1
|
Wang Z, Irving BA, Spielmann G, Johannsen N, Greenway F, Dalecki M. A single exposure to 100% normo-baric oxygen therapy appears to improve sequence learning processes by increasing prefrontal cortex oxygen saturation. Brain Res 2024; 1837:148962. [PMID: 38670479 DOI: 10.1016/j.brainres.2024.148962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/23/2024] [Accepted: 04/24/2024] [Indexed: 04/28/2024]
Abstract
Previously, we showed that a normo-baric 100 % oxygen treatment (NbOxTr) enhances motor learning processes, e.g., visuomotor adaptation (VMA) and sequence learning (SL). However, this work was limited to behavioral outcomes and did not identify the physiological mechanistic underpinnings of these improvements. Here, we expand on this research to investigate the effects of a NbOxTr on the oxygen tissue saturation index (TSI) level of the prefrontal cortex (PFC) when performing a SL task and whether potential SL improvements relate to increased TSI levels in the PFC. Twenty four right-handed young, healthy adults were randomly assigned to a NbOxTr group (normo-baric 100 % oxygen, n = 12) or a control group (normal air, n = 12). They received their respective treatments via a nasal cannula during the experiment. Oxygen TSI levels of the right and left PFC were measured via near-infrared spectroscopy (NIRS) throughout different SL task phases (Baseline, Training, Testing). The NbOxTr increased the TSI of the PFC in the Training phase (p < 0.01) and positively affected SL retention in the Testing phase (p < 0.05). We also found a positive correlation between TSI changes in the right PFC during the gas treatment phase (3.4 % increase) and response time (RT) improvements in the SL task training and retention phase (all p < 0.05). Our results suggest that a simple NbOxTr increases the oxygenated hemoglobin availability in the PFC, which appears to mediate the retention of acquired SL improvements in healthy young adults. Future studies should examine treatment-related oxygenation changes in other brain areas involved and their relation to enhanced learning processes. Whether this NbOxTr improves SL in neurologically impaired populations should also be examined.
Collapse
Affiliation(s)
- Zheng Wang
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
| | - Brian A Irving
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, USA; Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Guillaume Spielmann
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, USA; Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Neil Johannsen
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, USA; Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Frank Greenway
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Marc Dalecki
- School of Kinesiology, Louisiana State University, Baton Rouge, LA, USA; German University of Health and Sports, Berlin, Germany
| |
Collapse
|
2
|
Yeo SS, Park SY, Yun SH. Investigating cortical activity during cybersickness by fNIRS. Sci Rep 2024; 14:8093. [PMID: 38582769 PMCID: PMC10998856 DOI: 10.1038/s41598-024-58715-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/02/2024] [Indexed: 04/08/2024] Open
Abstract
This study investigated brain responses during cybersickness in healthy adults using functional near-infrared spectroscopy (fNIRS). Thirty participants wore a head-mounted display and observed a virtual roller coaster scene that induced cybersickness. Cortical activation during the virtual roller coaster task was measured using fNIRS. Cybersickness symptoms were evaluated using a Simulator Sickness Questionnaire (SSQ) administered after the virtual rollercoaster. Pearson correlations were performed for cybersickness symptoms and the beta coefficients of hemodynamic responses. The group analysis of oxyhemoglobin (HbO) and total hemoglobin (HbT) levels revealed deactivation in the bilateral angular gyrus during cybersickness. In the Pearson correlation analyses, the HbO and HbT beta coefficients in the bilateral angular gyrus had a significant positive correlation with the total SSQ and disorientation. These results indicated that the angular gyrus was associated with cybersickness. These findings suggest that the hemodynamic response in the angular gyrus could be a biomarker for evaluating cybersickness symptoms.
Collapse
Affiliation(s)
- Sang Seok Yeo
- Department of Physical Therapy, College of Health and Welfare Sciences, Dankook University, Cheonan, Republic of Korea
| | - Seo Yoon Park
- Department of Physical Therapy, College of Health and Welfare, Woosuk University, Wanju, Republic of Korea
| | - Seong Ho Yun
- Department of Public Health Sciences, Graduate School, Dankook University, Cheonan-si, Republic of Korea.
| |
Collapse
|
3
|
Feng X, Zhang Z, Jin T, Shi P. Effects of open and closed skill exercise interventions on executive function in typical children: a meta-analysis. BMC Psychol 2023; 11:420. [PMID: 38037184 PMCID: PMC10690989 DOI: 10.1186/s40359-023-01317-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/08/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND The effects of open and closed skill exercise interventions for executive function in children and adolescents have received widespread attention. Open skill refers to the skill of performing motor tasks in an unpredictable environment; closed skill refers to the skill of performing motor tasks in a stable environment. However, the results of related studies are currently controversial and Meta-analysis is urgently needed. METHODS After computer searches of CNKI, Wan-Fang, VIP, WOS, PubMed, and EBSCO databases, two researchers independently screened articles, extracted information, and evaluated the quality of the articles. This study was statistical analyzed using Stata 16.0 software. RESULTS A total of 31 articles were included, including 2988 typical children. Open, closed, continuous and sequential skills all improved executive function in typical children to varying degrees, but open and sequential skills were more effective in improving executive function, particularly in the former in the working memory (SMD=-0.833, P < 0.001) and in the latter in the inhibitory control (SMD=-0.834, P < 0.001) and cognitive flexibility (SMD=-0.903, P < 0.001). Long-term, moderate- intensity interventions were better than acute, vigorous-intensity interventions for executive function, with long-term interventions reflected in working memory (SMD=-0.579, P < 0.001) and moderate-intensity interventions reflected in all three dimensions of executive function (P < 0.01). Intervention periods, intervention intensity and continuous and sequential skills classified by action structure play a significant moderating role. Better results for long-term, sequential structural action interventions based on open skills (P < 0.001); better results for acute, moderate intensity, sequential structural action interventions based on closed (P < 0.05). Whereas intervention intensity had a non-significant moderating effect in the open skills intervention, both moderate and vigorous intensity had a significant effect on executive function (P < 0.001). CONCLUSION Open and closed skills have different levels of facilitation effects on executive function in typical children, but open skills are more effective. The facilitation effects of open and closed skills were moderated by the qualitative characteristics and action structure of the intervention.
Collapse
Affiliation(s)
- Xiaosu Feng
- School of Physical Education, Liaoning Normal University, Dalian, 116029, China
| | - Ziyun Zhang
- School of Life and Health, Huzhou College, Huzhou, 313002, China
| | - Teng Jin
- School of Physical Education, Northeast Normal University, Changchun, 130024, China
| | - Peng Shi
- School of Physical Education, Shanghai University of Sport, Shanghai, 200438, China.
| |
Collapse
|
4
|
Yeo SS, Jang TS, Yun SH. Sensorimotor adaptation in spatial orientation task: a fNIRS study. Sci Rep 2023; 13:15160. [PMID: 37704674 PMCID: PMC10499899 DOI: 10.1038/s41598-023-42416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023] Open
Abstract
In sensorimotor conflicts, the brain forms and updates a new sensorimotor relationship through sensorimotor integration. As humans adapt to new sensorimotor mapping, goal-directed movements become increasingly precise. Using functional near-infrared spectroscopy, we investigated the changes in cortical activity during sensorimotor adaptation in a spatial orientation task with sensorimotor conflict. Individuals performed a reversed spatial orientation training in which the visual feedback guiding hand movements was reversed. We measured cortical activity and spatial orientation performance, including the response time, completion number, error, and accuracy. The results revealed the continuous activation in the left SMG during sensorimotor adaptation and decreased activation in the right SAC, AG and SMG after sensorimotor adaptation. These findings indicated the contribution of the left SMG to sensorimotor adaptation and the improved efficiency of cortical activity after sensorimotor adaptation, respectively. Our studies suggest the neural mechanisms related to sensorimotor adaptation to a reversed spatial orientation task.
Collapse
Affiliation(s)
- Sang Seok Yeo
- Department of Physical Therapy, College of Health and Welfare Sciences, Dankook University, Cheonan, Chungcheongnam-do, Republic of Korea
| | - Tae Su Jang
- Department of Health Administration, College of Health and Welfare Sciences, Dankook University, Cheonan, Chungcheongnam-do, Republic of Korea
| | - Seong Ho Yun
- Department of Public Health Sciences, Graduate School, Dankook University, Cheonan, Chungcheongnam-do, Republic of Korea.
| |
Collapse
|
5
|
Shi P, Feng X. Motor skills and cognitive benefits in children and adolescents: Relationship, mechanism and perspectives. Front Psychol 2022; 13:1017825. [PMID: 36478944 PMCID: PMC9721199 DOI: 10.3389/fpsyg.2022.1017825] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/26/2022] [Indexed: 08/27/2023] Open
Abstract
OBJECTIVE There is a strong interaction between motor skills and cognitive benefits for children and young people. The aim of this paper is to explore the relationship between motor skill types and their development and the cognitive benefits of children and adolescents. In turn, on this basis, it proposes pathways and mechanisms by which motor skills improve cognition, and provide a basis for subsequent teaching of skills that follow the laws of brain cognitive development. METHODS This paper summarizes the research on the relationship between different types of motor skills and their development and cognitive benefits of children and adolescents. Based on these relationships, pathways, and mechanisms for motor skills to improve cognition are tentatively proposed. RESULTS There is an overall pattern of "open > closed, strategy > interception, sequence > continuous" between motor skill types and the cognitive benefits of children and adolescents. Long-term motor skill learning practice is accompanied by increased cognitive benefits as skill proficiency increases. The dynamic interaction between motor skills and physical activity exposes children and adolescents to environmental stimuli and interpersonal interactions of varying complexity, promoting the development of agility, coordination and cardiorespiratory fitness, enhancing their motor experience, which in turn improves brain structure and functional activity. CONCLUSION Motor skills training promote cognitive efficiency in children and adolescents. Motor skill interventions that are open-ended, strategic and sequential in nature are more effective. Environmental stimuli, interpersonal interaction, agility, coordination, and cardiorespiratory fitness can be considered as skill attribute moderators of motor skills to improve cognition.
Collapse
Affiliation(s)
- Peng Shi
- School of Physical Education, Shanghai University of Sport, Shanghai, China
| | - Xiaosu Feng
- Physical Education College, Liaoning Normal University, Dalian, China
| |
Collapse
|
6
|
Reddy P, Shewokis PA, Izzetoglu K. Individual differences in skill acquisition and transfer assessed by dual task training performance and brain activity. Brain Inform 2022; 9:9. [PMID: 35366168 PMCID: PMC8976865 DOI: 10.1186/s40708-022-00157-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/08/2022] [Indexed: 11/23/2022] Open
Abstract
Assessment of expertise development during training program primarily consists of evaluating interactions between task characteristics, performance, and mental load. Such a traditional assessment framework may lack consideration of individual characteristics when evaluating training on complex tasks, such as driving and piloting, where operators are typically required to execute multiple tasks simultaneously. Studies have already identified individual characteristics arising from intrinsic, context, strategy, personality, and preference as common predictors of performance and mental load. Therefore, this study aims to investigate the effect of individual difference in skill acquisition and transfer using an ecologically valid dual task, behavioral, and brain activity measures. Specifically, we implemented a search and surveillance task (scanning and identifying targets) using a high-fidelity training simulator for the unmanned aircraft sensor operator, acquired behavioral measures (scan, not scan, over scan, and adaptive target find scores) using simulator-based analysis module, and measured brain activity changes (oxyhemoglobin and deoxyhemoglobin) from the prefrontal cortex (PFC) using a portable functional near-infrared spectroscopy (fNIRS) sensor array. The experimental protocol recruited 13 novice participants and had them undergo three easy and two hard sessions to investigate skill acquisition and transfer, respectively. Our results from skill acquisition sessions indicated that performance on both tasks did not change when individual differences were not accounted for. However inclusion of individual differences indicated that some individuals improved only their scan performance (Attention-focused group), while others improved only their target find performance (Accuracy-focused group). Brain activity changes during skill acquisition sessions showed that mental load decreased in the right anterior medial PFC (RAMPFC) in both groups regardless of individual differences. However, mental load increased in the left anterior medial PFC (LAMPFC) of Attention-focused group and decreased in the Accuracy-focused group only when individual differences were included. Transfer results showed no changes in performance regardless of grouping based on individual differences; however, mental load increased in RAMPFC of Attention-focused group and left dorsolateral PFC (LDLPFC) of Accuracy-focused group. Efficiency and involvement results suggest that the Attention-focused group prioritized the scan task, while the Accuracy-focused group prioritized the target find task. In conclusion, training on multitasks results in individual differences. These differences may potentially be due to individual preference. Future studies should incorporate individual differences while assessing skill acquisition and transfer during multitask training.
Collapse
Affiliation(s)
- Pratusha Reddy
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3508 Market St Suite 100, Philadelphia, PA, 19104, USA
| | - Patricia A Shewokis
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3508 Market St Suite 100, Philadelphia, PA, 19104, USA.,Nutrition Sciences Department-College of Nursing and Health Professions, Drexel University, 1601 Cherry St Free Parkway, Philadelphia, PA, 19102, USA.,School of Education, 3401 Market Street 3rd Floor Suite 3000, Philadelphia, PA, 19104, USA
| | - Kurtulus Izzetoglu
- School of Biomedical Engineering, Science and Health Systems, Drexel University, 3508 Market St Suite 100, Philadelphia, PA, 19104, USA. .,School of Education, 3401 Market Street 3rd Floor Suite 3000, Philadelphia, PA, 19104, USA.
| |
Collapse
|
7
|
Tinga AM, Clim MA, de Back TT, Louwerse MM. Measures of prefrontal functional near-infrared spectroscopy in visuomotor learning. Exp Brain Res 2021; 239:1061-1072. [PMID: 33528598 PMCID: PMC8068645 DOI: 10.1007/s00221-021-06039-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/11/2021] [Indexed: 11/25/2022]
Abstract
Functional near-infrared spectroscopy (fNIRS) is a promising technique for non-invasively assessing cortical brain activity during learning. This technique is safe, portable, and, compared to other imaging techniques, relatively robust to head motion, ocular and muscular artifacts and environmental noise. Moreover, the spatial resolution of fNIRS is superior to electroencephalography (EEG), a more commonly applied technique for measuring brain activity non-invasively during learning. Outcomes from fNIRS measures during learning might therefore be both sensitive to learning and to feedback on learning, in a different way than EEG. However, few studies have examined fNIRS outcomes in learning and no study to date additionally examined the effects of feedback. To address this apparent gap in the literature, the current study examined prefrontal cortex activity measured through fNIRS during visuomotor learning and how this measure is affected by task feedback. Activity in the prefrontal cortex decreased over the course of learning while being unaffected by task feedback. The findings demonstrate that fNIRS in the prefrontal cortex is valuable for assessing visuomotor learning and that this measure is robust to task feedback. The current study highlights the potential of fNIRS in assessing learning even under different task feedback conditions.
Collapse
Affiliation(s)
- Angelica M Tinga
- Department of Cognitive Science and Artificial Intelligence, Tilburg University, Dante Building, Room D 330, Warandelaan 2, 5037 AB, Tilburg, The Netherlands.
| | - Maria-Alena Clim
- Department of Cognitive Science and Artificial Intelligence, Tilburg University, Dante Building, Room D 330, Warandelaan 2, 5037 AB, Tilburg, The Netherlands
| | - Tycho T de Back
- Department of Cognitive Science and Artificial Intelligence, Tilburg University, Dante Building, Room D 330, Warandelaan 2, 5037 AB, Tilburg, The Netherlands
| | - Max M Louwerse
- Department of Cognitive Science and Artificial Intelligence, Tilburg University, Dante Building, Room D 330, Warandelaan 2, 5037 AB, Tilburg, The Netherlands
| |
Collapse
|
8
|
Galoyan T, Betts K, Abramian H, Reddy P, Izzetoglu K, Shewokis PA. Examining Mental Workload in a Spatial Navigation Transfer Game via Functional near Infrared Spectroscopy. Brain Sci 2021; 11:brainsci11010045. [PMID: 33406711 PMCID: PMC7824704 DOI: 10.3390/brainsci11010045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/24/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
The goal of this study was to examine the effects of task-related variables, such as the difficulty level, problem scenario, and experiment week, on performance and mental workload of 27 healthy adult subjects during problem solving within the spatial navigation transfer (SNT) game. The study reports task performance measures such as total time spent on a task (TT) and reaction time (RT); neurophysiological measures involving the use of functional near-infrared spectroscopy (fNIRS); and a subjective rating scale for self-assessment of mental workload (NASA TLX) to test the related hypothesis. Several within-subject repeated-measures factorial ANOVA models were developed to test the main hypothesis. The results revealed a number of interaction effects for the dependent measures of TT, RT, fNIRS, and NASA TLX. The results showed (1) a decrease in TT and RT across the three levels of difficulty from Week 1 to Week 2; (2) an increase in TT and RT for high and medium cognitive load tasks as compared to low cognitive load tasks in both Week 1 and Week 2; (3) an overall increase in oxygenation from Week 1 to Week 2. These findings confirmed that both the behavioral performance and mental workload were sensitive to task manipulations.
Collapse
Affiliation(s)
- Tamara Galoyan
- Department of Educational Psychology, College of Education, The University of Utah, Salt Lake City, UT 84112, USA
- Correspondence:
| | - Kristen Betts
- School of Education, Drexel University, Philadelphia, PA 19104, USA;
| | - Hovag Abramian
- College of Science and Engineering, American University of Armenia, Yerevan 0019, Armenia;
| | - Pratusha Reddy
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA; (P.R.); (K.I.); (P.A.S.)
| | - Kurtulus Izzetoglu
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA; (P.R.); (K.I.); (P.A.S.)
| | - Patricia A. Shewokis
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA; (P.R.); (K.I.); (P.A.S.)
| |
Collapse
|
9
|
Surkar SM, Hoffman RM, Harbourne R, Kurz MJ. Cognitive-Motor Interference Heightens the Prefrontal Cortical Activation and Deteriorates the Task Performance in Children With Hemiplegic Cerebral Palsy. Arch Phys Med Rehabil 2020; 102:225-232. [PMID: 32976843 DOI: 10.1016/j.apmr.2020.08.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/07/2020] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To compare the prefrontal cortex (PFC) activation and task performance during single- and dual-task conditions between typically developing (TD) children and children with hemiplegic cerebral palsy (HCP). DESIGN A prospective, comparative design. SETTING Research laboratory. PARTICIPANTS Participants (N=21) included 12 TD children (age, 6.0±1.1y) and 9 children with HCP (age, 7.2±3.1). INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES PFC activation was assessed by measuring the concentration of oxygenated hemoglobin while the children performed a shape-matching task with their more affected arm while sitting on a stable (single task) vs dynamic surface (dual task). The task performance was assessed with the total number of shapes matched, dual-task cost, and reaction time (RT). RESULTS For both conditions, the children with HCP exhibited greater PFC activation, matched a fewer shapes, and had slower RT than the TD children. These differences were accentuated during the dual-task condition and the dual-task cost was greater. An increase in the PFC activation during the dual-task condition was tightly correlated with a higher dual-task cost in children with HCP (r=0.77, P=.01). CONCLUSIONS Children with HCP appear to have a heightened amount of PFC activity while performing a dual task. The greater cortical activity may be a result of the finite attentional resources that are shared between both the motor as well as cognitive demands of the task. The cognitive-motor interference is likely exacerbated in children with HCP because of the structural and functional brain changes as a result of an insult to the developing brain.
Collapse
Affiliation(s)
- Swati M Surkar
- Department of Physical Therapy, East Carolina University, Greenville, North Carolina; Department of Physical Therapy, Munroe Meyer Institute of Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska
| | - Rashelle M Hoffman
- Department of Physical Therapy, Munroe Meyer Institute of Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska
| | - Regina Harbourne
- Department of Physical Therapy John G. Rangos School of Health Sciences, Duquesne University, Pittsburgh, Pennsylvania
| | - Max J Kurz
- Department of Physical Therapy, Munroe Meyer Institute of Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska; Cognitive Neuroscience of Development & Aging (CoNDA) Center, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
10
|
Jaquess KJ, Lu Y, Ginsberg A, Kahl S, Lu C, Ritland B, Gentili RJ, Hatfield BD. Effect of Self-Controlled Practice on Neuro-Cortical Dynamics During the Processing of Visual Performance Feedback. J Mot Behav 2020; 53:632-643. [PMID: 32938332 DOI: 10.1080/00222895.2020.1817841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Evidence has accumulated that learners participating in self-controlled practice can both acquire skills and process task-relevant information more effectively than those participating in externally controlled practice. However, the impact of self-controlled practice on neuro-cognitive information processing during visual performance-related feedback has received limited investigation. We expected that individuals participating in self-controlled practice would exhibit elevated neuro-cognitive information processing, as assessed via electroencephalography (EEG), compared with those engaged with externally controlled practice. Participants practiced a golf-putting task under self-controlled or externally controlled (yoked) conditions while EEG data were recorded. Results indicated that EEG theta power was maintained at an elevated level during the feedback period in the self-controlled group relative to the yoked group. The yoked group did not display increases in theta power until the time at which the ball stopped. Both groups displayed similar improvement over the course of the experiment. Correlational analyses revealed that performance improvement within each group was related differently to EEG theta power. Specifically, the self-controlled group displayed positive relationships between theta power and performance improvement, while the yoked group displayed negative relationships. These results have implications regarding the relative effectiveness of self-controlled and externally controlled practice and the instances in which they may provide the most benefit.
Collapse
Affiliation(s)
- Kyle J Jaquess
- Department of Kinesiology, University of Maryland, College Park, MD, USA.,Department of Psychology, Juniata College, Huntingdon, PA, USA.,War Related Illness and Injury Study Center, Department of Veterans Affairs, Washington, DC, USA
| | - Yingzhi Lu
- Department of Kinesiology, University of Maryland, College Park, MD, USA.,Department of Psychology, Shanghai University of Sport, Shanghai, China
| | - Andrew Ginsberg
- Department of Kinesiology, University of Maryland, College Park, MD, USA
| | - Steven Kahl
- Department of Kinesiology, University of Maryland, College Park, MD, USA
| | - Calvin Lu
- Department of Kinesiology, University of Maryland, College Park, MD, USA
| | - Bradley Ritland
- Department of Kinesiology, University of Maryland, College Park, MD, USA.,Military Performance Division, United States Army Research Institute of Environmental Medicine, MA, USA
| | - Rodolphe J Gentili
- Department of Kinesiology, University of Maryland, College Park, MD, USA
| | - Bradley D Hatfield
- Department of Kinesiology, University of Maryland, College Park, MD, USA
| |
Collapse
|
11
|
Anderson A, Gropman A, Le Mons C, Stratakis C, Gandjbakhche A. Evaluation of neurocognitive function of prefrontal cortex in ornithine transcarbamylase deficiency. Mol Genet Metab 2020; 129:207-212. [PMID: 31952925 PMCID: PMC7416502 DOI: 10.1016/j.ymgme.2019.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/30/2019] [Accepted: 12/30/2019] [Indexed: 02/02/2023]
Abstract
Hyperammonia due to ornithine transcarbamylase deficiency (OTCD) can cause a range of deficiencies in domains of executive function and working memory. Only a few fMRI studies have focused on neuroimaging data in a population with OTCD. Yet, there is a need for monitoring the disease progression and neurocognitive function in this population. In this study, we used a non-invasive neuroimaging technique, functional Near Infrared Spectroscopy (fNIRS), to examine the hemodynamics of prefrontal cortex (PFC) based on neural activation in an OTCD population. Using fNIRS, we measured the activation in PFC of the participants while performing the Stroop task. Behavioral assessment such as reaction time and correct response were recorded. We investigated the difference in behavioral measures as well as brain activation in left and right PFC in patients with OTCD and controls. Results revealed a distinction in left PFC activation between controls and patients with OTCD, where control subjects showed higher task related activation increase. Subjects with OTCD also exhibited bilateral increase in PFC activation. There was no significant difference in response time or correct response between the two groups. Our findings suggest the alterations in neurocognitive function of PFC in OTCD compared to the controls despite the behavioral profiles exhibiting no such differences. This is a first study using fNIRS to examine a neurocognitive function in OTCD population and can provide a novel insight into the screening of OTCD progression and examining neurocognitive changes.
Collapse
Affiliation(s)
- Afrouz Anderson
- NIH, National Institute of Child Health and Human Development, Bethesda, MD 20892, United States of America
| | - Andrea Gropman
- Children's National Medical Center, Division of Neurogenetics and Neurodevelopmental Pediatrics, Washington, DC 20010, United States of America
| | - Cynthia Le Mons
- National Urea Cycle Disorders Foundation, Pasadena, California 91105
| | - Constantine Stratakis
- NIH, National Institute of Child Health and Human Development, Bethesda, MD 20892, United States of America
| | - Amir Gandjbakhche
- NIH, National Institute of Child Health and Human Development, Bethesda, MD 20892, United States of America.
| |
Collapse
|
12
|
Shuggi IM, Oh H, Wu H, Ayoub MJ, Moreno A, Shaw EP, Shewokis PA, Gentili RJ. Motor Performance, Mental Workload and Self-Efficacy Dynamics during Learning of Reaching Movements throughout Multiple Practice Sessions. Neuroscience 2019; 423:232-248. [PMID: 31325564 DOI: 10.1016/j.neuroscience.2019.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 10/26/2022]
Abstract
The human capability to learn new motor skills depends on the efficient engagement of cognitive-motor resources, as reflected by mental workload, and psychological mechanisms (e.g., self-efficacy). While numerous investigations have examined the relationship between motor behavior and mental workload or self-efficacy in a performance context, a fairly limited effort focused on the combined examination of these notions during learning. Thus, this study aimed to examine their concomitant dynamics during the learning of a novel reaching skill practiced throughout multiple sessions. Individuals had to learn to control a virtual robotic arm via a human-machine interface by using limited head motion throughout eight practice sessions while motor performance, mental workload, and self-efficacy were assessed. The results revealed that as individuals learned to control the robotic arm, performance improved at the fastest rate, followed by a more gradual reduction of mental workload and finally an increase in self-efficacy. These results suggest that once the performance improved, less cognitive-motor resources were recruited, leading to an attenuated mental workload. Considering that attention is a primary cognitive resource driving mental workload, it is suggested that during early learning, attentional resources are primarily allocated to address task demands and not enough are available to assess self-efficacy. However, as the performance becomes more automatic, a lower level of mental workload is attained driven by decreased recruitment of attentional resources. These available resources allow for a reliable assessment of self-efficacy resulting in a subsequent observable change. These results are also discussed in terms of the application to the training and design of assistive technologies.
Collapse
Affiliation(s)
- Isabelle M Shuggi
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Hyuk Oh
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Helena Wu
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | - Maria J Ayoub
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | - Arianna Moreno
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | - Emma P Shaw
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA
| | - Patricia A Shewokis
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, USA; Nutrition Sciences Department, College of Nursing and Health Professions, Drexel University, Philadelphia, PA, USA
| | - Rodolphe J Gentili
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA; Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, USA; Maryland Robotics Center, University of Maryland, College Park, MD, USA.
| |
Collapse
|
13
|
Age-related differences in the within-session trainability of hemodynamic parameters: a near-infrared spectroscopy–based neurofeedback study. Neurobiol Aging 2019; 81:127-137. [DOI: 10.1016/j.neurobiolaging.2019.05.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 05/02/2019] [Accepted: 05/30/2019] [Indexed: 11/21/2022]
|
14
|
Brandes-Aitken A, Anguera JA, Chang YS, Demopoulos C, Owen JP, Gazzaley A, Mukherjee P, Marco EJ. White Matter Microstructure Associations of Cognitive and Visuomotor Control in Children: A Sensory Processing Perspective. Front Integr Neurosci 2019; 12:65. [PMID: 30692921 PMCID: PMC6339953 DOI: 10.3389/fnint.2018.00065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/11/2018] [Indexed: 01/08/2023] Open
Abstract
Objective: Recent evidence suggests that co-occurring deficits in cognitive control and visuomotor control are common to many neurodevelopmental disorders. Specifically, children with sensory processing dysfunction (SPD), a condition characterized by sensory hyper/hypo-sensitivity, show varying degrees of overlapping attention and visuomotor challenges. In this study, we assess associations between cognitive and visuomotor control abilities among children with and without SPD. In this same context, we also examined the common and unique diffusion tensor imaging (DTI) tracts that may support the overlap of cognitive control and visuomotor control. Method: We collected cognitive control and visuomotor control behavioral measures as well as DTI data in 37 children with SPD and 25 typically developing controls (TDCs). We constructed regressions to assess for associations between behavioral performance and mean fractional anisotropy (FA) in selected regions of interest (ROIs). Results: We observed an association between behavioral performance on cognitive control and visuomotor control. Further, our findings indicated that FA in the anterior limb of the internal capsule (ALIC), the anterior thalamic radiation (ATR), and the superior longitudinal fasciculus (SLF) are associated with both cognitive control and visuomotor control, while FA in the superior corona radiata (SCR) uniquely correlate with cognitive control performance and FA in the posterior limb of the internal capsule (PLIC) and the cerebral peduncle (CP) tract uniquely correlate with visuomotor control performance. Conclusions: These findings suggest that children who demonstrate lower cognitive control are also more likely to demonstrate lower visuomotor control, and vice-versa, regardless of clinical cohort assignment. The overlapping neural tracts, which correlate with both cognitive and visuomotor control suggest a possible common neural mechanism supporting both control-based processes.
Collapse
Affiliation(s)
- Annie Brandes-Aitken
- Neuroscape Center, Departments of Neurology, Pediatrics, Physiology, Radiology, and Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Joaquin A Anguera
- Neuroscape Center, Departments of Neurology, Pediatrics, Physiology, Radiology, and Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Yi-Shin Chang
- Neuroscape Center, Departments of Neurology, Pediatrics, Physiology, Radiology, and Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Carly Demopoulos
- Neuroscape Center, Departments of Neurology, Pediatrics, Physiology, Radiology, and Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Julia P Owen
- Neuroscape Center, Departments of Neurology, Pediatrics, Physiology, Radiology, and Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Adam Gazzaley
- Neuroscape Center, Departments of Neurology, Pediatrics, Physiology, Radiology, and Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Pratik Mukherjee
- Neuroscape Center, Departments of Neurology, Pediatrics, Physiology, Radiology, and Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Elysa J Marco
- Neuroscape Center, Departments of Neurology, Pediatrics, Physiology, Radiology, and Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
15
|
Jaquess KJ, Lo LC, Oh H, Lu C, Ginsberg A, Tan YY, Lohse KR, Miller MW, Hatfield BD, Gentili RJ. Changes in Mental Workload and Motor Performance Throughout Multiple Practice Sessions Under Various Levels of Task Difficulty. Neuroscience 2018; 393:305-318. [PMID: 30266685 DOI: 10.1016/j.neuroscience.2018.09.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 09/12/2018] [Accepted: 09/17/2018] [Indexed: 11/28/2022]
Abstract
The allocation of mental workload is critical to maintain cognitive-motor performance under various demands. While mental workload has been investigated during performance, limited efforts have examined it during cognitive-motor learning, while none have concurrently manipulated task difficulty. It is reasonable to surmise that the difficulty level at which a skill is practiced would impact the rate of skill acquisition and also the rate at which mental workload is reduced during learning (relatively slowed for challenging compared to easier tasks). This study aimed to monitor mental workload by assessing cortical dynamics during a task practiced under two difficulty levels over four days while perceived task demand, performance, and electroencephalography (EEG) were collected. As expected, self-reported mental workload was reduced, greater working memory engagement via EEG theta synchrony was observed, and reduced cortical activation, as indexed by progressive EEG alpha synchrony was detected during practice. Task difficulty was positively related to the magnitude of alpha desynchrony and accompanied by elevations in the theta-alpha ratio. Counter to expectation, the absence of an interaction between task difficulty and practice days for both theta and alpha power indicates that the refinement of mental processes throughout learning occurred at a comparable rate for both levels of difficulty. Thus, the assessment of brain dynamics was sensitive to the rate of change of cognitive workload with practice, but not to the degree of difficulty. Future work should consider a broader range of task demands and additional measures of brain processes to further assess this phenomenon.
Collapse
Affiliation(s)
- Kyle J Jaquess
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | - Li-Chuan Lo
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | - Hyuk Oh
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA
| | - Calvin Lu
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | - Andrew Ginsberg
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA
| | - Ying Ying Tan
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA; Defense Science and Technology Agency, Singapore
| | - Keith R Lohse
- Department of Health, Kinesiology, and Recreation, University of Utah, Salt Lake City, UT, USA
| | | | - Bradley D Hatfield
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA
| | - Rodolphe J Gentili
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD, USA; Maryland Robotics Center, University of Maryland, College Park, MD, USA.
| |
Collapse
|
16
|
Balconi M, Crivelli D, Cortesi L. Transitive Versus Intransitive Complex Gesture Representation: A Comparison Between Execution, Observation and Imagination by fNIRS. Appl Psychophysiol Biofeedback 2018; 42:179-191. [PMID: 28589287 DOI: 10.1007/s10484-017-9365-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The aim of the present study was to examine cortical correlates of motor execution, motor observation and motor imagery of hand complex gestures, in particular by comparing meaningful gestures implying the use of an object (transitive action) or not (intransitive action). Functional near-infrared spectroscopy (fNIRS) was used to verify the presence of partial overlapping between some cortical areas involved in those different tasks. Participants were instructed to observe videos of transitive vs. intransitive gestures and then to execute or imagine them. Gesture execution was associated to greater brain activity (increased oxygenated hemoglobin levels) with respect to observation and imagination in motor areas (premotor cortex, PMC; primary sensorimotor cortex, SM1). In contrast, the posterior parietal cortex (PPC) was more relevantly involved in both execution and observation tasks compared to gesture imagination. Moreover, execution and observation of transitive gestures seemed primarily supported by similar parietal posterior areas when compared with intransitive gestures, which do not imply the presence on a object.
Collapse
Affiliation(s)
- Michela Balconi
- Research Unit in Affective and Social Neuroscience, Catholic University of the Sacred Heart, Milan, Italy. .,Department of Psychology, Catholic University of the Sacred Heart, Largo Gemelli, 1, 20123, Milan, Italy.
| | - Davide Crivelli
- Research Unit in Affective and Social Neuroscience, Catholic University of the Sacred Heart, Milan, Italy.,Department of Psychology, Catholic University of the Sacred Heart, Largo Gemelli, 1, 20123, Milan, Italy
| | - Livia Cortesi
- Department of Psychology, Catholic University of the Sacred Heart, Largo Gemelli, 1, 20123, Milan, Italy
| |
Collapse
|
17
|
Omurtag A, Aghajani H, Keles HO. Decoding human mental states by whole-head EEG+fNIRS during category fluency task performance. J Neural Eng 2018; 14:066003. [PMID: 28730995 DOI: 10.1088/1741-2552/aa814b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Concurrent scalp electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS), which we refer to as EEG+fNIRS, promises greater accuracy than the individual modalities while remaining nearly as convenient as EEG. We sought to quantify the hybrid system's ability to decode mental states and compare it with its unimodal components. APPROACH We recorded from healthy volunteers taking the category fluency test and applied machine learning techniques to the data. MAIN RESULTS EEG+fNIRS's decoding accuracy was greater than that of its subsystems, partly due to the new type of neurovascular features made available by hybrid data. SIGNIFICANCE Availability of an accurate and practical decoding method has potential implications for medical diagnosis, brain-computer interface design, and neuroergonomics.
Collapse
Affiliation(s)
- Ahmet Omurtag
- Engineering Department, Nottingham Trent University, Nottingham, United Kingdom
| | | | | |
Collapse
|
18
|
Trainability of hemodynamic parameters: A near-infrared spectroscopy based neurofeedback study. Biol Psychol 2018; 136:168-180. [DOI: 10.1016/j.biopsycho.2018.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/17/2018] [Accepted: 05/16/2018] [Indexed: 11/22/2022]
|
19
|
Anderson AA, Parsa K, Geiger S, Zaragoza R, Kermanian R, Miguel H, Dashtestani H, Chowdhry FA, Smith E, Aram S, Gandjbakhche AH. Exploring the role of task performance and learning style on prefrontal hemodynamics during a working memory task. PLoS One 2018; 13:e0198257. [PMID: 29870536 PMCID: PMC5988299 DOI: 10.1371/journal.pone.0198257] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 05/16/2018] [Indexed: 11/19/2022] Open
Abstract
Existing literature outlines the quality and location of activation in the prefrontal cortex (PFC) during working memory (WM) tasks. However, the effects of individual differences on the underlying neural process of WM tasks are still unclear. In this functional near infrared spectroscopy study, we administered a visual and auditory n-back task to examine activation in the PFC while considering the influences of task performance, and preferred learning strategy (VARK score). While controlling for age, results indicated that high performance (HP) subjects (accuracy > 90%) showed task dependent lower activation compared to normal performance subjects in PFC region Specifically HP groups showed lower activation in left dorsolateral PFC (DLPFC) region during performance of auditory task whereas during visual task they showed lower activation in the right DLPFC. After accounting for learning style, we found a correlation between visual and aural VARK score and level of activation in the PFC. Subjects with higher visual VARK scores displayed lower activation during auditory task in left DLPFC, while those with higher visual scores exhibited higher activation during visual task in bilateral DLPFC. During performance of auditory task, HP subjects had higher visual VARK scores compared to NP subjects indicating an effect of learning style on the task performance and activation. The results of this study show that learning style and task performance can influence PFC activation, with applications toward neurological implications of learning style and populations with deficits in auditory or visual processing.
Collapse
Affiliation(s)
- Afrouz A. Anderson
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Kian Parsa
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Sydney Geiger
- St. Olaf College, Northfield, MN, United States of America
| | - Rachel Zaragoza
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Riley Kermanian
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Helga Miguel
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Hadis Dashtestani
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Fatima A. Chowdhry
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Elizabeth Smith
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
| | - Siamak Aram
- Analytics Department, Harrisburg University of Science and Technology, Harrisburg, PA, United States of America
| | - Amir H. Gandjbakhche
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States of America
- * E-mail:
| |
Collapse
|
20
|
Hand-Arm Bimanual Intensive Therapy Improves Prefrontal Cortex Activation in Children With Hemiplegic Cerebral Palsy. Pediatr Phys Ther 2018; 30:93-100. [PMID: 29578992 DOI: 10.1097/pep.0000000000000486] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE To determine the changes in the prefrontal cortical (PFC) activation following hand-arm bimanual intensive therapy (HABIT) in children with hemiplegic cerebral palsy (HCP). METHODS Nine children with HCP and 15 children who were developing typically participated in the study. Children with HCP received 50 hours of HABIT. We assessed pre- and post-HABIT PFC activation using functional near-infrared spectroscopy neuroimaging. Bimanual coordination and motor task performance were assessed using the Assisting Hand Assessment (AHA), the average number of shapes matched, the shape matching errors, the reaction time, the 9-hole peg test, and the box and blocks test. RESULTS The PFC activation decreased following HABIT and became similar to what was seen in the children who were developing typically. Post-HABIT PFC activation improvements paralleled with the improvements seen in the AHA and the behavioral outcomes. CONCLUSION HABIT potentially improves the PFC's involvement in the action planning of the upper extremity movements in children with HCP.
Collapse
|
21
|
Shuggi IM, Shewokis PA, Herrmann JW, Gentili RJ. Changes in motor performance and mental workload during practice of reaching movements: a team dynamics perspective. Exp Brain Res 2017; 236:433-451. [PMID: 29214390 DOI: 10.1007/s00221-017-5136-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 11/14/2017] [Indexed: 10/18/2022]
Abstract
Few investigations have examined mental workload during motor practice or learning in a context of team dynamics. This study examines the underlying cognitive-motor processes of motor practice by assessing the changes in motor performance and mental workload during practice of reaching movements. Individuals moved a robotic arm to reach targets as fast and as straight as possible while satisfying the task requirement of avoiding a collision between the end-effector and the workspace limits. Individuals practiced the task either alone (HA group) or with a synthetic teammate (HRT group), which regulated the effector velocity to help satisfy the task requirements. The findings revealed that the performance of both groups improved similarly throughout practice. However, when compared to the individuals of the HA group, those in the HRT group (1) had a lower risk of collisions, (2) exhibited higher performance consistency, and (3) revealed a higher level of mental workload while generally perceiving the robotic teammate as interfering with their performance. As the synthetic teammate changed the effector velocity in specific regions near the workspace boundaries, individuals may have been constrained to learn a piecewise visuomotor map. This piecewise map made the task more challenging, which increased mental workload and perception of the synthetic teammate as a burden. The examination of both motor performance and mental workload revealed a combination of both adaptive and maladaptive team dynamics. This work is a first step to examine the human cognitive-motor processes underlying motor practice in a context of team dynamics and contributes to inform human-robot applications.
Collapse
Affiliation(s)
- Isabelle M Shuggi
- Systems Engineering Program, University of Maryland, College Park, MD, 20742, USA.,Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, 20742, USA.,Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, 20742, USA
| | - Patricia A Shewokis
- School of Biomedical Engineering, Science, and Health Systems, Drexel University, Philadelphia, PA, 19102, USA.,Nutrition Sciences Department, College of Nursing and Health Professions, Drexel University, Philadelphia, PA, 19102, USA
| | - Jeffrey W Herrmann
- Department of Mechanical Engineering, University of Maryland, College Park, MD, 20742, USA.,Institute for Systems Research, University of Maryland, College Park, MD, 20742, USA
| | - Rodolphe J Gentili
- Department of Kinesiology, School of Public Health, University of Maryland, College Park, MD, 20742, USA. .,Program in Neuroscience and Cognitive Science, University of Maryland, College Park, MD, 20742, USA. .,Maryland Robotics Center, University of Maryland, College Park, MD, USA.
| |
Collapse
|
22
|
Chen YC, Lin YT, Chang GC, Hwang IS. Perceptual influences of error size on voluntary force control during a compound sinusoidal force task. Hum Mov Sci 2017; 56:46-53. [PMID: 29101823 DOI: 10.1016/j.humov.2017.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 09/25/2017] [Accepted: 10/19/2017] [Indexed: 11/27/2022]
Abstract
Visual feedback that provides error information is critical to task quality and motor adjustments. This study investigated how the size of perceived errors via visual feedback affected rate control and force gradation strategy of a designate force task. Fourteen young adults coupled force exertions to a compound sinusoidal signal (0.2 Hz and 0.5 Hz) that fluctuated around a mean level of 30% of maximal voluntary contraction, when the size of execution errors were differently scaled with the error amplification factors. In the low (LAF) and high (HAF) amplification factor conditions, the execution errors in the visual display half and double of the real errors, respectively. The visualized error was the real errors in the medium amplification factor (MAF) condition. In addition to a phase-lead of force output, the LAF condition that virtually reduced the size of error feedback associated with a poorer task accuracy than the MAF and HAF conditions. Virtual increase in error size of visual feedback selectively suppressed the fast target force at 0.5 Hz. In addition, complexity and high-frequency components (>0.75 Hz) of force outputs multiplied progressively with increasing error size. Error-enhancing feedback suppressed fast target force, accentuating the use of error information to tune force output, whereas error-reducing feedback enhanced fast target force in favor of predictive force control.
Collapse
Affiliation(s)
- Yi-Ching Chen
- Department of Physical Therapy, Chung Shan Medical University, Taichung City 40201, Taiwan; Physical Therapy Room, Chung Shan Medical University Hospital, Taichung City 40201, Taiwan
| | - Yen-Ting Lin
- Physical Education Office, Asian University, Taichung City 41354, Taiwan
| | - Gwo-Ching Chang
- Department of Information Engineering, I-Shou University, Kaohsiung City 84001, Taiwan
| | - Ing-Shiou Hwang
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan; Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan.
| |
Collapse
|
23
|
Shuggi IM, Oh H, Shewokis PA, Gentili RJ. Mental workload and motor performance dynamics during practice of reaching movements under various levels of task difficulty. Neuroscience 2017; 360:166-179. [PMID: 28757242 DOI: 10.1016/j.neuroscience.2017.07.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 10/19/2022]
|
24
|
Hosseini SMH, Bruno JL, Baker JM, Gundran A, Harbott LK, Gerdes JC, Reiss AL. Neural, physiological, and behavioral correlates of visuomotor cognitive load. Sci Rep 2017; 7:8866. [PMID: 28821719 PMCID: PMC5562732 DOI: 10.1038/s41598-017-07897-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 07/05/2017] [Indexed: 12/03/2022] Open
Abstract
Visuomotor ability is quite crucial for everyday functioning, particularly in driving and sports. While there is accumulating evidence regarding neural correlates of visuomotor transformation, less is known about the brain regions that accommodate visuomotor mapping under different cognitive demands. We concurrently measured cortical activity and pupillary response, using functional near infrared spectroscopy (fNIRS) and eye-tracking glasses, to examine the neural systems linked to pupil dilation under varying cognitive demands. Twenty-three healthy adults performed two sessions of a navigation task, in which the cognitive load was manipulated by either reversing the visuomotor mapping or increasing the speed of the moving object. We identified a region in the right superior parietal lobule that responded to both types of visuomotor load and its activity was associated with larger pupillary response and better performance in the task. Our multimodal analyses suggest that activity in this region arises from the need for increased attentional effort and alertness for visuomotor control and is an ideal candidate for objective measurement of visuomotor cognitive load. Our data extend previous findings connecting changes in pupil diameter to neural activity under varying cognitive demand and have important implications for examining brain-behavior associations in real-world tasks such as driving and sports.
Collapse
Affiliation(s)
- S M Hadi Hosseini
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA, 94305-5795, USA.
| | - Jennifer L Bruno
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA, 94305-5795, USA
| | - Joseph M Baker
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA, 94305-5795, USA
| | - Andrew Gundran
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA, 94305-5795, USA
| | - Lene K Harbott
- Department of Mechanical Engineering, Stanford University, 473 Oak Road, Stanford, CA, 94305, USA
| | - J Christian Gerdes
- Department of Mechanical Engineering, Stanford University, 473 Oak Road, Stanford, CA, 94305, USA
| | - Allan L Reiss
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA, 94305-5795, USA.,Departments of Radiology and Pediatrics, Stanford University, 401 Quarry Road, Stanford, CA, 94305, USA
| |
Collapse
|
25
|
Keles HO, Barbour RL, Omurtag A. Hemodynamic correlates of spontaneous neural activity measured by human whole-head resting state EEG+fNIRS. Neuroimage 2016; 138:76-87. [PMID: 27236081 DOI: 10.1016/j.neuroimage.2016.05.058] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 05/18/2016] [Accepted: 05/24/2016] [Indexed: 02/05/2023] Open
Abstract
The brains of awake, resting human subjects display spontaneously occurring neural activity patterns whose magnitude is typically many times greater than those triggered by cognitive or perceptual performance. Evoked and resting state activations affect local cerebral hemodynamic properties through processes collectively referred to as neurovascular coupling. Its investigation calls for an ability to track both the neural and vascular aspects of brain function. We used scalp electroencephalography (EEG), which provided a measure of the electrical potentials generated by cortical postsynaptic currents. Simultaneously we utilized functional near-infrared spectroscopy (NIRS) to continuously monitor hemoglobin concentration changes in superficial cortical layers. The multi-modal signal from 18 healthy adult subjects allowed us to investigate the association of neural activity in a range of frequencies over the whole-head to local changes in hemoglobin concentrations. Our results verified the delayed alpha (8-16Hz) modulation of hemodynamics in posterior areas known from the literature. They also indicated strong beta (16-32Hz) modulation of hemodynamics. Analysis revealed, however, that beta modulation was likely generated by the alpha-beta coupling in EEG. Signals from the inferior electrode sites were dominated by scalp muscle related activity. Our study aimed to characterize the phenomena related to neurovascular coupling observable by practical, cost-effective, and non-invasive multi-modal techniques.
Collapse
Affiliation(s)
- Hasan Onur Keles
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, United States
| | - Randall L Barbour
- Department of Pathology, Optical Tomography Group, State University of New York, NY, 11203, United States
| | - Ahmet Omurtag
- Department of Biomedical Engineering, University of Houston, Houston, TX 77204, United States.
| |
Collapse
|
26
|
Carius D, Andrä C, Clauß M, Ragert P, Bunk M, Mehnert J. Hemodynamic Response Alteration As a Function of Task Complexity and Expertise-An fNIRS Study in Jugglers. Front Hum Neurosci 2016; 10:126. [PMID: 27064925 PMCID: PMC4811870 DOI: 10.3389/fnhum.2016.00126] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/08/2016] [Indexed: 12/04/2022] Open
Abstract
Detailed knowledge about online brain processing during the execution of complex motor tasks with a high motion range still remains elusive. The aim of the present study was to investigate the hemodynamic responses within sensorimotor networks as well as in visual motion area during the execution of a complex visuomotor task such as juggling. More specifically, we were interested in how far the hemodynamic response as measured with functional near infrared spectroscopy (fNIRS) adapts as a function of task complexity and the level of the juggling expertise. We asked expert jugglers to perform different juggling tasks with different levels of complexity such as a 2-ball juggling, 3- and 5-ball juggling cascades. We here demonstrate that expert jugglers show an altered neurovascular response with increasing task complexity, since a 5-ball juggling cascade showed enhanced hemodynamic responses for oxygenated hemoglobin as compared to less complex tasks such as a 3- or 2-ball juggling pattern. Moreover, correlations between the hemodynamic response and the level of the juggling expertise during the 5-ball juggling cascade, acquired by cinematographic video analysis, revealed only a non-significant trend in primary motor cortex, indicating that a higher level of expertise might be associated with lower hemodynamic responses.
Collapse
Affiliation(s)
- Daniel Carius
- Institute for General Kinesiology and Exercise Science, University of LeipzigLeipzig, Germany; Department of Sport Science, Martin Luther University of Halle-WittenbergHalle, Germany
| | - Christian Andrä
- Department of School Sport, Institute of Sport Psychology and Sport Pedagogy, University of Leipzig Leipzig, Germany
| | - Martina Clauß
- Institute of General Kinesiology and Athletics Training, University of Leipzig Leipzig, Germany
| | - Patrick Ragert
- Institute for General Kinesiology and Exercise Science, University of LeipzigLeipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany
| | - Michael Bunk
- Institute for Applied Training Science Leipzig, Germany
| | - Jan Mehnert
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzig, Germany; Day Clinic for Cognitive Neurology, University Hospital LeipzigLeipzig, Germany
| |
Collapse
|
27
|
Pesce C, Masci I, Marchetti R, Vazou S, Sääkslahti A, Tomporowski PD. Deliberate Play and Preparation Jointly Benefit Motor and Cognitive Development: Mediated and Moderated Effects. Front Psychol 2016; 7:349. [PMID: 27014155 PMCID: PMC4786558 DOI: 10.3389/fpsyg.2016.00349] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 02/25/2016] [Indexed: 11/14/2022] Open
Abstract
In light of the interrelation between motor and cognitive development and the predictive value of the former for the latter, the secular decline observed in motor coordination ability as early as preschool urges identification of interventions that may jointly impact motor and cognitive efficiency. The aim of this study was twofold. It (1) explored the outcomes of enriched physical education (PE), centered on deliberate play and cognitively challenging variability of practice, on motor coordination and cognitive processing; (2) examined whether motor coordination outcomes mediate intervention effects on children's cognition, while controlling for moderation by lifestyle factors as outdoor play habits and weight status. Four hundred and sixty children aged 5-10 years participated in a 6-month group randomized intervention in PE, with or without playful coordinative and cognitive enrichment. The weight status and spontaneous outdoor play habits of children (parental report of outdoor play) were evaluated at baseline. Before and after the intervention, motor developmental level (Movement Assessment Battery for Children) was evaluated in all children, who were then assessed either with a test of working memory (Random Number Generation task), or with a test of attention (from the Cognitive Assessment System). Children assigned to the 'enriched' intervention showed more pronounced improvements in all motor coordination assessments (manual dexterity, ball skills, static/dynamic balance). The beneficial effect on ball skills was amplified by the level of spontaneous outdoor play and weight status. Among indices of executive function and attention, only that of inhibition showed a differential effect of intervention type. Moderated mediation showed that the better outcome of the enriched PE on ball skills mediated the better inhibition outcome, but only when the enrichment intervention was paralleled by a medium-to-high level of outdoor play. Results suggest that specifically tailored physical activity (PA) games provide a unique form of enrichment that impacts children's cognitive development through motor coordination improvement, particularly object control skills, which are linked to children's PA habits later in life. Outdoor play appears to offer the natural ground for the stimulation by designed PA games to take root in children's mind.
Collapse
Affiliation(s)
- Caterina Pesce
- Department of Movement, Human and Health Sciences, Italian University Sport and Movement “Foro Italico”Rome, Italy
| | - Ilaria Masci
- Department of Movement, Human and Health Sciences, Italian University Sport and Movement “Foro Italico”Rome, Italy
| | - Rosalba Marchetti
- Department of Movement, Human and Health Sciences, Italian University Sport and Movement “Foro Italico”Rome, Italy
| | | | - Arja Sääkslahti
- Department of Sport Sciences, University of JyväskyläJyväskylä, Finland
| | | |
Collapse
|
28
|
Kagerer F. Nondominant-to-dominant hand interference in bimanual movements is facilitated by gradual visuomotor perturbation. Neuroscience 2016; 318:94-103. [DOI: 10.1016/j.neuroscience.2016.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 12/09/2015] [Accepted: 01/06/2016] [Indexed: 12/20/2022]
|
29
|
Carrieri M, Petracca A, Lancia S, Basso Moro S, Brigadoi S, Spezialetti M, Ferrari M, Placidi G, Quaresima V. Prefrontal Cortex Activation Upon a Demanding Virtual Hand-Controlled Task: A New Frontier for Neuroergonomics. Front Hum Neurosci 2016; 10:53. [PMID: 26909033 PMCID: PMC4754420 DOI: 10.3389/fnhum.2016.00053] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/01/2016] [Indexed: 11/15/2022] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) is a non-invasive vascular-based functional neuroimaging technology that can assess, simultaneously from multiple cortical areas, concentration changes in oxygenated-deoxygenated hemoglobin at the level of the cortical microcirculation blood vessels. fNIRS, with its high degree of ecological validity and its very limited requirement of physical constraints to subjects, could represent a valid tool for monitoring cortical responses in the research field of neuroergonomics. In virtual reality (VR) real situations can be replicated with greater control than those obtainable in the real world. Therefore, VR is the ideal setting where studies about neuroergonomics applications can be performed. The aim of the present study was to investigate, by a 20-channel fNIRS system, the dorsolateral/ventrolateral prefrontal cortex (DLPFC/VLPFC) in subjects while performing a demanding VR hand-controlled task (HCT). Considering the complexity of the HCT, its execution should require the attentional resources allocation and the integration of different executive functions. The HCT simulates the interaction with a real, remotely-driven, system operating in a critical environment. The hand movements were captured by a high spatial and temporal resolution 3-dimensional (3D) hand-sensing device, the LEAP motion controller, a gesture-based control interface that could be used in VR for tele-operated applications. Fifteen University students were asked to guide, with their right hand/forearm, a virtual ball (VB) over a virtual route (VROU) reproducing a 42 m narrow road including some critical points. The subjects tried to travel as long as possible without making VB fall. The distance traveled by the guided VB was 70.2 ± 37.2 m. The less skilled subjects failed several times in guiding the VB over the VROU. Nevertheless, a bilateral VLPFC activation, in response to the HCT execution, was observed in all the subjects. No correlation was found between the distance traveled by the guided VB and the corresponding cortical activation. These results confirm the suitability of fNIRS technology to objectively evaluate cortical hemodynamic changes occurring in VR environments. Future studies could give a contribution to a better understanding of the cognitive mechanisms underlying human performance either in expert or non-expert operators during the simulation of different demanding/fatiguing activities.
Collapse
Affiliation(s)
- Marika Carrieri
- Department of Life, Health and Environmental Sciences, University of L'Aquila L'Aquila, Italy
| | - Andrea Petracca
- Department of Life, Health and Environmental Sciences, University of L'Aquila L'Aquila, Italy
| | - Stefania Lancia
- Department of Life, Health and Environmental Sciences, University of L'Aquila L'Aquila, Italy
| | - Sara Basso Moro
- Department of Life, Health and Environmental Sciences, University of L'Aquila L'Aquila, Italy
| | - Sabrina Brigadoi
- Department of Developmental Psychology, University of Padova Padova, Italy
| | - Matteo Spezialetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila L'Aquila, Italy
| | - Marco Ferrari
- Department of Physical and Chemical Sciences, University of L'Aquila L'Aquila, Italy
| | - Giuseppe Placidi
- Department of Life, Health and Environmental Sciences, University of L'Aquila L'Aquila, Italy
| | - Valentina Quaresima
- Department of Life, Health and Environmental Sciences, University of L'Aquila L'Aquila, Italy
| |
Collapse
|
30
|
Vanutelli ME, Cortesi L, Molteni E, Balconi M. fNIRS measure of transitive and intransitive gesture execution, observation and imagination in ecological setting: A pilot study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:3484-7. [PMID: 26737043 DOI: 10.1109/embc.2015.7319143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To explore the presence of differential cortical hemodynamic activations related to cognitive components of actions, we performed a fNIRS (functional Near-Infrared Spectroscopy) study during Observation (O), Execution (E) and Imagination (I) of complex and meaningful (transitive and intransitive) gestures in ecological setting. A pilot sample of 5 healthy adults underwent an event-related study consisting of these 3 different conditions, with O set as first and followed by a randomized presentation of E or I. fNIRS measurements were performed using a 24 channel array of optodes (8 light injectors and 8 detectors) placed over the contralateral central, centro-parietal, parietal and temporal areas. Results showed that the premotor (PMC) and the sensory-motor cortices (SM1) were recruited selectively during E, with levels of oxygenated hemoglobin (oxy-Hb) higher than the other conditions, while the posterior parietal cortex (PPC) showed increased oxy-Hb levels for both E and O. These data suggest that variations in hemodynamic responses can be attributed to different neural processes underpinning these tasks, with PMC and SM1 being more involved in action preparation and performance, and PPC prevalently dedicated to attentive processes related to the execution and observation of limb movements.
Collapse
|
31
|
Yavari F, Mahdavi S, Towhidkhah F, Ahmadi-Pajouh MA, Ekhtiari H, Darainy M. Cerebellum as a forward but not inverse model in visuomotor adaptation task: a tDCS-based and modeling study. Exp Brain Res 2015; 234:997-1012. [DOI: 10.1007/s00221-015-4523-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 12/01/2015] [Indexed: 12/25/2022]
|
32
|
Kober SE, Gressenberger B, Kurzmann J, Neuper C, Wood G. Voluntary Modulation of Hemodynamic Responses in Swallowing Related Motor Areas: A Near-Infrared Spectroscopy-Based Neurofeedback Study. PLoS One 2015; 10:e0143314. [PMID: 26575032 PMCID: PMC4648579 DOI: 10.1371/journal.pone.0143314] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/03/2015] [Indexed: 11/28/2022] Open
Abstract
In the present study, we show for the first time that motor imagery of swallowing, which is defined as the mental imagination of a specific motor act without overt movements by muscular activity, can be successfully used as mental strategy in a neurofeedback training paradigm. Furthermore, we demonstrate its effects on cortical correlates of swallowing function. Therefore, N = 20 healthy young adults were trained to voluntarily increase their hemodynamic response in swallowing related brain areas as assessed with near-infrared spectroscopy (NIRS). During seven training sessions, participants received either feedback of concentration changes in oxygenated hemoglobin (oxy-Hb group, N = 10) or deoxygenated hemoglobin (deoxy-Hb group, N = 10) over the inferior frontal gyrus (IFG) during motor imagery of swallowing. Before and after the training, we assessed cortical activation patterns during motor execution and imagery of swallowing. The deoxy-Hb group was able to voluntarily increase deoxy-Hb over the IFG during imagery of swallowing. Furthermore, swallowing related cortical activation patterns were more pronounced during motor execution and imagery after the training compared to the pre-test, indicating cortical reorganization due to neurofeedback training. The oxy-Hb group could neither control oxy-Hb during neurofeedback training nor showed any cortical changes. Hence, successful modulation of deoxy-Hb over swallowing related brain areas led to cortical reorganization and might be useful for future treatments of swallowing dysfunction.
Collapse
Affiliation(s)
- Silvia Erika Kober
- Department of Psychology, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- * E-mail:
| | | | | | - Christa Neuper
- Department of Psychology, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Laboratory of Brain-Computer Interfaces, Institute for Knowledge Discovery, Graz University of Technology, Graz, Austria
| | - Guilherme Wood
- Department of Psychology, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
33
|
Sagari A, Iso N, Moriuchi T, Ogahara K, Kitajima E, Tanaka K, Tabira T, Higashi T. Changes in Cerebral Hemodynamics during Complex Motor Learning by Character Entry into Touch-Screen Terminals. PLoS One 2015; 10:e0140552. [PMID: 26485534 PMCID: PMC4618511 DOI: 10.1371/journal.pone.0140552] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 09/28/2015] [Indexed: 11/18/2022] Open
Abstract
Introduction Studies of cerebral hemodynamics during motor learning have mostly focused on neurorehabilitation interventions and their effectiveness. However, only a few imaging studies of motor learning and the underlying complex cognitive processes have been performed. Methods We measured cerebral hemodynamics using near-infrared spectroscopy (NIRS) in relation to acquisition patterns of motor skills in healthy subjects using character entry into a touch-screen terminal. Twenty healthy, right-handed subjects who had no previous experience with character entry using a touch-screen terminal participated in this study. They were asked to enter the characters of a randomly formed Japanese syllabary into the touch-screen terminal. All subjects performed the task with their right thumb for 15 s alternating with 25 s of rest for 30 repetitions. Performance was calculated by subtracting the number of incorrect answers from the number of correct answers, and gains in motor skills were evaluated according to the changes in performance across cycles. Behavioral and oxygenated hemoglobin concentration changes across task cycles were analyzed using Spearman’s rank correlations. Results Performance correlated positively with task cycle, thus confirming motor learning. Hemodynamic activation over the left sensorimotor cortex (SMC) showed a positive correlation with task cycle, whereas activations over the right prefrontal cortex (PFC) and supplementary motor area (SMA) showed negative correlations. Conclusions We suggest that increases in finger momentum with motor learning are reflected in the activity of the left SMC. We further speculate that the right PFC and SMA were activated during the early phases of motor learning, and that this activity was attenuated with learning progress.
Collapse
Affiliation(s)
- Akira Sagari
- Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Japanese Red Cross Society Nagasaki Genbaku Hospital, Nagasaki, Japan
| | - Naoki Iso
- Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Medical Corporation Tojinkai Miharadai Hospital, Nagasaki, Japan
| | - Takefumi Moriuchi
- Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Medical Corporation Tojinkai Miharadai Hospital, Nagasaki, Japan
| | - Kakuya Ogahara
- Faculty of Health and Social Work, School of Rehabilitation, Kanagawa University of Human Services, Kanagawa, Japan
| | - Eiji Kitajima
- Center for Industry, University and Government Cooperation, Nagasaki University, Nagasaki, Japan
| | - Koji Tanaka
- Unit of Physical and Occupational Therapy, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Takayuki Tabira
- Faculty of Rehabilitation Sciences, Nishikyushu University, Saga, Japan
| | - Toshio Higashi
- Unit of Rehabilitation Sciences, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- * E-mail:
| |
Collapse
|
34
|
Kober SE, Bauernfeind G, Woller C, Sampl M, Grieshofer P, Neuper C, Wood G. Hemodynamic Signal Changes Accompanying Execution and Imagery of Swallowing in Patients with Dysphagia: A Multiple Single-Case Near-Infrared Spectroscopy Study. Front Neurol 2015. [PMID: 26217298 PMCID: PMC4491622 DOI: 10.3389/fneur.2015.00151] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In the present multiple case study, we examined hemodynamic changes in the brain in response to motor execution (ME) and motor imagery (MI) of swallowing in dysphagia patients compared to healthy matched controls using near-infrared spectroscopy (NIRS). Two stroke patients with cerebral lesions in the right hemisphere, two stroke patients with lesions in the brainstem, and two neurologically healthy control subjects actively swallowed saliva (ME) and mentally imagined to swallow saliva (MI) in a randomized order while changes in concentration of oxygenated hemoglobin (oxy-Hb) and deoxygenated hemoglobin (deoxy-Hb) were assessed. In line with recent findings in healthy young adults, MI and ME of swallowing led to the strongest NIRS signal change in the inferior frontal gyrus in stroke patients as well as in healthy elderly. We found differences in the topographical distribution and time course of the hemodynamic response in dependence on lesion location. Dysphagia patients with lesions in the brainstem showed bilateral hemodynamic signal changes in the inferior frontal gyrus during active swallowing comparable to healthy controls. In contrast, dysphagia patients with cerebral lesions in the right hemisphere showed more unilateral activation patterns during swallowing. Furthermore, patients with cerebral lesions showed a prolonged time course of the hemodynamic response during MI and ME of swallowing compared to healthy controls and patients with brainstem lesions. Brain activation patterns associated with ME and MI of swallowing were largely comparable, especially for changes in deoxy-Hb. Hence, the present results provide new evidence regarding timing and topographical distribution of the hemodynamic response during ME and MI of swallowing in dysphagia patients and may have practical impact on future dysphagia treatment.
Collapse
Affiliation(s)
- Silvia Erika Kober
- Department of Psychology, University of Graz , Graz , Austria ; BioTechMed Graz , Graz , Austria
| | - Günther Bauernfeind
- BioTechMed Graz , Graz , Austria ; Laboratory of Brain-Computer Interfaces, Institute for Knowledge Discovery, Graz University of Technology , Graz , Austria
| | - Carina Woller
- Klinik Judendorf-Straßengel , Gratwein-Straßengel , Austria
| | | | | | - Christa Neuper
- Department of Psychology, University of Graz , Graz , Austria ; BioTechMed Graz , Graz , Austria ; Laboratory of Brain-Computer Interfaces, Institute for Knowledge Discovery, Graz University of Technology , Graz , Austria
| | - Guilherme Wood
- Department of Psychology, University of Graz , Graz , Austria ; BioTechMed Graz , Graz , Austria
| |
Collapse
|
35
|
Brain-in-the-Loop Learning Using fNIR and Simulated Virtual Reality Surgical Tasks: Hemodynamic and Behavioral Effects. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/978-3-319-20816-9_31] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
36
|
Crossmodal interference in bimanual movements: effects of abrupt visuo-motor perturbation of one hand on the other. Exp Brain Res 2014; 233:839-49. [DOI: 10.1007/s00221-014-4159-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 11/21/2014] [Indexed: 10/24/2022]
|
37
|
Venkatakrishnan A, Francisco GE, Contreras-Vidal JL. Applications of Brain-Machine Interface Systems in Stroke Recovery and Rehabilitation. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2014; 2:93-105. [PMID: 25110624 PMCID: PMC4122129 DOI: 10.1007/s40141-014-0051-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Stroke is a leading cause of disability, significantly impacting the quality of life (QOL) in survivors, and rehabilitation remains the mainstay of treatment in these patients. Recent engineering and technological advances such as brain-machine interfaces (BMI) and robotic rehabilitative devices are promising to enhance stroke neu-rorehabilitation, to accelerate functional recovery and improve QOL. This review discusses the recent applications of BMI and robotic-assisted rehabilitation in stroke patients. We present the framework for integrated BMI and robotic-assisted therapies, and discuss their potential therapeutic, assistive and diagnostic functions in stroke rehabilitation. Finally, we conclude with an outlook on the potential challenges and future directions of these neurotechnologies, and their impact on clinical rehabilitation.
Collapse
Affiliation(s)
- Anusha Venkatakrishnan
- Laboratory for Non-invasive Brain–Machine Interface Systems, Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
| | - Gerard E. Francisco
- Department of Physical Medicine and Rehabilitation, University of Texas Health Science Center, Houston, TX, USA
- NeuroRecovery Research Center, TIRR Memorial Hermann Houston, Houston, TX, USA
| | - Jose L. Contreras-Vidal
- Laboratory for Non-invasive Brain–Machine Interface Systems, Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
| |
Collapse
|
38
|
Kober SE, Wood G. Changes in hemodynamic signals accompanying motor imagery and motor execution of swallowing: a near-infrared spectroscopy study. Neuroimage 2014; 93 Pt 1:1-10. [PMID: 24576696 DOI: 10.1016/j.neuroimage.2014.02.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/21/2014] [Accepted: 02/16/2014] [Indexed: 01/25/2023] Open
Abstract
In the present study we investigated hemodynamic changes in the brain in response to motor execution (ME) and motor imagery (MI) of swallowing using near-infrared spectroscopy (NIRS). Previous studies provide evidence that ME and MI of limb movements lead to comparable brain activation patterns indicating the potential value of MI for motor rehabilitation. In this context, identifying brain correlates of MI of swallowing may be potentially useful for the treatment of dysphagia. Fourteen healthy participants actively swallowed water (ME) and mentally imagined to swallow water (MI) in a randomized order while changes in concentration of oxygenated hemoglobin (oxy-Hb) and deoxygenated hemoglobin (deoxy-Hb) were assessed. MI and ME led to the strongest NIRS signal changes in the inferior frontal gyrus. During and after ME, oxy-Hb significantly increased, with a maximum peak around 15s after task onset. In contrast, oxy-Hb decreased during MI compared to a rest period probably because of motor inhibition mechanisms. Changes in deoxy-Hb were largely comparable between MI and ME, especially when participants used a kinesthetic motor imagery strategy during MI compared to no specific strategy. Hence, the present study provides new evidence concerning timing and topographical distribution of the hemodynamic response during ME and MI of swallowing.
Collapse
Affiliation(s)
- S E Kober
- Department of Psychology, University of Graz, Graz, Austria.
| | - G Wood
- Department of Psychology, University of Graz, Graz, Austria.
| |
Collapse
|
39
|
Ayaz H, Onaral B, Izzetoglu K, Shewokis PA, McKendrick R, Parasuraman R. Continuous monitoring of brain dynamics with functional near infrared spectroscopy as a tool for neuroergonomic research: empirical examples and a technological development. Front Hum Neurosci 2013; 7:871. [PMID: 24385959 PMCID: PMC3866520 DOI: 10.3389/fnhum.2013.00871] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/28/2013] [Indexed: 11/13/2022] Open
Abstract
Functional near infrared spectroscopy (fNIRS) is a non-invasive, safe, and portable optical neuroimaging method that can be used to assess brain dynamics during skill acquisition and performance of complex work and everyday tasks. In this paper we describe neuroergonomic studies that illustrate the use of fNIRS in the examination of training-related brain dynamics and human performance assessment. We describe results of studies investigating cognitive workload in air traffic controllers, acquisition of dual verbal-spatial working memory skill, and development of expertise in piloting unmanned vehicles. These studies used conventional fNIRS devices in which the participants were tethered to the device while seated at a workstation. Consistent with the aims of mobile brain imaging (MoBI), we also describe a compact and battery-operated wireless fNIRS system that performs with similar accuracy as other established fNIRS devices. Our results indicate that both wired and wireless fNIRS systems allow for the examination of brain function in naturalistic settings, and thus are suitable for reliable human performance monitoring and training assessment.
Collapse
Affiliation(s)
- Hasan Ayaz
- School of Biomedical Engineering, Science and Health Systems, Drexel University Philadelphia, PA, USA
| | - Banu Onaral
- School of Biomedical Engineering, Science and Health Systems, Drexel University Philadelphia, PA, USA
| | - Kurtulus Izzetoglu
- School of Biomedical Engineering, Science and Health Systems, Drexel University Philadelphia, PA, USA
| | - Patricia A Shewokis
- School of Biomedical Engineering, Science and Health Systems, Drexel University Philadelphia, PA, USA ; Nutrition Sciences Department, College of Nursing and Health Professions, Drexel University Philadelphia, PA, USA
| | - Ryan McKendrick
- Center of Excellence in Neuroergonomics, Technology, and Cognition, George Mason University Fairfax, VA, USA
| | - Raja Parasuraman
- Center of Excellence in Neuroergonomics, Technology, and Cognition, George Mason University Fairfax, VA, USA
| |
Collapse
|
40
|
Seidler RD, Meehan SK. Introduction to the special topic: a multidisciplinary approach to motor learning and sensorimotor adaptation. Front Hum Neurosci 2013; 7:543. [PMID: 24058338 PMCID: PMC3766816 DOI: 10.3389/fnhum.2013.00543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/19/2013] [Indexed: 11/13/2022] Open
Affiliation(s)
- Rachael D Seidler
- Psychology, Kinesiology, Neuroscience, Neuromotor Behavior Laboratory, University of Michigan Ann Arbor, MI, USA
| | | |
Collapse
|