirreno, 56018 Pisa, Italy; Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Annarita Contaldo
- IRCCS Stella Maris Foundation, 331 Viale del Tirreno, 56018 Pisa, Italy.
| |
Collapse
|
12
|
Chen Y, Zhang Q, Yuan S, Zhao B, Zhang P, Bai X. The influence of prior intention on joint action: an fNIRS-based hyperscanning study. Soc Cogn Affect Neurosci 2020; 15:1351-1360. [PMID: 33216127 PMCID: PMC7759205 DOI: 10.1093/scan/nsaa152] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 10/17/2020] [Accepted: 11/20/2020] [Indexed: 11/16/2022] Open
Abstract
Motor performances of the same action are affected by prior intentions to move unintentionally, cooperatively or competitively. Here, a back-and-forth movement task combined with a motion capture system and functional near-infrared spectroscopy (fNIRS)-based hyperscanning technology was utilized to record both the behavioral and neural data of 18 dyads of participants acting in pairs [joint conditions: no-intention, cooperative (Coop) and competitive (Comp)] or alone (single conditions: self-paced and fast-speed). The results revealed that Coop or Comp intentions in the joint conditions significantly sped up motor performance compared with similar single conditions, e.g. shorter movement times (MTs) in the Coop/Comp condition than the self-paced/fast-speed condition. Hemodynamic response analysis demonstrated that stronger activities for all joint conditions than the single conditions in the premotor and the supplementary motor cortex (Brodmann area 6) were independent of variations of MTs, indicating that they might reflect more complex aspects of action planning rather than simple execution-based processes. The comparisons of joint conditions across distinct prior intentions before acting yielded significant results for both behavioral and neural measures, with the highest activation of the temporo-parietal junction (TPJ) and the shortest MTs in the Comp condition considered to be implications for the top-down influence of prior intentions on joint performance.
Collapse
Affiliation(s)
- Yixin Chen
- Psychology, Tianjin Normal University, Tianjin 300354, China
| | - Qihan Zhang
- Psychology, Tianjin Normal University, Tianjin 300354, China
| | - Sheng Yuan
- Psychology, Tianjin Normal University, Tianjin 300354, China
| | - Bingjie Zhao
- Psychology, Tianjin Normal University, Tianjin 300354, China
| | - Peng Zhang
- Psychology, Tianjin Normal University, Tianjin 300354, China
| | - Xuejun Bai
- Psychology, Tianjin Normal University, Tianjin 300354, China.,Academy of Psychology and Behavior, Tianjin Normal University, Tianjin 300354, China.,Center of Collaborative Innovation for Assessment and Promotion of Mental Health, Tianjin Normal University, Tianjin 300354, China
| |
Collapse
|
13
|
Brief Relaxation Practice Induces Significantly More Prefrontal Cortex Activation during Arithmetic Tasks Comparing to Viewing Greenery Images as Revealed by Functional Near-Infrared Spectroscopy (fNIRS). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17228366. [PMID: 33198147 PMCID: PMC7698004 DOI: 10.3390/ijerph17228366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022]
Abstract
Background: There is little understanding on how brief relaxation practice and viewing greenery images would affect brain responses during cognitive tasks. In the present study, we examined the variation in brain activation of the prefrontal cortex during arithmetic tasks before and after viewing greenery images, brief relaxation practice, and control task using functional near-infrared spectroscopy (fNIRS). Method: This randomized controlled study examined the activation patterns of the prefrontal cortex (PFC) in three groups of research participants who were exposed to viewing greenery images (n = 10), brief relaxation practice (n = 10), and control task (n = 11). The activation pattern of the PFC was measured pre- and post-intervention using a portable fNIRS device and reported as mean total oxygenated hemoglobin (HbO μm). Primary outcome of the study is the difference in HbO μm between post- and pre-intervention readings during a cognitive task that required the research participants to perform arithmetic calculation. Results: In terms of intervention-related differences, there was significant difference in average HbO μm when performing arithmetic tasks before and after brief relaxation practice (p < 0.05). There were significant increases in average HbO μm in the right frontopolar cortex (p = 0.029), the left frontopolar cortex (p = 0.01), and the left orbitofrontal cortex (p = 0.033) during arithmetic tasks after brief relaxation practice. In contrast, there were no significant differences in average HbO μm when performing arithmetic tasks before and after viewing greenery images (p > 0.05) and the control task (p > 0.05). Conclusion: Our preliminary findings show that brief relaxation practice but not viewing greenery images led to significant frontal lobe activation during arithmetic tasks. The present study demonstrated, for the first time, that there was an increase in activation in neuroanatomical areas including the combined effort of allocation of attentional resources, exploration, and memory performance after the brief relaxation practice. Our findings suggest the possibility that the right frontopolar cortex, the left frontopolar cortex, and the left orbitofrontal cortex may be specifically associated with the benefits of brief relaxation on the brain.
Collapse
|
14
|
Su WC, Culotta M, Mueller J, Tsuzuki D, Pelphrey K, Bhat A. Differences in cortical activation patterns during action observation, action execution, and interpersonal synchrony between children with or without autism spectrum disorder (ASD): An fNIRS pilot study. PLoS One 2020; 15:e0240301. [PMID: 33119704 PMCID: PMC7595285 DOI: 10.1371/journal.pone.0240301] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 09/23/2020] [Indexed: 12/16/2022] Open
Abstract
Engaging in socially embedded actions such as imitation and interpersonal synchrony facilitates relationships with peers and caregivers. Imitation and interpersonal synchrony impairments of children with Autism Spectrum Disorder (ASD) might contribute to their difficulties in connecting and learning from others. Previous fMRI studies investigated cortical activation in children with ASD during finger/hand movement imitation; however, we do not know whether these findings generalize to naturalistic face-to-face imitation/interpersonal synchrony tasks. Using functional near infrared spectroscopy (fNIRS), the current study assessed the cortical activation of children with and without ASD during a face-to-face interpersonal synchrony task. Fourteen children with ASD and 17 typically developing (TD) children completed three conditions: a) Watch-observed an adult clean up blocks; b) Do-cleaned up the blocks on their own; and c) Together-synchronized their block clean up actions to that of an adult. Children with ASD showed lower spatial and temporal synchrony accuracies but intact motor accuracy during the Together/interpersonal synchrony condition. In terms of cortical activation, children with ASD had hypoactivation in the middle and inferior frontal gyri (MIFG) as well as middle and superior temporal gyri (MSTG) while showing hyperactivation in the inferior parietal cortices/lobule (IPL) compared to the TD children. During the Together condition, the TD children showed bilaterally symmetrical activation whereas children with ASD showed more left-lateralized activation over MIFG and right-lateralized activation over MSTG. Additionally, using ADOS scores, in children with ASD greater social affect impairment was associated with lower activation in the left MIFG and more repetitive behavior impairment was associated with greater activation over bilateral MSTG. In children with ASD better communication performance on the VABS was associated with greater MIFG and/or MSTG activation. We identified objective neural biomarkers that could be utilized as outcome predictors or treatment response indicators in future intervention studies.
Collapse
Affiliation(s)
- Wan-Chun Su
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States of America
- Biomechanics & Movement Science Program, University of Delaware, Newark, Delaware, United States of America
| | - McKenzie Culotta
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States of America
- Biomechanics & Movement Science Program, University of Delaware, Newark, Delaware, United States of America
| | - Jessica Mueller
- Department of Behavioral Health, Swank Autism Center, A. I. du Pont Nemours Hospital for Children, Wilmington, Delaware, United States of America
| | - Daisuke Tsuzuki
- Department of Language Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Kevin Pelphrey
- Department of Neurology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Anjana Bhat
- Department of Physical Therapy, University of Delaware, Newark, Delaware, United States of America
- Biomechanics & Movement Science Program, University of Delaware, Newark, Delaware, United States of America
- Department of Psychological & Brain Sciences, University of Delaware, Newark, Delaware, United States of America
- * E-mail:
| |
Collapse
|
15
|
Su WC, Culotta ML, Hoffman MD, Trost SL, Pelphrey KA, Tsuzuki D, Bhat AN. Developmental Differences in Cortical Activation During Action Observation, Action Execution and Interpersonal Synchrony: An fNIRS Study. Front Hum Neurosci 2020; 14:57. [PMID: 32194385 PMCID: PMC7062643 DOI: 10.3389/fnhum.2020.00057] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 02/06/2020] [Indexed: 12/31/2022] Open
Abstract
Interpersonal synchrony (IPS) is an important everyday behavior influencing social cognitive development; however, few studies have investigated the developmental differences and underlying neural mechanisms of IPS. functional near-infrared spectroscopy (fNIRS) is a novel neuroimaging tool that allows the study of cortical activation in the presence of natural movements. Using fNIRS, we compared cortical activation patterns between children and adults during action observation, execution, and IPS. Seventeen school-age children and 15 adults completed a reach to cleanup task while we obtained cortical activation data from bilateral inferior frontal gyrus (IFG), superior temporal sulcus (STS), and inferior parietal lobes (IPL). Children showed lower spatial and temporal accuracy during IPS compared to adults (i.e., spatial synchrony scores (Mean ± SE) in children: 2.67 ± 0.08 and adults: 2.85 ± 0.06; temporal synchrony scores (Mean ± SE) in children: 2.74 ± 0.06 and adults: 2.88 ± 0.05). For both groups, the STS regions were more activated during action observation, while the IFG and STS were more activated during action execution and IPS. The IPS condition involved more right-sided activation compared to action execution suggesting that IPS is a higher-order process involving more bilateral cortical activation. In addition, adults showed more left lateralization compared to the children during movement conditions (execution and IPS); which indicated greater inhibition of ipsilateral cortices in the adults compared to children. These findings provide a neuroimaging framework to study imitation and IPS impairments in special populations such as children with Autism Spectrum Disorder.
Collapse
Affiliation(s)
- Wan-Chun Su
- Department of Physical Therapy, University of Delaware, Newark, DE, United States
- Biomechanics & Movement Science Program, University of Delaware, Newark, DE, United States
| | - McKenzie L. Culotta
- Department of Physical Therapy, University of Delaware, Newark, DE, United States
- Biomechanics & Movement Science Program, University of Delaware, Newark, DE, United States
| | - Michael D. Hoffman
- Department of Physical Therapy, University of Delaware, Newark, DE, United States
| | - Susanna L. Trost
- Department of Physical Therapy, University of Delaware, Newark, DE, United States
| | - Kevin A. Pelphrey
- Department of Neurology & The UVA Brain Institute, University of Virginia, Charlottesville, VA, United States
| | - Daisuke Tsuzuki
- Department of Language Sciences, Tokyo Metropolitan University, Tokyo, Japan
| | - Anjana N. Bhat
- Department of Physical Therapy, University of Delaware, Newark, DE, United States
- Biomechanics & Movement Science Program, University of Delaware, Newark, DE, United States
- Behavioral Neuroscience Program, Department of Psychological & Brain Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
16
|
Xu Z, Wang ZR, Li J, Hu M, Xiang MQ. Effect of Acute Moderate-Intensity Exercise on the Mirror Neuron System: Role of Cardiovascular Fitness Level. Front Psychol 2020; 11:312. [PMID: 32153482 PMCID: PMC7047835 DOI: 10.3389/fpsyg.2020.00312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/10/2020] [Indexed: 12/19/2022] Open
Abstract
Objectives The aims of this study were to use functional near-infrared spectroscopy (fNIRS) to determine whether cardiovascular fitness levels modulate the activation of the mirror neuron system (MNS) under table-setting tasks in non-exercise situation, to replicate the study that positive effect of acute moderate-intensity exercise on the MNS and investigate whether cardiovascular fitness levels modulates the effect of exercise on the activation of the MNS. Methods Thirty-six healthy college-aged participants completed a maximal graded exercise test (GXT) and were categorized as high, moderate, or low cardiovascular fitness. Participants then performed table-setting tasks including an action execution task (EXEC) and action observation task (OBS) prior to (PRE) and after (POST) either a rest condition (CTRL) or a cycling exercise condition (EXP). The EXP condition consisted of a 5-min warm-up, 15-min moderate-intensity exercise (65% VO2max), and 5-min cool-down. Results No significant differences were observed for Oxy-Hb and Deoxy-Hb between different cardiovascular fitness levels in the EXEC or OBS tasks in the non-exercise session. But there were significant improvements of oxygenated hemoglobin (Oxy-Hb) in the inferior frontal gyrus (IFG) and pre-motor area (PMC) regions under the OBS task following the acute moderate exercise. Particularly, the improvements (Post-Pre) of Δ Oxy-Hb were mainly observed in high and low fitness individuals. There was also a significant improvement of deoxygenated hemoglobin (Deoxy-Hb) in the IPL region under the OBS task. The following analysis indicated that exercise improved Δ Deoxy-Hb in high fitness individuals. Conclusion This study indicated that the activation of MNS was not modulated by the cardiovascular fitness levels in the non-exercise situation. We replicated the previous study that moderate exercise improved activation of MNS; we also provided the first empirical evidence that moderate-intensity exercise positively affects the MNS activation in college students of high and low cardiovascular fitness levels.
Collapse
Affiliation(s)
- Zebo Xu
- Department of Sports and Health, Guangzhou Sport University, Guangzhou, China.,Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Hong Kong, China
| | - Zi-Rong Wang
- Department of Graduation, Guangzhou Sport University, Guangzhou, China
| | - Jin Li
- Department of Graduation, Guangzhou Sport University, Guangzhou, China
| | - Min Hu
- Department of Sports and Health, Guangzhou Sport University, Guangzhou, China
| | - Ming-Qiang Xiang
- Department of Sports and Health, Guangzhou Sport University, Guangzhou, China
| |
Collapse
|
17
|
Behrendt HF, Konrad K, Perdue KL, Firk C. Infant brain responses to live face-to-face interaction with their mothers: Combining functional near-infrared spectroscopy (fNIRS) with a modified still-face paradigm. Infant Behav Dev 2020; 58:101410. [DOI: 10.1016/j.infbeh.2019.101410] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 12/07/2019] [Accepted: 12/07/2019] [Indexed: 01/03/2023]
|
18
|
Applications of Functional Near-Infrared Spectroscopy in Fatigue, Sleep Deprivation, and Social Cognition. Brain Topogr 2019; 32:998-1012. [DOI: 10.1007/s10548-019-00740-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 10/18/2019] [Indexed: 01/05/2023]
|
19
|
Xu Z, Hu M, Wang ZR, Li J, Hou XH, Xiang MQ. The Positive Effect of Moderate-Intensity Exercise on the Mirror Neuron System: An fNIRS Study. Front Psychol 2019; 10:986. [PMID: 31130900 PMCID: PMC6509238 DOI: 10.3389/fpsyg.2019.00986] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/15/2019] [Indexed: 01/21/2023] Open
Abstract
A growing number of studies have reported the beneficial effect of exercise on human social behavior. The mirror neuron system (MNS) plays a critical role in a variety of social behaviors from imitation to empathy. However, neuroimaging investigations into the effects of exercise on the MNS remain unexplored. To address this question, our study determined the effect of moderate-intensity exercise on the MNS using functional near-infrared spectroscopy (fNIRS). Specifically, 23 right-handed young individuals were asked to perform a table-setting task that included action execution and action observation before and after a 25-min exercise session on a cycle ergometer at moderate intensity (65% VO2peak). The control condition was the same task performed without exercise. Cortical hemodynamic changes in the four primary brain regions of the MNS were monitored with fNIRS, using a modified probe configuration that covered all four MNS regions in the left hemisphere. We used a region of interest (ROI)-based group analysis to determine which regions were activated during action execution and action observation. Following a session of moderate-intensity exercise, we found a significant increase in activation in all four MNS regions, namely the inferior frontal gyrus (IFG), premotor cortex (PMC), superior parietal lobule (SPL), and rostral inferior parietal lobule (IPL). This result indicated a positive effect of exercise on the MNS, specifically that moderate-intensity exercise could activate the MNS.
Collapse
Affiliation(s)
- Zebo Xu
- Department of Sports and Health, Guangzhou Sport University, Guangzhou, China
| | - Min Hu
- Guangzhou Sport University, Guangzhou, China
| | - Zi-Rong Wang
- Department of Graduation, Guangzhou Sport University, Guangzhou, China
| | - Jin Li
- Department of Graduation, Guangzhou Sport University, Guangzhou, China
| | - Xiao-Hui Hou
- Department of Sports and Health, Guangzhou Sport University, Guangzhou, China
| | - Ming-Qiang Xiang
- Department of Sports and Health, Guangzhou Sport University, Guangzhou, China
| |
Collapse
|
20
|
Era V, Candidi M, Gandolfo M, Sacheli LM, Aglioti SM. Inhibition of left anterior intraparietal sulcus shows that mutual adjustment marks dyadic joint-actions in humans. Soc Cogn Affect Neurosci 2018; 13:492-500. [PMID: 29660090 PMCID: PMC6007351 DOI: 10.1093/scan/nsy022] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/28/2018] [Indexed: 01/28/2023] Open
Abstract
Creating real-life dynamic contexts to study interactive behaviors is a fundamental challenge for the social neuroscience of interpersonal relations. Real synchronic interpersonal motor interactions involve online, inter-individual mutual adaptation (the ability to adapt one’s movements to those of another in order to achieve a shared goal). In order to study the contribution of the left anterior Intra Parietal Sulcus (aIPS) (i.e. a region supporting motor functions) to mutual adaptation, here, we combined a behavioral grasping task where pairs of participants synchronized their actions when performing mutually adaptive imitative and complementary movements, with the inhibition of activity of aIPS via non-invasive brain stimulation. This approach allowed us to investigate whether aIPS supports online complementary and imitative interactions. Behavioral results showed that inhibition of aIPS selectively impairs pair performance during complementary compared to imitative interactions. Notably, this effect depended on pairs’ mutual adaptation skills and was higher for pairs composed of participants who were less capable of adapting to each other. Thus, we provide the first causative evidence for a role of the left aIPS in supporting mutually adaptive interactions and show that the inhibition of the neural resources of one individual of a pair is compensated at the dyadic level.
Collapse
Affiliation(s)
- Vanessa Era
- SCNLab, Department of Psychology, "Sapienza" University of Rome, 00185 Rome, Italy.,IRCCS, Fondazione Santa Lucia, 00100 Rome, Italy
| | - Matteo Candidi
- SCNLab, Department of Psychology, "Sapienza" University of Rome, 00185 Rome, Italy.,IRCCS, Fondazione Santa Lucia, 00100 Rome, Italy
| | - Marco Gandolfo
- SCNLab, Department of Psychology, "Sapienza" University of Rome, 00185 Rome, Italy.,IRCCS, Fondazione Santa Lucia, 00100 Rome, Italy
| | - Lucia Maria Sacheli
- IRCCS, Fondazione Santa Lucia, 00100 Rome, Italy.,Department of Psychology and Milan Center for Neuroscience (NeuroMi), University of Milano-Bicocca, 20126 Milan, Italy
| | - Salvatore Maria Aglioti
- SCNLab, Department of Psychology, "Sapienza" University of Rome, 00185 Rome, Italy.,IRCCS, Fondazione Santa Lucia, 00100 Rome, Italy
| |
Collapse
|
21
|
Ehlis AC, Barth B, Hudak J, Storchak H, Weber L, Kimmig ACS, Kreifelts B, Dresler T, Fallgatter AJ. Near-Infrared Spectroscopy as a New Tool for Neurofeedback Training: Applications in Psychiatry and Methodological Considerations. JAPANESE PSYCHOLOGICAL RESEARCH 2018. [DOI: 10.1111/jpr.12225] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
22
|
Sun PP, Tan FL, Zhang Z, Jiang YH, Zhao Y, Zhu CZ. Feasibility of Functional Near-Infrared Spectroscopy (fNIRS) to Investigate the Mirror Neuron System: An Experimental Study in a Real-Life Situation. Front Hum Neurosci 2018; 12:86. [PMID: 29556185 PMCID: PMC5845015 DOI: 10.3389/fnhum.2018.00086] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/19/2018] [Indexed: 01/01/2023] Open
Abstract
The mirror neuron system (MNS), mainly including the premotor cortex (PMC), inferior frontal gyrus (IFG), superior parietal lobule (SPL), and rostral inferior parietal lobule (IPL), has attracted extensive attention as a possible neural mechanism of social interaction. Owing to high ecological validity, functional near-infrared spectroscopy (fNIRS) has become an ideal approach for exploring the MNS. Unfortunately, for the feasibility of fNIRS to detect the MNS, none of the four dominant regions were found in previous studies, implying a very limited capacity of fNIRS to investigate the MNS. Here, we adopted an experimental paradigm in a real-life situation to evaluate whether the MNS activity, including four dominant regions, can be detected by using fNIRS. Specifically, 30 right-handed subjects were asked to complete a table-setting task that included action execution and action observation. A double density probe configuration covered the four regions of the MNS in the left hemisphere. We used a traditional channel-based group analysis and also a ROI-based group analysis to find which regions are activated during both action execution and action observation. The results showed that the IFG, adjacent PMC, SPL, and IPL were involved in both conditions, indicating the feasibility of fNIRS to detect the MNS. Our findings provide a foundation for future research to explore the functional role of the MNS in social interaction and various disorders using fNIRS.
Collapse
Affiliation(s)
- Pei-Pei Sun
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Fu-Lun Tan
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Zong Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yi-Han Jiang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yang Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Chao-Zhe Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
23
|
Behrendt HF, Firk C, Nelson CA, Perdue KL. Motion correction for infant functional near-infrared spectroscopy with an application to live interaction data. NEUROPHOTONICS 2018; 5:015004. [PMID: 29487875 PMCID: PMC5811207 DOI: 10.1117/1.nph.5.1.015004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/12/2018] [Indexed: 05/20/2023]
Abstract
Correcting for motion is an important consideration in infant functional near-infrared spectroscopy studies. We tested the performance of conventional motion correction methods and compared probe motion and data quality metrics for data collected at different infant ages (5, 7, and 12 months) and during different methods of stimulus presentation (video versus live). While 5-month-olds had slower maximum head speed than 7- or 12-month-olds, data quality metrics and hemodynamic response recovery errors were similar across ages. Data quality was also similar between video and live stimulus presentation. Motion correction algorithms, such as wavelet filtering and targeted principal component analysis, performed well for infant data using infant-specific parameters, and parameters may be used without fine-tuning for infant age or method of stimulus presentation. We recommend using wavelet filtering with [Formula: see text]; however, a range of parameters seemed acceptable. We do not recommend using trial rejection alone, because it did not improve hemodynamic response recovery as compared to no correction at all. Data quality metrics calculated from uncorrected data were associated with hemodynamic response recovery error, indicating that full simulation studies may not be necessary to assess motion correction performance.
Collapse
Affiliation(s)
- Hannah F. Behrendt
- Boston Children’s Hospital, Laboratories of Cognitive Neuroscience, Boston, Massachusetts, United States
- University Hospital RWTH Aachen, Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Aachen, Germany
| | - Christine Firk
- University Hospital RWTH Aachen, Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Aachen, Germany
| | - Charles A. Nelson
- Boston Children’s Hospital, Laboratories of Cognitive Neuroscience, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
- Harvard Graduate School of Education, Cambridge, Massachusetts, United States
| | - Katherine L. Perdue
- Boston Children’s Hospital, Laboratories of Cognitive Neuroscience, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
- Address all correspondence to: Katherine L. Perdue, E-mail:
| |
Collapse
|
24
|
Bhat AN, Hoffman MD, Trost SL, Culotta ML, Eilbott J, Tsuzuki D, Pelphrey KA. Cortical Activation during Action Observation, Action Execution, and Interpersonal Synchrony in Adults: A functional Near-Infrared Spectroscopy (fNIRS) Study. Front Hum Neurosci 2017; 11:431. [PMID: 28928646 PMCID: PMC5591977 DOI: 10.3389/fnhum.2017.00431] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 08/14/2017] [Indexed: 11/23/2022] Open
Abstract
Introduction: Humans engage in Interpersonal Synchrony (IPS) as they synchronize their own actions with that of a social partner over time. When humans engage in imitation/IPS behaviors, multiple regions in the frontal, temporal, and parietal cortices are activated including the putative Mirror Neuron Systems (Iacoboni, 2005; Buxbaum et al., 2014). In the present study, we compared fNIRS-based cortical activation patterns across three conditions of action observation (“Watch” partner), action execution (“Do” on your own), and IPS (move “Together”). Methods: Fifteen typically developing adults completed a reach and cleanup task with the right arm while cortical activation was examined using a 24-channel, Hitachi fNIRS system. Each adult completed 8 trials across three conditions (Watch, Do, and Together). For each fNIRS channel, we obtained oxy hemoglobin (HbO2) and deoxy hemoglobin (HHb) profiles. Spatial registration methods were applied to localize the cortical regions underneath each channel and to define six regions of interest (ROIs), right and left supero-anterior (SA or pre/post-central gyri), infero-posterior (IP or angular/supramarginal gyri), and infero-anterior (IA or superior/middle temporal gyri) regions. Results: In terms of task-related differences, the majority of the ROIs were more active during Do and Together compared to Watch. Only the right/ipsilateral fronto-parietal and inferior parietal cortices had greater activation during Together compared to Do. Conclusions: The similarities in cortical activation between action execution and IPS suggest that neural control of IPS is more similar to its execution than observational aspects. To be clear, the more complex the actions performed, the more difficult the IPS behaviors. Secondly, IPS behaviors required slightly more right-sided activation (vs. execution/observation) suggesting that IPS is a higher-order process involving more bilateral activation compared to its sub-components. These findings provide a neuroimaging framework to study imitation and IPS impairments in special populations such as infants at risk for and children with ASD.
Collapse
Affiliation(s)
- Anjana N Bhat
- Department of Physical Therapy, University of DelawareNewark, DE, United States.,Department of Psychological and Brain Sciences, University of DelawareNewark, DE, United States.,Biomechanics and Movement Science Program, University of DelawareNewark, DE, United States
| | - Michael D Hoffman
- Department of Physical Therapy, University of DelawareNewark, DE, United States
| | - Susanna L Trost
- Department of Physical Therapy, University of DelawareNewark, DE, United States
| | - McKenzie L Culotta
- Department of Physical Therapy, University of DelawareNewark, DE, United States
| | - Jeffrey Eilbott
- The George Washington Autism Institute, George Washington UniversityWashington, DC, United States
| | - Daisuke Tsuzuki
- Department of Language Sciences, Tokyo Metropolitan UniversityTokyo, Japan
| | - Kevin A Pelphrey
- The George Washington Autism Institute, George Washington UniversityWashington, DC, United States
| |
Collapse
|
25
|
Balardin JB, Zimeo Morais GA, Furucho RA, Trambaiolli L, Vanzella P, Biazoli C, Sato JR. Imaging Brain Function with Functional Near-Infrared Spectroscopy in Unconstrained Environments. Front Hum Neurosci 2017; 11:258. [PMID: 28567011 PMCID: PMC5434677 DOI: 10.3389/fnhum.2017.00258] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/29/2017] [Indexed: 12/02/2022] Open
Abstract
Assessing the neural correlates of motor and cognitive processes under naturalistic experimentation is challenging due to the movement constraints of traditional brain imaging technologies. The recent advent of portable technologies that are less sensitive to motion artifacts such as Functional Near Infrared Spectroscopy (fNIRS) have been made possible the study of brain function in freely-moving participants. In this paper, we describe a series of proof-of-concept experiments examining the potential of fNIRS in assessing the neural correlates of cognitive and motor processes in unconstrained environments. We show illustrative applications for practicing a sport (i.e., table tennis), playing a musical instrument (i.e., piano and violin) alone or in duo and performing daily activities for many hours (i.e., continuous monitoring). Our results expand upon previous research on the feasibility and robustness of fNIRS to monitor brain hemodynamic changes in different real life settings. We believe that these preliminary results showing the flexibility and robustness of fNIRS measurements may contribute by inspiring future work in the field of applied neuroscience.
Collapse
Affiliation(s)
- Joana B Balardin
- Center of Mathematics Computation and Cognition, Universidade Federal do ABCSão Bernardo do Campo, Brazil.,Instituto do Cérebro, Hospital Israelita Albert EinsteinSão Paulo, Brazil
| | | | - Rogério A Furucho
- Center of Mathematics Computation and Cognition, Universidade Federal do ABCSão Bernardo do Campo, Brazil
| | - Lucas Trambaiolli
- Center of Mathematics Computation and Cognition, Universidade Federal do ABCSão Bernardo do Campo, Brazil
| | - Patricia Vanzella
- Center of Mathematics Computation and Cognition, Universidade Federal do ABCSão Bernardo do Campo, Brazil
| | - Claudinei Biazoli
- Center of Mathematics Computation and Cognition, Universidade Federal do ABCSão Bernardo do Campo, Brazil
| | - João R Sato
- Center of Mathematics Computation and Cognition, Universidade Federal do ABCSão Bernardo do Campo, Brazil
| |
Collapse
|
26
|
Pan Y, Cheng X, Zhang Z, Li X, Hu Y. Cooperation in lovers: An fNIRS-based hyperscanning study. Hum Brain Mapp 2016; 38:831-841. [PMID: 27699945 DOI: 10.1002/hbm.23421] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/30/2016] [Accepted: 09/23/2016] [Indexed: 01/25/2023] Open
Abstract
This study investigated interactive exchange in lovers and the associated interpersonal brain synchronization (IBS) using functional near-infrared spectroscopy (fNIRS)-based hyperscanning. Three types of female-male dyads, lovers, friends, and strangers, performed a cooperation task during which brain activity was recorded in right frontoparietal regions. We measured better cooperative behavior in lover dyads compared with friend and stranger dyads. Lover dyads demonstrated increased IBS in right superior frontal cortex, which also covaried with their task performance. Granger causality analyses in lover dyads revealed stronger directional synchronization from females to males than from males to females, suggesting different roles for females and males during cooperation. Our study refines the theoretical explanation of romantic interaction between lovers. Hum Brain Mapp 38:831-841, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yafeng Pan
- School of Psychology and Cognitive Science, Faculty of Education, East China Normal University, Shanghai, People's Republic of China
| | - Xiaojun Cheng
- School of Psychology and Cognitive Science, Faculty of Education, East China Normal University, Shanghai, People's Republic of China
| | - Zhenxin Zhang
- Department of Psychology, Zhejiang Normal University, Jinhua, People's Republic of China
| | - Xianchun Li
- School of Psychology and Cognitive Science, Faculty of Education, East China Normal University, Shanghai, People's Republic of China
| | - Yi Hu
- School of Psychology and Cognitive Science, Faculty of Education, East China Normal University, Shanghai, People's Republic of China
| |
Collapse
|
27
|
Nozawa T, Sasaki Y, Sakaki K, Yokoyama R, Kawashima R. Interpersonal frontopolar neural synchronization in group communication: An exploration toward fNIRS hyperscanning of natural interactions. Neuroimage 2016; 133:484-497. [PMID: 27039144 DOI: 10.1016/j.neuroimage.2016.03.059] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/22/2016] [Accepted: 03/22/2016] [Indexed: 12/22/2022] Open
Abstract
Research of interpersonal neural synchronization (INS) using functional near-infrared spectroscopy (fNIRS) hyperscanning is an expanding nascent field. This field still requires the accumulation of findings and establishment of analytic standards. In this study, we therefore intend to extend fNIRS-based INS research in three directions: (1) verifying the enhancement of frontopolar INS by natural and unstructured verbal communication involving more than two individuals; (2) examining timescale dependence of the INS modulation; and (3) evaluating the effects of artifact reduction methods in capturing INS. We conducted an fNIRS hyperscanning study while 12 groups of four subjects were engaged in cooperative verbal communication. Corresponding to the three objectives, our analyses of the data (1) confirmed communication-enhanced frontopolar INS, as expected from the region's roles in social communication; (2) revealed the timescale dependency in the INS modulation, suggesting the merit of evaluating INS in fine timescale bins; and (3) determined that removal of the skin blood flow component engenders substantial improvement in sensitivity to communication-enhanced INS and segregation from artifactual synchronization, and that caution for artifact reduction preprocessing is needed to avoid excessive removal of the neural fluctuation component. Accordingly, this study provides a prospective technical basis for future hyperscanning studies during daily communicative activities.
Collapse
Affiliation(s)
- Takayuki Nozawa
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan.
| | - Yukako Sasaki
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Kohei Sakaki
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| | - Ryoichi Yokoyama
- Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan; School of Medicine, Kobe University, Kobe 650-0017, Japan
| | - Ryuta Kawashima
- Department of Ubiquitous Sensing, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan; Department of Functional Brain Imaging, Institute of Development, Aging and Cancer, Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
28
|
Meyer M, Bekkering H, Haartsen R, Stapel J, Hunnius S. The role of action prediction and inhibitory control for joint action coordination in toddlers. J Exp Child Psychol 2015; 139:203-20. [DOI: 10.1016/j.jecp.2015.06.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 11/27/2022]
|
29
|
Balconi M, Molteni E. Past and future of near-infrared spectroscopy in studies of emotion and social neuroscience. JOURNAL OF COGNITIVE PSYCHOLOGY 2015. [DOI: 10.1080/20445911.2015.1102919] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Herrmann M, Bogon J, Quester S, Cordes A, Stenneken P, Reif A, Ehlis AC. Serotonin transporter polymorphism modulates neural correlates of real-life joint action. An investigation with functional near-infrared spectroscopy (fNIRS). Neuroscience 2015; 292:129-36. [DOI: 10.1016/j.neuroscience.2015.02.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 02/02/2015] [Accepted: 02/15/2015] [Indexed: 10/24/2022]
|
31
|
Cheng X, Li X, Hu Y. Synchronous brain activity during cooperative exchange depends on gender of partner: A fNIRS-based hyperscanning study. Hum Brain Mapp 2015; 36:2039-48. [PMID: 25691124 DOI: 10.1002/hbm.22754] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 01/14/2015] [Accepted: 01/20/2015] [Indexed: 11/12/2022] Open
Abstract
Previous studies have shown that brain activity between partners is synchronized during cooperative exchange. Whether this neural synchronization depends on the gender of partner (i.e., opposite or same to the participant) is open to be explored. In current study, we used functional near-infrared spectroscopy (fNIRS) based hyperscanning to study cooperation in a two-person game (female-female, female-male, and male-male) while assaying brain-to-brain interactions. Cooperation was greater in male-male pairs than in female-female pairs, with intermediate cooperation levels for female-male pairs. More importantly, in dyads with partners with opposite gender (female-male pairs), we found significant task-related cross-brain coherence in frontal regions (i.e., frontopolar cortex, orbitofrontal cortex, and left dorsolateral prefrontal cortex) whereas the cooperation in same gender dyads (female-female pairs and male-male pairs) was not associated with such synchronization. Moreover, the changes of such interbrain coherence across task blocks were significantly correlated with change in degree of cooperation only in mixed-sex dyads. These findings suggested that different neural processes underlie cooperation between mixed-sex and same-sex dyadic interactions.
Collapse
Affiliation(s)
- Xiaojun Cheng
- Key Laboratory of Brain Functional Genomics, Ministry of Education, Shanghai Key Laboratory of Brain Functional Genomics, School of Psychology and Cognitive science, East China Normal University, Shanghai, People's Republic of China
| | | | | |
Collapse
|
32
|
Yuan Z, Ye J. Fusion of fNIRS and fMRI data: identifying when and where hemodynamic signals are changing in human brains. Front Hum Neurosci 2013; 7:676. [PMID: 24137124 PMCID: PMC3797402 DOI: 10.3389/fnhum.2013.00676] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/26/2013] [Indexed: 11/13/2022] Open
Abstract
In this study we implemented a new imaging method to fuse functional near infrared spectroscopy (fNIRS) measurements and functional magnetic resonance imaging (fMRI) data to reveal the spatiotemporal dynamics of the hemodynamic responses with high spatiotemporal resolution across the brain. We evaluated this method using multimodal data acquired from human right finger tapping tasks. And we found the proposed method is able to clearly identify from the linked components of fMRI and fNIRS where and when the hemodynamic signals are changing. In particular, the estimated associations between fNIRS and fMRI will be displayed as time varying spatial fMRI maps along with the fNIRS time courses. In addition, the joint components between fMRI and fNIRS are combined together to generate full spatiotemporal “snapshots” and movies, which provides an excellent way to examine the dynamic interplay between hemodynamic fNIRS and fMRI measurements.
Collapse
Affiliation(s)
- Zhen Yuan
- Bioimaging Core, Faculty of Health Sciences, University of Macau Macau SAR, China
| | | |
Collapse
|
33
|
Sacheli LM, Candidi M, Pavone EF, Tidoni E, Aglioti SM. And yet they act together: interpersonal perception modulates visuo-motor interference and mutual adjustments during a joint-grasping task. PLoS One 2012; 7:e50223. [PMID: 23209680 PMCID: PMC3509140 DOI: 10.1371/journal.pone.0050223] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 10/22/2012] [Indexed: 01/20/2023] Open
Abstract
Prediction of “when” a partner will act and “what” he is going to do is crucial in joint-action contexts. However, studies on face-to-face interactions in which two people have to mutually adjust their movements in time and space are lacking. Moreover, while studies on passive observation have shown that somato-motor simulative processes are disrupted when the observed actor is perceived as an out-group or unfair individual, the impact of interpersonal perception on joint-actions has never been directly addressed. Here we explored this issue by comparing the ability of pairs of participants who did or did not undergo an interpersonal perception manipulation procedure to synchronise their reach-to-grasp movements during: i) a guided interaction, requiring pure temporal reciprocal coordination, and ii) a free interaction, requiring both time and space adjustments. Behavioural results demonstrate that while in neutral situations free and guided interactions are equally challenging for participants, a negative interpersonal relationship improves performance in guided interactions at the expense of the free interactive ones. This was paralleled at the kinematic level by the absence of movement corrections and by low movement variability in these participants, indicating that partners cooperating within a negative interpersonal bond executed the cooperative task on their own, without reciprocally adapting to the partner's motor behaviour. Crucially, participants' performance in the free interaction improved in the manipulated group during the second experimental session while partners became interdependent as suggested by higher movement variability and by the appearance of interference between the self-executed actions and those observed in the partner. Our study expands current knowledge about on-line motor interactions by showing that visuo-motor interference effects, mutual motor adjustments and motor-learning mechanisms are influenced by social perception.
Collapse
Affiliation(s)
- Lucia Maria Sacheli
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- IRCCS, Fondazione Santa Lucia, Rome, Italy
- * E-mail: (LMS); (MC)
| | - Matteo Candidi
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- IRCCS, Fondazione Santa Lucia, Rome, Italy
- * E-mail: (LMS); (MC)
| | - Enea Francesco Pavone
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- IRCCS, Fondazione Santa Lucia, Rome, Italy
| | - Emmanuele Tidoni
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- IRCCS, Fondazione Santa Lucia, Rome, Italy
| | - Salvatore Maria Aglioti
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- IRCCS, Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|