1
|
Wisniewski MG, Joyner CN, Zakrzewski AC, Makeig S. Finding tau rhythms in EEG: An independent component analysis approach. Hum Brain Mapp 2024; 45:e26572. [PMID: 38339905 PMCID: PMC10823759 DOI: 10.1002/hbm.26572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/05/2023] [Accepted: 12/10/2023] [Indexed: 02/12/2024] Open
Abstract
Tau rhythms are largely defined by sound responsive alpha band (~8-13 Hz) oscillations generated largely within auditory areas of the superior temporal gyri. Studies of tau have mostly employed magnetoencephalography or intracranial recording because of tau's elusiveness in the electroencephalogram. Here, we demonstrate that independent component analysis (ICA) decomposition can be an effective way to identify tau sources and study tau source activities in EEG recordings. Subjects (N = 18) were passively exposed to complex acoustic stimuli while the EEG was recorded from 68 electrodes across the scalp. Subjects' data were split into 60 parallel processing pipelines entailing use of five levels of high-pass filtering (passbands of 0.1, 0.5, 1, 2, and 4 Hz), three levels of low-pass filtering (25, 50, and 100 Hz), and four different ICA algorithms (fastICA, infomax, adaptive mixture ICA [AMICA], and multi-model AMICA [mAMICA]). Tau-related independent component (IC) processes were identified from this data as being localized near the superior temporal gyri with a spectral peak in the 8-13 Hz alpha band. These "tau ICs" showed alpha suppression during sound presentations that was not seen for other commonly observed IC clusters with spectral peaks in the alpha range (e.g., those associated with somatomotor mu, and parietal or occipital alpha). The choice of analysis parameters impacted the likelihood of obtaining tau ICs from an ICA decomposition. Lower cutoff frequencies for high-pass filtering resulted in significantly fewer subjects showing a tau IC than more aggressive high-pass filtering. Decomposition using the fastICA algorithm performed the poorest in this regard, while mAMICA performed best. The best combination of filters and ICA model choice was able to identify at least one tau IC in the data of ~94% of the sample. Altogether, the data reveal close similarities between tau EEG IC dynamics and tau dynamics observed in MEG and intracranial data. Use of relatively aggressive high-pass filters and mAMICA decomposition should allow researchers to identify and characterize tau rhythms in a majority of their subjects. We believe adopting the ICA decomposition approach to EEG analysis can increase the rate and range of discoveries related to auditory responsive tau rhythms.
Collapse
Affiliation(s)
| | | | | | - Scott Makeig
- Swartz Center for Computational NeuroscienceUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
2
|
Alain C, Göke K, Shen D, Bidelman GM, Bernstein LJ, Snyder JS. Neural alpha oscillations index context-driven perception of ambiguous vowel sequences. iScience 2023; 26:108457. [PMID: 38058304 PMCID: PMC10696458 DOI: 10.1016/j.isci.2023.108457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/05/2023] [Accepted: 11/11/2023] [Indexed: 12/08/2023] Open
Abstract
Perception of bistable stimuli is influenced by prior context. In some cases, the interpretation matches with how the preceding stimulus was perceived; in others, it tends to be the opposite of the previous stimulus percept. We measured high-density electroencephalography (EEG) while participants were presented with a sequence of vowels that varied in formant transition, promoting the perception of one or two auditory streams followed by an ambiguous bistable sequence. For the bistable sequence, participants were more likely to report hearing the opposite percept of the one heard immediately before. This auditory contrast effect coincided with changes in alpha power localized in the left angular gyrus and left sensorimotor and right sensorimotor/supramarginal areas. The latter correlated with participants' perception. These results suggest that the contrast effect for a bistable sequence of vowels may be related to neural adaptation in posterior auditory areas, which influences participants' perceptual construal level of ambiguous stimuli.
Collapse
Affiliation(s)
- Claude Alain
- Rotman Research Institute, Toronto, ON M6A 2E1, Canada
- Department of Psychology, University of Toronto, Toronto, ON M5S 3G3, Canada
| | | | - Dawei Shen
- Rotman Research Institute, Toronto, ON M6A 2E1, Canada
| | - Gavin M. Bidelman
- Department of Speech, Language and Hearing Sciences and Program in Neuroscience, Indiana University, Bloomington, IN 47408, USA
| | - Lori J. Bernstein
- Department of Psychiatry, University of Toronto and University Health Network, Toronto, ON M5G 2C4, Canada
| | - Joel S. Snyder
- Department of Psychology, University of Nevada, Las Vegas, NV 89154, USA
| |
Collapse
|
3
|
Wiesman AI, Donhauser PW, Degroot C, Diab S, Kousaie S, Fon EA, Klein D, Baillet S. Aberrant neurophysiological signaling associated with speech impairments in Parkinson's disease. NPJ Parkinsons Dis 2023; 9:61. [PMID: 37059749 PMCID: PMC10104849 DOI: 10.1038/s41531-023-00495-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/16/2023] [Indexed: 04/16/2023] Open
Abstract
Difficulty producing intelligible speech is a debilitating symptom of Parkinson's disease (PD). Yet, both the robust evaluation of speech impairments and the identification of the affected brain systems are challenging. Using task-free magnetoencephalography, we examine the spectral and spatial definitions of the functional neuropathology underlying reduced speech quality in patients with PD using a new approach to characterize speech impairments and a novel brain-imaging marker. We found that the interactive scoring of speech impairments in PD (N = 59) is reliable across non-expert raters, and better related to the hallmark motor and cognitive impairments of PD than automatically-extracted acoustical features. By relating these speech impairment ratings to neurophysiological deviations from healthy adults (N = 65), we show that articulation impairments in patients with PD are associated with aberrant activity in the left inferior frontal cortex, and that functional connectivity of this region with somatomotor cortices mediates the influence of cognitive decline on speech deficits.
Collapse
Affiliation(s)
- Alex I Wiesman
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada
| | - Peter W Donhauser
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada
- Ernst Strüngmann Institute for Neuroscience, Frankfurt, Germany
| | - Clotilde Degroot
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada
| | - Sabrina Diab
- Department of Psychology, Université du Québec à Montréal, Montréal, QC, Canada
| | - Shanna Kousaie
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Edward A Fon
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada
| | - Denise Klein
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada.
- Center for Research on Brain, Language and Music, McGill University, Montreal, QC, Canada.
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, 3801 Rue University, Montreal, QC, Canada.
| |
Collapse
|
4
|
Dynamic auditory contributions to error detection revealed in the discrimination of Same and Different syllable pairs. Neuropsychologia 2022; 176:108388. [PMID: 36183800 DOI: 10.1016/j.neuropsychologia.2022.108388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
Abstract
During speech production auditory regions operate in concert with the anterior dorsal stream to facilitate online error detection. As the dorsal stream also is known to activate in speech perception, the purpose of the current study was to probe the role of auditory regions in error detection during auditory discrimination tasks as stimuli are encoded and maintained in working memory. A priori assumptions are that sensory mismatch (i.e., error) occurs during the discrimination of Different (mismatched) but not Same (matched) syllable pairs. Independent component analysis was applied to raw EEG data recorded from 42 participants to identify bilateral auditory alpha rhythms, which were decomposed across time and frequency to reveal robust patterns of event related synchronization (ERS; inhibition) and desynchronization (ERD; processing) over the time course of discrimination events. Results were characterized by bilateral peri-stimulus alpha ERD transitioning to alpha ERS in the late trial epoch, with ERD interpreted as evidence of working memory encoding via Analysis by Synthesis and ERS considered evidence of speech-induced-suppression arising during covert articulatory rehearsal to facilitate working memory maintenance. The transition from ERD to ERS occurred later in the left hemisphere in Different trials than in Same trials, with ERD and ERS temporally overlapping during the early post-stimulus window. Results were interpreted to suggest that the sensory mismatch (i.e., error) arising from the comparison of the first and second syllable elicits further processing in the left hemisphere to support working memory encoding and maintenance. Results are consistent with auditory contributions to error detection during both encoding and maintenance stages of working memory, with encoding stage error detection associated with stimulus concordance and maintenance stage error detection associated with task-specific retention demands.
Collapse
|
5
|
Korzeczek A, Neef NE, Steinmann I, Paulus W, Sommer M. Stuttering severity relates to frontotemporal low-beta synchronization during pre-speech preparation. Clin Neurophysiol 2022; 138:84-96. [DOI: 10.1016/j.clinph.2022.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 12/15/2022]
|
6
|
Jenson D. Audiovisual incongruence differentially impacts left and right hemisphere sensorimotor oscillations: Potential applications to production. PLoS One 2021; 16:e0258335. [PMID: 34618866 PMCID: PMC8496780 DOI: 10.1371/journal.pone.0258335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 09/26/2021] [Indexed: 11/21/2022] Open
Abstract
Speech production gives rise to distinct auditory and somatosensory feedback signals which are dynamically integrated to enable online monitoring and error correction, though it remains unclear how the sensorimotor system supports the integration of these multimodal signals. Capitalizing on the parity of sensorimotor processes supporting perception and production, the current study employed the McGurk paradigm to induce multimodal sensory congruence/incongruence. EEG data from a cohort of 39 typical speakers were decomposed with independent component analysis to identify bilateral mu rhythms; indices of sensorimotor activity. Subsequent time-frequency analyses revealed bilateral patterns of event related desynchronization (ERD) across alpha and beta frequency ranges over the time course of perceptual events. Right mu activity was characterized by reduced ERD during all cases of audiovisual incongruence, while left mu activity was attenuated and protracted in McGurk trials eliciting sensory fusion. Results were interpreted to suggest distinct hemispheric contributions, with right hemisphere mu activity supporting a coarse incongruence detection process and left hemisphere mu activity reflecting a more granular level of analysis including phonological identification and incongruence resolution. Findings are also considered in regard to incongruence detection and resolution processes during production.
Collapse
Affiliation(s)
- David Jenson
- Department of Speech and Hearing Sciences, Washington State University, Spokane, Washington, United States of America
| |
Collapse
|
7
|
Tracking Cognitive Spare Capacity During Speech Perception With EEG/ERP: Effects of Cognitive Load and Sentence Predictability. Ear Hear 2021; 41:1144-1157. [PMID: 32282402 DOI: 10.1097/aud.0000000000000856] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Listening to speech in adverse listening conditions is effortful. Objective assessment of cognitive spare capacity during listening can serve as an index of the effort needed to understand speech. Cognitive spare capacity is influenced both by signal-driven demands posed by listening conditions and top-down demands intrinsic to spoken language processing, such as memory use and semantic processing. Previous research indicates that electrophysiological responses, particularly alpha oscillatory power, may index listening effort. However, it is not known how these indices respond to memory and semantic processing demands during spoken language processing in adverse listening conditions. The aim of the present study was twofold: first, to assess the impact of memory demands on electrophysiological responses during recognition of degraded, spoken sentences, and second, to examine whether predictable sentence contexts increase or decrease cognitive spare capacity during listening. DESIGN Cognitive demand was varied in a memory load task in which young adult participants (n = 20) viewed either low-load (one digit) or high-load (seven digits) sequences of digits, then listened to noise-vocoded spoken sentences that were either predictable or unpredictable, and then reported the final word of the sentence and the digits. Alpha oscillations in the frequency domain and event-related potentials in the time domain of the electrophysiological data were analyzed, as was behavioral accuracy for both words and digits. RESULTS Measured during sentence processing, event-related desynchronization of alpha power was greater (more negative) under high load than low load and was also greater for unpredictable than predictable sentences. A complementary pattern was observed for the P300/late positive complex (LPC) to sentence-final words, such that P300/LPC amplitude was reduced under high load compared with low load and for unpredictable compared with predictable sentences. Both words and digits were identified more quickly and accurately on trials in which spoken sentences were predictable. CONCLUSIONS Results indicate that during a sentence-recognition task, both cognitive load and sentence predictability modulate electrophysiological indices of cognitive spare capacity, namely alpha oscillatory power and P300/LPC amplitude. Both electrophysiological and behavioral results indicate that a predictive sentence context reduces cognitive demands during listening. Findings contribute to a growing literature on objective measures of cognitive demand during listening and indicate predictable sentence context as a top-down factor that can support ease of listening.
Collapse
|
8
|
Jenson D, Saltuklaroglu T. Sensorimotor contributions to working memory differ between the discrimination of Same and Different syllable pairs. Neuropsychologia 2021; 159:107947. [PMID: 34216594 DOI: 10.1016/j.neuropsychologia.2021.107947] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 02/01/2021] [Accepted: 06/27/2021] [Indexed: 10/21/2022]
Abstract
Sensorimotor activity during speech perception is both pervasive and highly variable, changing as a function of the cognitive demands imposed by the task. The purpose of the current study was to evaluate whether the discrimination of Same (matched) and Different (unmatched) syllable pairs elicit different patterns of sensorimotor activity as stimuli are processed in working memory. Raw EEG data recorded from 42 participants were decomposed with independent component analysis to identify bilateral sensorimotor mu rhythms from 36 subjects. Time frequency decomposition of mu rhythms revealed concurrent event related desynchronization (ERD) in alpha and beta frequency bands across the peri- and post-stimulus time periods, which were interpreted as evidence of sensorimotor contributions to working memory encoding and maintenance. Left hemisphere alpha/beta ERD was stronger in Different trials than Same trials during the post-stimulus period, while right hemisphere alpha/beta ERD was stronger in Same trials than Different trials. A between-hemispheres contrast revealed no differences during Same trials, while post-stimulus alpha/beta ERD was stronger in the left hemisphere than the right during Different trials. Results were interpreted to suggest that predictive coding mechanisms lead to repetition suppression effects in Same trials. Mismatches arising from predictive coding mechanisms in Different trials shift subsequent working memory processing to the speech-dominant left hemisphere. Findings clarify how sensorimotor activity differentially supports working memory encoding and maintenance stages during speech discrimination tasks and have potential to inform sensorimotor models of speech perception and working memory.
Collapse
Affiliation(s)
- David Jenson
- Washington State University, Elson S. Floyd College of Medicine, Department of Speech and Hearing Sciences, Spokane, WA, USA.
| | - Tim Saltuklaroglu
- University of Tennessee Health Science Center, College of Health Professions, Department of Audiology and Speech-Pathology, Knoxville, TN, USA
| |
Collapse
|
9
|
Wisniewski MG, Zakrzewski AC, Bell DR, Wheeler M. EEG power spectral dynamics associated with listening in adverse conditions. Psychophysiology 2021; 58:e13877. [PMID: 34161612 DOI: 10.1111/psyp.13877] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 01/08/2023]
Abstract
Adverse listening conditions increase the demand on cognitive resources needed for speech comprehension. In an exploratory study, we aimed to identify independent power spectral features in the EEG useful for studying the cognitive processes involved in this effortful listening. Listeners performed the coordinate response measure task with a single-talker masker at a 0-dB signal-to-noise ratio. Sounds were left unfiltered or degraded with low-pass filtering. Independent component analysis (ICA) was used to identify independent components (ICs) in the EEG data, the power spectral dynamics of which were then analyzed. Frontal midline theta, left frontal, right frontal, left mu, right mu, left temporal, parietal, left occipital, central occipital, and right occipital clusters of ICs were identified. All IC clusters showed some significant listening-related changes in their power spectrum. This included sustained theta enhancements, gamma enhancements, alpha enhancements, alpha suppression, beta enhancements, and mu rhythm suppression. Several of these effects were absent or negligible using traditional channel analyses. Comparison of filtered to unfiltered speech revealed a stronger alpha suppression in the parietal and central occipital clusters of ICs for the filtered speech condition. This not only replicates recent findings showing greater alpha suppression as listening difficulty increases but also suggests that such alpha-band effects can stem from multiple cortical sources. We lay out the advantages of the ICA approach over the restrictive analyses that have been used as of late in the study of listening effort. We also make suggestions for moving into hypothesis-driven studies regarding the power spectral features that were revealed.
Collapse
Affiliation(s)
- Matthew G Wisniewski
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, USA
| | | | - Destiny R Bell
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, USA
| | - Michelle Wheeler
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
10
|
Quantitative EEG measures in profoundly deaf and normal hearing individuals while performing a vibrotactile temporal discrimination task. Int J Psychophysiol 2021; 166:71-82. [PMID: 34023377 DOI: 10.1016/j.ijpsycho.2021.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/10/2021] [Accepted: 05/16/2021] [Indexed: 11/22/2022]
Abstract
Challenges in early oral language acquisition in profoundly deaf individuals have an impact on cognitive neurodevelopment. This has led to the exploration of alternative sound perception methods involving training of vibrotactile discrimination of sounds within the language spectrum. In particular, stimulus duration plays an important role in linguistic categorical perception. We comparatively evaluated vibrotactile temporal discrimination of sound and how specific training can modify the underlying electrical brain activity. Fifteen profoundly deaf (PD) and 15 normal-hearing (NH) subjects performed a vibrotactile oddball task with simultaneous EEG recording, before and after a short training period (5 one-hour sessions; in 2.5-3 weeks). The stimuli consisted of 700 Hz pure-tones with different duration (target: long 500 ms; non-target: short 250 ms). The sound-wave stimuli were delivered by a small device worn on the right index finger. A similar behavioral training effect was observed in both groups showing significant improvement in sound-duration discrimination. However, quantitative EEG measurements reveal distinct neurophysiological patterns characterized by higher and more diffuse delta band magnitudes in the PD group, together with a generalized decrement in absolute power in both groups that might reflect a facilitating process associated to learning. Furthermore, training-related changes were found in the beta-band in NH. Findings suggest PD have different cognitive adaptive mechanisms which are not a mere amplification effect due to greater cortical excitability.
Collapse
|
11
|
Jenson D, Bowers AL, Hudock D, Saltuklaroglu T. The Application of EEG Mu Rhythm Measures to Neurophysiological Research in Stuttering. Front Hum Neurosci 2020; 13:458. [PMID: 31998103 PMCID: PMC6965028 DOI: 10.3389/fnhum.2019.00458] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/13/2019] [Indexed: 11/29/2022] Open
Abstract
Deficits in basal ganglia-based inhibitory and timing circuits along with sensorimotor internal modeling mechanisms are thought to underlie stuttering. However, much remains to be learned regarding the precise manner how these deficits contribute to disrupting both speech and cognitive functions in those who stutter. Herein, we examine the suitability of electroencephalographic (EEG) mu rhythms for addressing these deficits. We review some previous findings of mu rhythm activity differentiating stuttering from non-stuttering individuals and present some new preliminary findings capturing stuttering-related deficits in working memory. Mu rhythms are characterized by spectral peaks in alpha (8-13 Hz) and beta (14-25 Hz) frequency bands (mu-alpha and mu-beta). They emanate from premotor/motor regions and are influenced by basal ganglia and sensorimotor function. More specifically, alpha peaks (mu-alpha) are sensitive to basal ganglia-based inhibitory signals and sensory-to-motor feedback. Beta peaks (mu-beta) are sensitive to changes in timing and capture motor-to-sensory (i.e., forward model) projections. Observing simultaneous changes in mu-alpha and mu-beta across the time-course of specific events provides a rich window for observing neurophysiological deficits associated with stuttering in both speech and cognitive tasks and can provide a better understanding of the functional relationship between these stuttering symptoms. We review how independent component analysis (ICA) can extract mu rhythms from raw EEG signals in speech production tasks, such that changes in alpha and beta power are mapped to myogenic activity from articulators. We review findings from speech production and auditory discrimination tasks demonstrating that mu-alpha and mu-beta are highly sensitive to capturing sensorimotor and basal ganglia deficits associated with stuttering with high temporal precision. Novel findings from a non-word repetition (working memory) task are also included. They show reduced mu-alpha suppression in a stuttering group compared to a typically fluent group. Finally, we review current limitations and directions for future research.
Collapse
Affiliation(s)
- David Jenson
- Department of Speech and Hearing Sciences, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, United States
| | - Andrew L. Bowers
- Epley Center for Health Professions, Communication Sciences and Disorders, University of Arkansas, Fayetteville, AR, United States
| | - Daniel Hudock
- Department of Communication Sciences and Disorders, Idaho State University, Pocatello, ID, United States
| | - Tim Saltuklaroglu
- College of Health Professions, Department of Audiology and Speech-Pathology, University of Tennessee Health Science Center, Knoxville, TN, United States
| |
Collapse
|
12
|
Jenson D, Thornton D, Harkrider AW, Saltuklaroglu T. Influences of cognitive load on sensorimotor contributions to working memory: An EEG investigation of mu rhythm activity during speech discrimination. Neurobiol Learn Mem 2019; 166:107098. [DOI: 10.1016/j.nlm.2019.107098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 09/11/2019] [Accepted: 10/09/2019] [Indexed: 11/16/2022]
|
13
|
Pitt KM, Brumberg JS, Burnison JD, Mehta J, Kidwai J. Behind the Scenes of Noninvasive Brain-Computer Interfaces: A Review of Electroencephalography Signals, How They Are Recorded, and Why They Matter. ACTA ACUST UNITED AC 2019; 4:1622-1636. [PMID: 32529035 DOI: 10.1044/2019_pers-19-00059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Purpose Brain-computer interface (BCI) techniques may provide computer access for individuals with severe physical impairments. However, the relatively hidden nature of BCI control obscures how BCI systems work behind the scenes, making it difficult to understand how electroencephalography (EEG) records the BCI related brain signals, what brain signals are recorded by EEG, and why these signals are targeted for BCI control. Furthermore, in the field of speech-language-hearing, signals targeted for BCI application have been of primary interest to clinicians and researchers in the area of augmentative and alternative communication (AAC). However, signals utilized for BCI control reflect sensory, cognitive and motor processes, which are of interest to a range of related disciplines including speech science. Method This tutorial was developed by a multidisciplinary team emphasizing primary and secondary BCI-AAC related signals of interest to speech-language-hearing. Results An overview of BCI-AAC related signals are provided discussing 1) how BCI signals are recorded via EEG, 2) what signals are targeted for non-invasive BCI control, including the P300, sensorimotor rhythms, steady state evoked potentials, contingent negative variation, and the N400, and 3) why these signals are targeted. During tutorial creation, attention was given to help support EEG and BCI understanding for those without an engineering background. Conclusion Tutorials highlighting how BCI-AAC signals are elicited and recorded can help increase interest and familiarity with EEG and BCI techniques and provide a framework for understanding key principles behind BCI-AAC design and implementation.
Collapse
Affiliation(s)
- Kevin M Pitt
- Department of Special Education and Communication Disorders, University of Nebraska-Lincoln, Lincoln, NE
| | - Jonathan S Brumberg
- Department of Speech-Language-Hearing: Sciences & Disorders, University of Kansas, Lawrence, KS
| | | | - Jyutika Mehta
- Department of Communication Sciences & Disorders, Texas Woman's University, Denton, TX
| | - Juhi Kidwai
- Department of Speech-Language-Hearing: Sciences & Disorders, University of Kansas, Lawrence, KS
| |
Collapse
|
14
|
Thornton D, Harkrider AW, Jenson DE, Saltuklaroglu T. Sex differences in early sensorimotor processing for speech discrimination. Sci Rep 2019; 9:392. [PMID: 30674942 PMCID: PMC6344575 DOI: 10.1038/s41598-018-36775-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 11/12/2018] [Indexed: 11/08/2022] Open
Abstract
Sensorimotor activity in speech perception tasks varies as a function of context, cognitive load, and cognitive ability. This study investigated listener sex as an additional variable. Raw EEG data were collected as 21 males and 21 females discriminated /ba/ and /da/ in quiet and noisy backgrounds. Independent component analyses of data from accurately discriminated trials identified sensorimotor mu components with characteristic alpha and beta peaks from 16 members of each sex. Time-frequency decompositions showed that in quiet discrimination, females displayed stronger early mu-alpha synchronization, whereas males showed stronger mu-beta desynchronization. Findings indicate that early attentional mechanisms for speech discrimination were characterized by sensorimotor inhibition in females and predictive sensorimotor activation in males. Both sexes showed stronger early sensorimotor inhibition in noisy discrimination conditions versus in quiet, suggesting sensory gating of the noise. However, the difference in neural activation between quiet and noisy conditions was greater in males than females. Though sex differences appear unrelated to behavioral accuracy, they suggest that males and females exhibit early sensorimotor processing for speech discrimination that is fundamentally different, yet similarly adaptable to adverse conditions. Findings have implications for understanding variability in neuroimaging data and the male prevalence in various neurodevelopmental disorders with inhibitory dysfunction.
Collapse
Affiliation(s)
| | - Ashley W Harkrider
- University of Tennessee Health Science Center, Knoxville, TN, 37996, USA
| | - David E Jenson
- Elson S. Floyd College of Medicine, Washington State University, Spokane, WA, 99202, USA
| | - Tim Saltuklaroglu
- University of Tennessee Health Science Center, Knoxville, TN, 37996, USA
| |
Collapse
|
15
|
Power and phase coherence in sensorimotor mu and temporal lobe alpha components during covert and overt syllable production. Exp Brain Res 2018; 237:705-721. [DOI: 10.1007/s00221-018-5447-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/30/2018] [Indexed: 10/27/2022]
|
16
|
Saltuklaroglu T, Bowers A, Harkrider AW, Casenhiser D, Reilly KJ, Jenson DE, Thornton D. EEG mu rhythms: Rich sources of sensorimotor information in speech processing. BRAIN AND LANGUAGE 2018; 187:41-61. [PMID: 30509381 DOI: 10.1016/j.bandl.2018.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/27/2017] [Accepted: 09/23/2018] [Indexed: 06/09/2023]
Affiliation(s)
- Tim Saltuklaroglu
- Department of Audiology and Speech-Language Pathology, University of Tennessee Health Sciences, Knoxville, TN 37996, USA.
| | - Andrew Bowers
- University of Arkansas, Epley Center for Health Professions, 606 N. Razorback Road, Fayetteville, AR 72701, USA
| | - Ashley W Harkrider
- Department of Audiology and Speech-Language Pathology, University of Tennessee Health Sciences, Knoxville, TN 37996, USA
| | - Devin Casenhiser
- Department of Audiology and Speech-Language Pathology, University of Tennessee Health Sciences, Knoxville, TN 37996, USA
| | - Kevin J Reilly
- Department of Audiology and Speech-Language Pathology, University of Tennessee Health Sciences, Knoxville, TN 37996, USA
| | - David E Jenson
- Department of Speech and Hearing Sciences, Elson S. Floyd College of Medicine, Spokane, WA 99210-1495, USA
| | - David Thornton
- Department of Hearing, Speech, and Language Sciences, Gallaudet University, 800 Florida Avenue NE, Washington, DC 20002, USA
| |
Collapse
|
17
|
Jenson D, Reilly KJ, Harkrider AW, Thornton D, Saltuklaroglu T. Trait related sensorimotor deficits in people who stutter: An EEG investigation of μ rhythm dynamics during spontaneous fluency. Neuroimage Clin 2018; 19:690-702. [PMID: 29872634 PMCID: PMC5986168 DOI: 10.1016/j.nicl.2018.05.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 03/28/2018] [Accepted: 05/20/2018] [Indexed: 01/09/2023]
Abstract
Stuttering is associated with compromised sensorimotor control (i.e., internal modeling) across the dorsal stream and oscillations of EEG mu (μ) rhythms have been proposed as reliable indices of anterior dorsal stream processing. The purpose of this study was to compare μ rhythm oscillatory activity between (PWS) and matched typically fluent speakers (TFS) during spontaneously fluent overt and covert speech production tasks. Independent component analysis identified bilateral μ components from 24/27 PWS and matched TFS that localized over premotor cortex. Time-frequency analysis of the left hemisphere μ clusters demonstrated significantly reduced μ-α and μ-β ERD (pCLUSTER < 0.05) in PWS across the time course of overt and covert speech production, while no group differences were found in the right hemisphere in any condition. Results were interpreted through the framework of State Feedback Control. They suggest that weak forward modeling and evaluation of sensory feedback across the time course of speech production characterizes the trait related sensorimotor impairment in PWS. This weakness is proposed to represent an underlying sensorimotor instability that may predispose the speech of PWS to breakdown.
Collapse
Affiliation(s)
- David Jenson
- University of Tennessee Health Science Center, Dept. of Audiology and Speech Pathology, United States.
| | - Kevin J Reilly
- University of Tennessee Health Science Center, Dept. of Audiology and Speech Pathology, United States
| | - Ashley W Harkrider
- University of Tennessee Health Science Center, Dept. of Audiology and Speech Pathology, United States
| | - David Thornton
- University of Tennessee Health Science Center, Dept. of Audiology and Speech Pathology, United States
| | - Tim Saltuklaroglu
- University of Tennessee Health Science Center, Dept. of Audiology and Speech Pathology, United States
| |
Collapse
|
18
|
Kittilstved T, Reilly KJ, Harkrider AW, Casenhiser D, Thornton D, Jenson DE, Hedinger T, Bowers AL, Saltuklaroglu T. The Effects of Fluency Enhancing Conditions on Sensorimotor Control of Speech in Typically Fluent Speakers: An EEG Mu Rhythm Study. Front Hum Neurosci 2018; 12:126. [PMID: 29670516 PMCID: PMC5893846 DOI: 10.3389/fnhum.2018.00126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 03/16/2018] [Indexed: 01/04/2023] Open
Abstract
Objective: To determine whether changes in sensorimotor control resulting from speaking conditions that induce fluency in people who stutter (PWS) can be measured using electroencephalographic (EEG) mu rhythms in neurotypical speakers. Methods: Non-stuttering (NS) adults spoke in one control condition (solo speaking) and four experimental conditions (choral speech, delayed auditory feedback (DAF), prolonged speech and pseudostuttering). Independent component analysis (ICA) was used to identify sensorimotor μ components from EEG recordings. Time-frequency analyses measured μ-alpha (8–13 Hz) and μ-beta (15–25 Hz) event-related synchronization (ERS) and desynchronization (ERD) during each speech condition. Results: 19/24 participants contributed μ components. Relative to the control condition, the choral and DAF conditions elicited increases in μ-alpha ERD in the right hemisphere. In the pseudostuttering condition, increases in μ-beta ERD were observed in the left hemisphere. No differences were present between the prolonged speech and control conditions. Conclusions: Differences observed in the experimental conditions are thought to reflect sensorimotor control changes. Increases in right hemisphere μ-alpha ERD likely reflect increased reliance on auditory information, including auditory feedback, during the choral and DAF conditions. In the left hemisphere, increases in μ-beta ERD during pseudostuttering may have resulted from the different movement characteristics of this task compared with the solo speaking task. Relationships to findings in stuttering are discussed. Significance: Changes in sensorimotor control related feedforward and feedback control in fluency-enhancing speech manipulations can be measured using time-frequency decompositions of EEG μ rhythms in neurotypical speakers. This quiet, non-invasive, and temporally sensitive technique may be applied to learn more about normal sensorimotor control and fluency enhancement in PWS.
Collapse
Affiliation(s)
- Tiffani Kittilstved
- Department of Audiology and Speech Pathology, The University of Tennessee Health Science Center, Knoxville, TN, United States
| | - Kevin J Reilly
- Department of Audiology and Speech Pathology, The University of Tennessee Health Science Center, Knoxville, TN, United States
| | - Ashley W Harkrider
- Department of Audiology and Speech Pathology, The University of Tennessee Health Science Center, Knoxville, TN, United States
| | - Devin Casenhiser
- Department of Audiology and Speech Pathology, The University of Tennessee Health Science Center, Knoxville, TN, United States
| | - David Thornton
- Department of Audiology and Speech Pathology, The University of Tennessee Health Science Center, Knoxville, TN, United States
| | - David E Jenson
- Department of Audiology and Speech Pathology, The University of Tennessee Health Science Center, Knoxville, TN, United States
| | - Tricia Hedinger
- Department of Audiology and Speech Pathology, The University of Tennessee Health Science Center, Knoxville, TN, United States
| | - Andrew L Bowers
- Department of Communication Disorders, The University of Arkansas, Fayetteville, AR, United States
| | - Tim Saltuklaroglu
- Department of Audiology and Speech Pathology, The University of Tennessee Health Science Center, Knoxville, TN, United States
| |
Collapse
|
19
|
Zhang D, Gu R. Behavioral preference in sequential decision-making and its association with anxiety. Hum Brain Mapp 2018; 39:2482-2499. [PMID: 29468778 DOI: 10.1002/hbm.24016] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/26/2017] [Accepted: 02/13/2018] [Indexed: 02/04/2023] Open
Abstract
In daily life, people often make consecutive decisions before the ultimate goal is reached (i.e., sequential decision-making). However, this kind of decision-making has been largely overlooked in the literature. The current study investigated whether behavioral preference would change during sequential decisions, and the neural processes underlying the potential changes. For this purpose, we revised the classic balloon analogue risk task and recorded the electroencephalograph (EEG) signals associated with each step of decision-making. Independent component analysis performed on EEG data revealed that four EEG components elicited by periodic feedback in the current step predicted participants' decisions (gamble vs. no gamble) in the next step. In order of time sequence, these components were: bilateral occipital alpha rhythm, bilateral frontal theta rhythm, middle frontal theta rhythm, and bilateral sensorimotor mu rhythm. According to the information flows between these EEG oscillations, we proposed a brain model that describes the temporal dynamics of sequential decision-making. Finally, we found that the tendency to gamble (as well as the power intensity of bilateral frontal theta rhythms) was sensitive to the individual level of trait anxiety in certain steps, which may help understand the role of emotion in decision-making.
Collapse
Affiliation(s)
- Dandan Zhang
- Department of Psychology, College of Psychology and Sociology, Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen, China
| | - Ruolei Gu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,Department of Psychology, Stony Brook University, Stony Brook, New York
| |
Collapse
|
20
|
Picou EM, Singh G, Goy H, Russo F, Hickson L, Oxenham AJ, Buono GH, Ricketts TA, Launer S. Hearing, Emotion, Amplification, Research, and Training Workshop: Current Understanding of Hearing Loss and Emotion Perception and Priorities for Future Research. Trends Hear 2018; 22:2331216518803215. [PMID: 30270810 PMCID: PMC6168729 DOI: 10.1177/2331216518803215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/18/2018] [Accepted: 09/03/2018] [Indexed: 12/19/2022] Open
Abstract
The question of how hearing loss and hearing rehabilitation affect patients' momentary emotional experiences is one that has received little attention but has considerable potential to affect patients' psychosocial function. This article is a product from the Hearing, Emotion, Amplification, Research, and Training workshop, which was convened to develop a consensus document describing research on emotion perception relevant for hearing research. This article outlines conceptual frameworks for the investigation of emotion in hearing research; available subjective, objective, neurophysiologic, and peripheral physiologic data acquisition research methods; the effects of age and hearing loss on emotion perception; potential rehabilitation strategies; priorities for future research; and implications for clinical audiologic rehabilitation. More broadly, this article aims to increase awareness about emotion perception research in audiology and to stimulate additional research on the topic.
Collapse
Affiliation(s)
- Erin M. Picou
- Vanderbilt University School of
Medicine, Nashville, TN, USA
| | - Gurjit Singh
- Phonak Canada, Mississauga, ON,
Canada
- Department of Speech-Language Pathology,
University of Toronto, ON, Canada
- Department of Psychology, Ryerson
University, Toronto, ON, Canada
| | - Huiwen Goy
- Department of Psychology, Ryerson
University, Toronto, ON, Canada
| | - Frank Russo
- Department of Psychology, Ryerson
University, Toronto, ON, Canada
| | - Louise Hickson
- School of Health and Rehabilitation
Sciences, University of Queensland, Brisbane, Australia
| | | | | | | | | |
Collapse
|
21
|
Investigating the role of temporal lobe activation in speech perception accuracy with normal hearing adults: An event-related fNIRS study. Neuropsychologia 2017; 106:31-41. [PMID: 28888891 DOI: 10.1016/j.neuropsychologia.2017.09.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 08/29/2017] [Accepted: 09/04/2017] [Indexed: 12/14/2022]
Abstract
Functional near infrared spectroscopy (fNIRS) is a safe, non-invasive, relatively quiet imaging technique that is tolerant of movement artifact making it uniquely ideal for the assessment of hearing mechanisms. Previous research demonstrates the capacity for fNIRS to detect cortical changes to varying speech intelligibility, revealing a positive relationship between cortical activation amplitude and speech perception score. In the present study, we use an event-related design to investigate the hemodynamic response in the temporal lobe across different listening conditions. We presented participants with a speech recognition task using sentences in quiet, sentences in noise, and vocoded sentences. Hemodynamic responses were examined across conditions and then compared when speech perception was accurate compared to when speech perception was inaccurate in the context of noisy speech. Repeated measures, two-way ANOVAs revealed that the speech in noise condition (-2.8dB signal-to-noise ratio/SNR) demonstrated significantly greater activation than the easier listening conditions on multiple channels bilaterally. Further analyses comparing correct recognition trials to incorrect recognition trials (during the presentation phase of the trial) revealed that activation was significantly greater during correct trials. Lastly, during the repetition phase of the trial, where participants correctly repeated the sentence, the hemodynamic response demonstrated significantly higher deoxyhemoglobin than oxyhemoglobin, indicating a difference between the effects of perception and production on the cortical response. Using fNIRS, the present study adds meaningful evidence to the body of knowledge that describes the brain/behavior relationship related to speech perception.
Collapse
|
22
|
Saltuklaroglu T, Harkrider AW, Thornton D, Jenson D, Kittilstved T. EEG Mu (µ) rhythm spectra and oscillatory activity differentiate stuttering from non-stuttering adults. Neuroimage 2017; 153:232-245. [PMID: 28400266 PMCID: PMC5569894 DOI: 10.1016/j.neuroimage.2017.04.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/24/2017] [Accepted: 04/08/2017] [Indexed: 10/19/2022] Open
Abstract
Stuttering is linked to sensorimotor deficits related to internal modeling mechanisms. This study compared spectral power and oscillatory activity of EEG mu (μ) rhythms between persons who stutter (PWS) and controls in listening and auditory discrimination tasks. EEG data were analyzed from passive listening in noise and accurate (same/different) discrimination of tones or syllables in quiet and noisy backgrounds. Independent component analysis identified left and/or right μ rhythms with characteristic alpha (α) and beta (β) peaks localized to premotor/motor regions in 23 of 27 people who stutter (PWS) and 24 of 27 controls. PWS produced μ spectra with reduced β amplitudes across conditions, suggesting reduced forward modeling capacity. Group time-frequency differences were associated with noisy conditions only. PWS showed increased μ-β desynchronization when listening to noise and early in discrimination events, suggesting evidence of heightened motor activity that might be related to forward modeling deficits. PWS also showed reduced μ-α synchronization in discrimination conditions, indicating reduced sensory gating. Together these findings indicate spectral and oscillatory analyses of μ rhythms are sensitive to stuttering. More specifically, they can reveal stuttering-related sensorimotor processing differences in listening and auditory discrimination that also may be influenced by basal ganglia deficits.
Collapse
Affiliation(s)
- Tim Saltuklaroglu
- University of Tennessee Health Science Center, Department of Audiology and Speech Pathology, 578 South Stadium Hall, Knoxville, TN 37996, USA
| | - Ashley W Harkrider
- University of Tennessee Health Science Center, Department of Audiology and Speech Pathology, 578 South Stadium Hall, Knoxville, TN 37996, USA.
| | - David Thornton
- University of Tennessee Health Science Center, Department of Audiology and Speech Pathology, 578 South Stadium Hall, Knoxville, TN 37996, USA
| | - David Jenson
- University of Tennessee Health Science Center, Department of Audiology and Speech Pathology, 578 South Stadium Hall, Knoxville, TN 37996, USA
| | - Tiffani Kittilstved
- University of Tennessee Health Science Center, Department of Audiology and Speech Pathology, 578 South Stadium Hall, Knoxville, TN 37996, USA
| |
Collapse
|
23
|
Korzyukov O, Bronder A, Lee Y, Patel S, Larson CR. Bioelectrical brain effects of one's own voice identification in pitch of voice auditory feedback. Neuropsychologia 2017; 101:106-114. [PMID: 28461225 DOI: 10.1016/j.neuropsychologia.2017.04.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 03/04/2017] [Accepted: 04/27/2017] [Indexed: 01/22/2023]
Abstract
Control of voice fundamental frequency (F0) relies in part on comparison of the intended F0 level and auditory feedback. This comparison impacts "sense of agency", or SoA, commonly defined as being the agent of one's own actions and plays a key role for self-awareness and social interactions. SoA is aberrant in several psychiatric disorders. Knowledge about brain activity reflecting SoA can be used in clinical practice for these disorders. It was shown that perception of voice feedback as one's own voice, reflecting the recognition of SoA, alters auditory sensory processing. Using a voice perturbation paradigm we contrasted vocal and bioelectrical brain responses to auditory stimuli that differed in magnitude: 100 and 400 cents. Results suggest the different magnitudes were perceived as a pitch error in self-vocalization (100 cents) or as a pitch shift generated externally (400 cents). Vocalizations and neural responses to changes in pitch of self-vocalization were defined as those made to small magnitude pitch-shifts (100 cents) and which did not show differential neural responses to upward versus downward changes in voice pitch auditory feedback. Vocal responses to large magnitude pitch shifts (400 cents) were smaller than those made to small pitch shifts, and neural responses differed according to upwards versus downward changes in pitch. Our results suggest that the presence of SoA for self-produced sounds may modify bioelectrical brain responses reflecting differences in auditory processing of the direction of a pitch shift. We suggest that this modification of bioelectrical response can be used as a biological index of SoA. Possible neuronal mechanisms of this modification of bioelectrical brain response are discussed.
Collapse
Affiliation(s)
- Oleg Korzyukov
- Department of Communication Sciences and Disorders, Northwestern University, 2240 Campus Dr., Evanston, IL 60208, USA; Neuromagnetic Brain Imaging Laboratory, Meadowlands Medical Center, 55 Meadowlands Parkway, Secaucus, NJ 07094, USA.
| | - Alexander Bronder
- Department of Communication Sciences and Disorders, Northwestern University, 2240 Campus Dr., Evanston, IL 60208, USA
| | - Yunseon Lee
- Department of Communication Sciences and Disorders, Northwestern University, 2240 Campus Dr., Evanston, IL 60208, USA
| | - Sona Patel
- Department of Speech-Language Pathology, Seton Hall University, 400 South Orange Ave, South Orange, NJ 07079, USA
| | - Charles R Larson
- Department of Communication Sciences and Disorders, Northwestern University, 2240 Campus Dr., Evanston, IL 60208, USA
| |
Collapse
|