1
|
Cerda VR, Flaugher TG, Soria PM, Wicha NYY. Bilingual problem size effect: an ERP study of multiplication verification and production in two languages. TRANSLATIONAL ISSUES IN PSYCHOLOGICAL SCIENCE 2023; 9:338-353. [PMID: 38155936 PMCID: PMC10752626 DOI: 10.1037/tps0000361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
The problem size effect (PSE) is defined by better performance solving small problems (e.g., 2x4) than large problems (e.g., 8x9). For monolinguals, the PSE is larger when problems are presented in unfamiliar formats (e.g., written words), reflecting increased processing difficulty. Bilinguals are typically faster and more accurate at retrieving multiplication facts in the language of learning (LA+) than in their other language (LA-). We hypothesized that the less familiar arithmetic language (i.e., LA-) would elicit larger PSEs than LA+. Here, fluent Spanish-English bilingual adults verified spoken multiplication problems presented in LA+ and LA- while event-related potentials (ERPs) were recorded (Experiment 1A). To further promote language differences, we increased task difficulty by presenting problems at a faster pace (Experiment 1B) and requiring bilinguals to verbally produce solutions (Experiment 2). Language differences in performance were only observed for Experiment 2, where solutions were produced more slowly in LA- than LA+. In the ERPs, a PSE was driven by larger P300s for small than large solutions. A language effect was only observed under time pressure where LA- elicited a PSE at the 2nd operand. Additionally, the PSE was smaller for LA- at the solution. This suggests that categorizing multiplication facts is more effortful in LA-. In sum, very subtle language differences arise in fluent bilinguals when problems are more difficult, such as larger problems presented under time pressure in a weaker language. Critically, the effect of LA+ is at the level of response production and not access to the facts from memory.
Collapse
Affiliation(s)
- Vanessa R Cerda
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio
| | - Tara G Flaugher
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio
| | - Paola Montufar Soria
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio
| | - Nicole Y Y Wicha
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio
| |
Collapse
|
2
|
Dickson DS, Grenier AE, Obinyan BO, Wicha NYY. When multiplying is meaningful in memory: Electrophysiological signature of the problem size effect in children. J Exp Child Psychol 2022; 219:105399. [PMID: 35231834 PMCID: PMC9054599 DOI: 10.1016/j.jecp.2022.105399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/18/2022]
Abstract
Children are less fluent at verifying the answers to larger single-digit arithmetic problems compared with smaller ones. This problem size effect may reflect the structure of memory for arithmetic facts. In the current study, typically developing third to fifth graders judged the correctness of single-digit multiplication problems, presented as a sequence of three digits, that were either small (e.g., 4 3 12 vs. 4 3 16) or large (e.g., 8 7 56 vs. 8 7 64). We measured the N400, an index of access to semantic memory, along with accuracy and response time. The N400 was modulated by problem size only for correct solutions, with larger amplitude for large problems than for small problems. This suggests that only solutions that exist in memory (i.e., correct solutions) reflect a modulation of semantic access likely based on the relative frequency of encountering small versus large problems. The absence of an N400 problem size effect for incorrect solutions suggests that the behavioral problem size effects were not due to differences in initial access to memory but instead were due to a later stage of cognitive processing that was reflected in a post-N400 main effect of problem size. A second post-N400 main effect of correctness at occipital electrodes resembles the beginning of an adult-like brain response observed in prior studies. In sum, event-related brain potentials revealed different cognitive processes for correct and incorrect solutions. These results allude to a gradual transition to an adult-like brain response, from verifying multiplication problems using semantic memory to doing so using more automatic categorization.
Collapse
Affiliation(s)
- Danielle S Dickson
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Amandine E Grenier
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Bianca O Obinyan
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Nicole Y Y Wicha
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
3
|
Alatorre-Cruz GC, Downs H, Hagood D, Sorensen ST, Williams DK, Larson-Prior LJ. Effect of Obesity on Arithmetic Processing in Preteens With High and Low Math Skills: An Event-Related Potentials Study. Front Hum Neurosci 2022; 16:760234. [PMID: 35360282 PMCID: PMC8960456 DOI: 10.3389/fnhum.2022.760234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/07/2022] [Indexed: 11/23/2022] Open
Abstract
Preadolescence is an important period for the consolidation of certain arithmetic facts, and the development of problem-solving strategies. Obese subjects seem to have poorer academic performance in math than their normal-weight peers, suggesting a negative effect of obesity on math skills in critical developmental periods. To test this hypothesis, event-related potentials (ERPs) were collected during a delayed-verification math task using simple addition and subtraction problems in obese [above 95th body mass index (BMI) percentile] and non-obese (between 5th and 90th BMI percentile) preteens with different levels of math skill; thirty-one with low math skills (14 obese, mean BMI = 26.40, 9.79 years old; 17 non-obese, BMI = 17.45, 9.76 years old) and thirty-one with high math skills (15 obese, BMI = 26.90, 9.60 years old; 16 non-obese, BMI = 17.13, 9.63 years old). No significant differences between weight groups were observed in task accuracy regardless of their mathematical skill level. For ERPs, electrophysiological differences were found only in the subtraction condition; participants with obesity showed an electrophysiologic pattern associated with a reduced ability to allocate attention resources regardless of their math skill level, these differences were characterized by longer P300 latency than their normal-weight peers. Moreover, the participants with obesity with high math skills displayed hypoactivity in left superior parietal lobule compared with their normal-weight peers. Additionally, obese preteens with low math skills displayed smaller arithmetic N400 amplitude than non-obese participants, reflecting difficulties in retrieving visual, semantic, and lexical information about numbers. We conclude that participants with obesity are less able than their normal-weight peers to deploy their attention regardless of their behavioral performance, which seems to have a greater effect on obese participants with low math skills because they also show problems in the retrieval of solutions from working memory, resulting in a delay in the development of mathematical skills.
Collapse
Affiliation(s)
- Graciela C. Alatorre-Cruz
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
| | - Heather Downs
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
| | - Darcy Hagood
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
| | - Seth T. Sorensen
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
| | - D. Keith Williams
- Vice Chair for Education, Department of Biostatistics, Arkansas Children’s Nutrition Center, Little Rock, AR, United States
| | - Linda J. Larson-Prior
- Arkansas Children’s Nutrition Center, Little Rock, AR, United States
- Departments of Psychiatry, Neurology, Neurobiology and Developmental Sciences, and Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| |
Collapse
|
4
|
Oscillatory electroencephalographic patterns of arithmetic problem solving in fourth graders. Sci Rep 2021; 11:23278. [PMID: 34857841 PMCID: PMC8639675 DOI: 10.1038/s41598-021-02789-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 11/23/2021] [Indexed: 11/18/2022] Open
Abstract
Numerous studies have identified neurophysiological correlates of performing arithmetic in adults. For example, oscillatory electroencephalographic (EEG) patterns associated with retrieval and procedural strategies are well established. Whereas fact retrieval has been linked to enhanced left-hemispheric theta ERS (event-related synchronization), procedural strategies are accompanied by increased bilateral alpha ERD (event-related desynchronization). It is currently not clear if these findings generalize to children. Our study is the first to investigate oscillatory EEG activity related to strategy use and arithmetic operations in children. We assessed ERD/ERS correlates of 31 children in fourth grade (aged between nine and ten years) during arithmetic problem solving. We presented multiplication and subtraction problems, which children solved with fact retrieval or a procedure. We analyzed these four problem categories (retrieved multiplications, retrieved subtractions, procedural multiplications, and procedural subtractions) in our study. In summary, we found similar strategy-related patterns to those reported in previous studies with adults. That is, retrieval problems elicited stronger left-hemispheric theta ERS and weaker alpha ERD as compared to procedural problems. Interestingly, we observed neurophysiological differences between multiplications and subtractions within retrieval problems. Although there were no response time or accuracy differences, retrieved multiplications were accompanied by larger theta ERS than retrieved subtractions. This finding could indicate that retrieval of multiplication and subtraction facts are distinct processes, and/or that multiplications are more frequently retrieved than subtractions in this age group.
Collapse
|
5
|
Cárdenas SY, Silva-Pereyra J, Prieto-Corona B, Castro-Chavira SA, Fernández T. Arithmetic processing in children with dyscalculia: an event-related potential study. PeerJ 2021; 9:e10489. [PMID: 33569247 PMCID: PMC7847199 DOI: 10.7717/peerj.10489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 11/13/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction Dyscalculia is a specific learning disorder affecting the ability to learn certain math processes, such as arithmetic data recovery. The group of children with dyscalculia is very heterogeneous, in part due to variability in their working memory (WM) deficits. To assess the brain response to arithmetic data recovery, we applied an arithmetic verification task during an event-related potential (ERP) recording. Two effects have been reported: the N400 effect (higher negative amplitude for incongruent than for congruent condition), associated with arithmetic incongruency and caused by the arithmetic priming effect, and the LPC effect (higher positive amplitude for the incongruent compared to the congruent condition), associated with a reevaluation process and modulated by the plausibility of the presented condition. This study aimed to (a) compare arithmetic processing between children with dyscalculia and children with good academic performance (GAP) using ERPs during an addition verification task and (b) explore, among children with dyscalculia, the relationship between WM and ERP effects. Materials and Methods EEGs of 22 children with dyscalculia (DYS group) and 22 children with GAP (GAP group) were recorded during the performance of an addition verification task. ERPs synchronized with the probe stimulus were computed separately for the congruent and incongruent probes, and included only epochs with correct answers. Mixed 2-way ANOVAs for response times and correct answers were conducted. Comparisons between groups and correlation analyses using ERP amplitude data were carried out through multivariate nonparametric permutation tests. Results The GAP group obtained more correct answers than the DYS group. An arithmetic N400 effect was observed in the GAP group but not in the DYS group. Both groups displayed an LPC effect. The larger the LPC amplitude was, the higher the WM index. Two subgroups were found within the DYS group: one with an average WM index and the other with a lower than average WM index. These subgroups displayed different ERPs patterns. Discussion The results indicated that the group of children with dyscalculia was very heterogeneous and therefore failed to show a robust LPC effect. Some of these children had WM deficits. When WM deficits were considered together with dyscalculia, an atypical ERP pattern that reflected their processing difficulties emerged. Their lack of the arithmetic N400 effect suggested that the processing in this step was not useful enough to produce an answer; thus, it was necessary to reevaluate the arithmetic-calculation process (LPC) in order to deliver a correct answer. Conclusion Given that dyscalculia is a very heterogeneous deficit, studies examining dyscalculia should consider exploring deficits in WM because the whole group of children with dyscalculia seems to contain at least two subpopulations that differ in their calculation process.
Collapse
Affiliation(s)
- Sonia Y Cárdenas
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Juan Silva-Pereyra
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
| | - Belén Prieto-Corona
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
| | - Susana A Castro-Chavira
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Thalía Fernández
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| |
Collapse
|
6
|
Bagnoud J, Dewi J, Thevenot C. Differences in event-related potential (ERP) responses to small tie, non-tie and 1-problems in addition and multiplication. Neuropsychologia 2021; 153:107771. [PMID: 33548248 DOI: 10.1016/j.neuropsychologia.2021.107771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/25/2021] [Accepted: 01/30/2021] [Indexed: 10/22/2022]
Abstract
Using ERP, we investigated the cause of the tie advantage according to which problems with repeated operands are solved faster and more accurately than non-tie problems. We found no differences in early or N400 ERP components between problems, suggesting that tie problems are not encoded faster or suffer from less interference than non-tie problems. However, a lesser negative amplitude of the N2 component was found for tie than non-tie problems. This suggests more working-memory and attentional resource requirements for non-tie problems and therefore more frequent use of retrieval for tie than non-tie problems. The possible peculiarity of problems involving a 1 was also investigated. We showed less negative N2 amplitudes for these problems than for other non-tie problems, suggesting less working-memory resources for 1-problems than other non-tie problems. This could be explained either by higher reliance on memory retrieval for 1-problems than non-1 problems or by the application of non-arithmetical rules for 1-problems.
Collapse
Affiliation(s)
- Jeanne Bagnoud
- University of Lausanne, Institute of Psychology, Switzerland.
| | - Jasinta Dewi
- University of Lausanne, Institute of Psychology, Switzerland
| | | |
Collapse
|
7
|
Poletti C, Perez JF, Houillon JC, Prado J, Thevenot C. Priming effects of arithmetic signs in 10- to 15-year-old children. BRITISH JOURNAL OF DEVELOPMENTAL PSYCHOLOGY 2021; 39:380-392. [PMID: 33428288 DOI: 10.1111/bjdp.12363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/30/2020] [Indexed: 11/26/2022]
Abstract
In this research, 10- to 12- and 13- to 15-year-old children were presented with very simple addition and multiplication problems involving operands from 1 to 4. Critically, the arithmetic sign was presented before the operands in half of the trials, whereas it was presented at the same time as the operands in the other half. Our results indicate that presenting the 'x' sign before the operands of a multiplication problem does not speed up the solving process, irrespective of the age of children. In contrast, presenting the '+' sign before the operands of an addition problem facilitates the solving process, but only in 13 to 15-year-old children. Such priming effects of the arithmetic sign have been previously interpreted as the result of a pre-activation of an automated counting procedure, which can be applied as soon as the operands are presented. Therefore, our results echo previous conclusions of the literature that simple additions but not multiplications can be solved by fast counting procedures. More importantly, we show here that these procedures are possibly convoked automatically by children after the age of 13 years. At a more theoretical level, our results do not support the theory that simple additions are solved through retrieval of the answers from long-term memory by experts. Rather, the development of expertise for mental addition would consist in an acceleration of procedures until automatization.
Collapse
Affiliation(s)
- Céline Poletti
- SSP, Institute of Psychology, University of Lausanne, Switzerland
| | | | | | - Jérôme Prado
- Lyon Neuroscience Research Center (CRNL), INSERM U1028 - CNRS UMR5292, University of Lyon, France
| | | |
Collapse
|
8
|
Tejero G, Macizo P. Simple additions: Dissociation between retrieval and counting with electrophysiological indexes. Int J Psychophysiol 2020; 149:48-59. [PMID: 31931047 DOI: 10.1016/j.ijpsycho.2020.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 11/29/2019] [Accepted: 01/03/2020] [Indexed: 11/26/2022]
Abstract
There is current debate about the way adult individuals solve simple additions composed of one-digit operands. There are two opposing views. The first view assumes that people retrieve the result of additions from memory, whilst the second view states that individuals use automatized counting procedures. Our study aimed to dissociate between these two hypotheses. To this end, we analysed the type of problem effect when participants resolved simple additions by comparing additions with operands between 1 and 4 and control additions with at least one operand larger than 4. Brain-waves activity of a group of 30 adult individuals were recorded with 64 scalp electrodes mounted on an elastic cap, referenced against an electrode between Cz and CPz and re-referenced to an average reference offline. We considered two electrophysiological indexes, event-related potentials, ERPs, time-locked to the addition problems to distinguish between retrieval from memory and the use of procedures: A late positivity component (LP, 500-650 time window) over posterior regions associated to memory retrieval difficulty with higher LP positivity when participants resolve difficult vs. easy additions, and a negative component (N400, 250-450 ms time window) over fronto-central regions related to the use memory retrieval vs. procedures with more pronounced N400 amplitudes when the difficulty in the retrieval of semantic information increased. LP modulations were observed depending on the type of problem over posterior regions, P3 and Pz electrodes, whilst the N400 component was not affected. This pattern of results suggests that adult individuals use retrieval from memory to solve simple additions.
Collapse
Affiliation(s)
- Gloria Tejero
- University of Granada, Mind, Brain and Behaviour Research Centre (CIMCYC), Spain
| | - Pedro Macizo
- University of Granada, Mind, Brain and Behaviour Research Centre (CIMCYC), Spain.
| |
Collapse
|
9
|
Cerda VR, Grenier AE, Wicha NYY. Bilingual children access multiplication facts from semantic memory equivalently across languages: Evidence from the N400. BRAIN AND LANGUAGE 2019; 198:104679. [PMID: 31445417 PMCID: PMC6949017 DOI: 10.1016/j.bandl.2019.104679] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 05/26/2023]
Abstract
Typically, bilinguals learn multiplication facts in only one instruction language. Consequently, these facts may be represented and/or accessed as language-specific memories, requiring a qualitatively different retrieval process in their other language. Indeed, behavioral studies reveal that bilinguals verify arithmetic facts faster and better in the language of learning. Here, event-related potentials (ERPs) were used as a window into the neurocognitive processes underlying this language bias in children. ERPs were recorded while bilingual children verified the correctness of multiplication solutions. Operands were presented as spoken number words in Spanish and English, separately. Although a language bias was revealed in behavior, both languages elicited the same ERP correctness effect, an N400, reflecting similar cognitive processes in both languages. This suggests that the source of the behavioral difference is not at the level of semantic access. Our findings highlight the flexibility of the bilingual brain, especially when both languages are learned early.
Collapse
Affiliation(s)
- Vanessa R Cerda
- University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
| | - Amandine E Grenier
- University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
| | - Nicole Y Y Wicha
- University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA; University of Texas Health San Antonio, 7703 Floyd Curl Dr., San Antonio, TX 78229, USA.
| |
Collapse
|
10
|
Xie H, Gonzalez-Castillo J, Handwerker DA, Bandettini PA, Calhoun VD, Chen G, Damaraju E, Liu X, Mitra S. Time-varying whole-brain functional network connectivity coupled to task engagement. Netw Neurosci 2018; 3:49-66. [PMID: 30793073 PMCID: PMC6326730 DOI: 10.1162/netn_a_00051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/16/2018] [Indexed: 11/30/2022] Open
Abstract
Brain functional connectivity (FC), as measured by blood oxygenation level-dependent (BOLD) signal, fluctuates at the scale of 10s of seconds. It has recently been found that whole-brain dynamic FC (dFC) patterns contain sufficient information to permit identification of ongoing tasks. Here, we hypothesize that dFC patterns carry fine-grained information that allows for tracking short-term task engagement levels (i.e., 10s of seconds long). To test this hypothesis, 25 subjects were scanned continuously for 25 min while they performed and transitioned between four different tasks: working memory, visual attention, math, and rest. First, we estimated dFC patterns by using a sliding window approach. Next, we extracted two engagement-specific FC patterns representing active engagement and passive engagement by using k-means clustering. Then, we derived three metrics from whole-brain dFC patterns to track engagement level, that is, dissimilarity between dFC patterns and engagement-specific FC patterns, and the level of brainwide integration level. Finally, those engagement markers were evaluated against windowed task performance by using a linear mixed effects model. Significant relationships were observed between abovementioned metrics and windowed task performance for the working memory task only. These findings partially confirm our hypothesis and underscore the potential of whole-brain dFC to track short-term task engagement levels.
Collapse
Affiliation(s)
- Hua Xie
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, USA
- Section on Functional Imaging Methods, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Javier Gonzalez-Castillo
- Section on Functional Imaging Methods, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Daniel A. Handwerker
- Section on Functional Imaging Methods, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Peter A. Bandettini
- Section on Functional Imaging Methods, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
- Functional MRI Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Vince D. Calhoun
- The Mind Research Network, Albuquerque, NM, USA
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA
| | - Gang Chen
- Scientific and Statistical Computing Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, USA
| | - Eswar Damaraju
- The Mind Research Network, Albuquerque, NM, USA
- Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, USA
| | - Xiangyu Liu
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, USA
| | - Sunanda Mitra
- Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
11
|
Zhang Q, Ran G, Li X. The Perception of Facial Emotional Change in Social Anxiety: An ERP Study. Front Psychol 2018; 9:1737. [PMID: 30323779 PMCID: PMC6172413 DOI: 10.3389/fpsyg.2018.01737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 08/28/2018] [Indexed: 11/13/2022] Open
Abstract
Social anxiety is one of the psychological symptoms that most commonly occur in social interaction. Although previous behavioral studies have investigated the neutral-angry facial emotion change in social anxiety, none of the previous studies have, however, directly investigated the angry-neutral facial emotional change. Furthermore, less is known about the neural correlates of the facial emotion changes in individuals with social anxiety. The main goal of the present study was to explore the perception of facial emotional changes in individuals with social anxiety, using high temporal resolution event-related potential techniques. Behaviorally, accuracy in the angry-neutral facial emotional change trail was lower than that in the neutral-neutral case. Neurally, we found that the N170 amplitudes in angry-neutral facial emotional change trial were larger than those in the neutral-neutral case for high social anxiety (HAS) participants, probably reflecting that they might engage in more analytical processing of different facial elements. Interestingly, HSA participants showed smaller P200 left hemisphere amplitudes in the angry-neutral facial emotional change trial when compared with the neutral-neutral case, which suggested that they might have difficulties in processing emotions when they encounter these facial emotional changes. Finally, the late positive potential amplitudes in the neutral-angry and angry-neutral facial emotional change trials were smaller than those in the neutral-neutral case, regardless of the social anxiety. These results suggest that social anxiety influences the facial emotional changes mainly at an earlier stage of processing.
Collapse
Affiliation(s)
- Qi Zhang
- College of Preschool and Primary Education, China West Normal University, Nanchong, China
| | - Guangming Ran
- Department of Psychology, Institute of Education, China West Normal University, Nanchong, China
| | - Xueping Li
- College of Preschool and Primary Education, China West Normal University, Nanchong, China
| |
Collapse
|
12
|
Peters L, De Smedt B. Arithmetic in the developing brain: A review of brain imaging studies. Dev Cogn Neurosci 2018; 30:265-279. [PMID: 28566139 PMCID: PMC6969129 DOI: 10.1016/j.dcn.2017.05.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 05/02/2017] [Accepted: 05/04/2017] [Indexed: 11/28/2022] Open
Abstract
Brain imaging studies on academic achievement offer an exciting window on experience-dependent cortical plasticity, as they allow us to understand how developing brains change when children acquire culturally transmitted skills. This contribution focuses on the learning of arithmetic, which is quintessential to mathematical development. The nascent body of brain imaging studies reveals that arithmetic recruits a large set of interconnected areas, including prefrontal, posterior parietal, occipito-temporal and hippocampal areas. This network undergoes developmental changes in its function, connectivity and structure, which are not yet fully understood. This network only partially overlaps with what has been found in adults, and clear differences are observed in the recruitment of the hippocampus, which are related to the development of arithmetic fact retrieval. Despite these emerging trends, the literature remains scattered, particularly in the context of atypical development. Acknowledging the distributed nature of the arithmetic network, future studies should focus on connectivity and analytic approaches that investigate patterns of brain activity, coupled with a careful design of the arithmetic tasks and assessments of arithmetic strategies. Such studies will produce a more comprehensive understanding of how the arithmetical brain unfolds, how it changes over time, and how it is impaired in atypical development.
Collapse
Affiliation(s)
- Lien Peters
- Parenting and Special Education Research Unit, Faculty of Psychology, Educational Sciences KU Leuven, University of Leuven, Belgium
| | - Bert De Smedt
- Parenting and Special Education Research Unit, Faculty of Psychology, Educational Sciences KU Leuven, University of Leuven, Belgium.
| |
Collapse
|
13
|
Gómez-Velázquez FR, Berumen G, González-Garrido AA. Comparisons of numerical magnitudes in children with different levels of mathematical achievement. An ERP study. Brain Res 2015; 1627:189-200. [PMID: 26385418 DOI: 10.1016/j.brainres.2015.09.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/10/2015] [Accepted: 09/08/2015] [Indexed: 11/28/2022]
Abstract
The ability to map between non-symbolic and symbolic magnitude representations is crucial in the development of mathematics and this map is disturbed in children with math difficulties. In addition, positive parietal ERPs have been found to be sensitive to the number distance effect and skills solving arithmetic problems. Therefore we aimed to contrast the behavioral and ERP responses in children with different levels of mathematical achievement: low (LA), average (AA) and high (HA), while comparing symbolic and non-symbolic magnitudes. The results showed that LA children repeatedly failed when comparing magnitudes, particularly the symbolic ones. In addition, a positive correlation between correct responses while analyzing symbolic quantities and WRAT-4 scores emerged. The amplitude of N200 was significantly larger during non-symbolic comparisons. In addition, P2P amplitude was consistently smaller in LA children while comparing both symbolic and non-symbolic quantities, and correlated positively with the WRAT-4 scores. The latency of P3 seemed to be sensitive to the type of numerical comparison. The results suggest that math difficulties might be related to a more general magnitude representation problem, and that ERP are useful to study its timecourse in children with different mathematical skills.
Collapse
Affiliation(s)
- Fabiola Reveca Gómez-Velázquez
- Instituto de Neurociencias, Universidad de Guadalajara, Francisco de Quevedo 180, Col. Arcos Vallarta, Guadalajara, Jalisco 44130, Mexico.
| | - Gustavo Berumen
- Instituto de Neurociencias, Universidad de Guadalajara, Francisco de Quevedo 180, Col. Arcos Vallarta, Guadalajara, Jalisco 44130, Mexico.
| | - Andrés Antonio González-Garrido
- Instituto de Neurociencias, Universidad de Guadalajara, Francisco de Quevedo 180, Col. Arcos Vallarta, Guadalajara, Jalisco 44130, Mexico; O.P.D. Hospital Civil de Guadalajara, Calle Coronel Calderón #777, El Retiro, 44280 Guadalajara, Jalisco, Mexico.
| |
Collapse
|