1
|
Ewen JB, Puts NA, Mostofsky SH, Horn PS, Gilbert DL. Associations between Task-Related Modulation of Motor-Evoked Potentials and EEG Event-Related Desynchronization in Children with ADHD. Cereb Cortex 2021; 31:5526-5535. [PMID: 34231840 PMCID: PMC8568000 DOI: 10.1093/cercor/bhab176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 11/14/2022] Open
Abstract
Children with attention-deficit/hyperactivity disorder (ADHD) have previously shown a decreased magnitude of event-related desynchronization (ERD) during a finger-tapping task, with a large between-group effect. Because the neurobiology underlying several transcranial magnetic stimulation (TMS) measures have been studied in multiple contexts, we compared ERD and 3 TMS measures (resting motor threshold [RMT], short-interval cortical inhibition [SICI], and task-related up-modulation [TRUM]) within 14 participants with ADHD (ages 8-12 years) and 17 control children. The typically developing (TD) group showed a correlation between greater RMT and greater magnitude of alpha (10-13 Hz, here) ERD, and there was no diagnostic interaction effect, consistent with a rudimentary model of greater needed energy input to stimulate movement. Similarly, inhibition measured by SICI was also greater in the TD group when the magnitude of movement-related ERD was higher; there was a miniscule diagnostic interaction effect. Finally, TRUM during a response-inhibition task showed an unanticipated pattern: in TD children, the greater TMS task modulation (TRUM) was associated with a smaller magnitude of ERD during finger-tapping. The ADHD group showed the opposite direction of association: Greater TRUM was associated with larger magnitude of ERD. Prior EEG results have demonstrated specific alterations of task-related modulation of cortical physiology, and the current results provide a fulcrum for multimodal study.
Collapse
Affiliation(s)
- Joshua B Ewen
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, MD 21205, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicolaas A Puts
- Neurodevelopmental Sciences, King's College London, Strand, London WC2R 2LS, United Kingdom
| | - Stewart H Mostofsky
- Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD 21205, USA.,Pediatrics and Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Paul S Horn
- Department of Neurology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, USA
| | - Donald L Gilbert
- Department of Neurology, Cincinnati Children's Hospital Medical Center and University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
2
|
Nourski KV, Steinschneider M, Rhone AE, Krause BM, Kawasaki H, Banks MI. Cortical responses to auditory novelty across task conditions: An intracranial electrophysiology study. Hear Res 2021; 399:107911. [PMID: 32081413 PMCID: PMC7417283 DOI: 10.1016/j.heares.2020.107911] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 11/29/2022]
Abstract
Elucidating changes in sensory processing across attentional and arousal states is a major focus in neuroscience. The local/global deviant (LGD) stimulus paradigm engages auditory predictive coding over short (local deviance, LD) and long (global deviance, GD) time scales, and has been used to assay disruption of auditory predictive coding upon loss of consciousness. Our previous work (Nourski et al., 2018, J Neurosci 38:8441-52) examined effects of general anesthesia on short- and long-term novelty detection. GD effects were suppressed at subhypnotic doses of propofol, suggesting that they may be more related to task engagement than consciousness per se. The present study addressed this hypothesis by comparing cortical responses to auditory novelty during passive versus active listening conditions in awake listeners. Subjects were seven adult neurosurgical patients undergoing chronic invasive monitoring for medically intractable epilepsy. LGD stimuli were sequences of four identical vowels followed by a fifth identical or different vowel. In the passive condition, the stimuli were presented to subjects as they watched a silent TV program and were instructed to attend to its content. In the active condition, stimuli were presented in the absence of a TV program, and subjects were instructed to press a button in response to GD target stimuli. Intracranial recordings were made from multiple brain regions, including core and non-core auditory, auditory-related, prefrontal and sensorimotor cortex. Metrics of task performance included hit rate, sensitivity index, and reaction times. Cortical activity was measured as averaged auditory evoked potentials (AEPs) and event-related band power in high gamma (70-150 Hz) and alpha (8-14 Hz) frequency bands. The vowel stimuli and LD elicited robust AEPs in all studied brain areas in both passive and active conditions. High gamma responses to stimulus onset and LD were localized predominantly to the auditory cortex in the superior temporal plane and had a comparable prevalence and spatial extent between the two conditions. In contrast, GD effects (AEPs, high gamma and alpha suppression) were greatly enhanced during the active condition in all studied brain areas. The prevalence of high gamma GD effects was positively correlated with individual subjects' task performance. The data demonstrate distinct task engagement-related effects on responses to auditory novelty across the auditory cortical processing hierarchy. The results motivate a closer examination of effective connectivity underlying attentional modulation of cortical sensory responses, and serve as a foundation for examining changes in sensory processing associated with general anesthesia, sleep and disorders of consciousness.
Collapse
Affiliation(s)
- Kirill V Nourski
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, 52242, USA; Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, 52242, USA.
| | - Mitchell Steinschneider
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ariane E Rhone
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, 52242, USA
| | - Bryan M Krause
- Department of Anesthesiology, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Hiroto Kawasaki
- Department of Neurosurgery, The University of Iowa, Iowa City, IA, 52242, USA
| | - Matthew I Banks
- Department of Anesthesiology, University of Wisconsin - Madison, Madison, WI, 53705, USA; Department of Neuroscience, University of Wisconsin - Madison, Madison, WI, 53705, USA
| |
Collapse
|
3
|
McAuliffe D, Zhao Y, Pillai AS, Ament K, Adamek J, Caffo BS, Mostofsky SH, Ewen JB. Learning of skilled movements via imitation in ASD. Autism Res 2020; 13:777-784. [PMID: 31876983 PMCID: PMC11079622 DOI: 10.1002/aur.2253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 12/01/2019] [Indexed: 11/07/2022]
Abstract
Autism spectrum disorder (ASD) consists of altered performance of a range of skills, including social/communicative and motor skills. It is unclear whether this altered performance results from atypical acquisition or learning of the skills or from atypical "online" performance of the skills. Atypicalities of skilled actions that require both motor and cognitive resources, such as abnormal gesturing, are highly prevalent in ASD and are easier to study in a laboratory context than are social/communicative skills. Imitation has long been known to be impaired in ASD; because learning via imitation is a prime method by which humans acquire skills, we tested the hypothesis that children with ASD show alterations in learning novel gestures via imitation. Eighteen participants with ASD and IQ > 80, ages 8-12.9 years, and 19 typically developing peers performed a task in which they watched a video of a model performing a novel, meaningless arm/hand gesture and copied the gesture. Each gesture video/copy sequence was repeated 4-6 times. Eight gestures were analyzed. Examination of learning trajectories revealed that while children with ASD made nearly as much progress in learning from repetition 1 to repetition 4, the shape of the learning curves differed. Causal modeling demonstrated the shape of the learning curve influenced both the performance of overlearned gestures and autism severity, suggesting that it is in the index of learning mechanisms relevant both to motor skills and to autism core features. Autism Res 2020, 13: 777-784.. © 2019 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Imitation is a route by which humans learn a wide range of skills, naturally and in therapies. Imitation is known to be altered in autism spectrum disorder (ASD), but learning via imitation has not been rigorously examined. We found that the shape of the learning curve is altered in ASD, in a way that has a significant impact both on measures of autism severity and of other motor skills.
Collapse
Affiliation(s)
- Danielle McAuliffe
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, Maryland
| | - Yi Zhao
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Ajay S Pillai
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, Maryland
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Katarina Ament
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland
| | - Jack Adamek
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, Maryland
| | - Brian S Caffo
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Stewart H Mostofsky
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, Maryland
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joshua B Ewen
- Department of Neurology and Developmental Medicine, Kennedy Krieger Institute, Baltimore, Maryland
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
4
|
McAuliffe D, Hirabayashi K, Adamek JH, Luo Y, Crocetti D, Pillai AS, Zhao Y, Crone NE, Mostofsky SH, Ewen JB. Increased mirror overflow movements in ADHD are associated with altered EEG alpha/beta band desynchronization. Eur J Neurosci 2019; 51:1815-1826. [PMID: 31821643 DOI: 10.1111/ejn.14642] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/14/2019] [Accepted: 12/06/2019] [Indexed: 02/02/2023]
Abstract
Children with ADHD show developmentally abnormal levels of mirror overflow-unintentional movements occurring symmetrically opposite of intentional movements. Because mirror overflow correlates with ADHD behavioral symptoms, the study of disinhibition in motor control may shed light on physiologic mechanisms underlying impaired behavioral/cognitive control. This is a case-controlled study of EEG recording from 25 children with ADHD and 25 typically developing (TD) controls performing unilateral sequential finger tapping, with overflow movements measured using electronic goniometers. Consistent with previously published findings, children with ADHD showed increased mirror overflow as compared with TD peers. EEG findings revealed less lateralized alpha modulation (event-related desynchronization; ERD) and decreased magnitude of beta ERD in ADHD; both alpha and beta ERD reflect cortical activation. Moderation analysis revealed a significant association between beta ERD and overflow, independent of diagnosis; and an equivocal (p = .08) effect of diagnosis on the relationship between alpha ERD and overflow, with a significant effect in children with ADHD but not TD children. These results suggest two mechanisms involved with mirror overflow: one reflected in beta ipsilateral to the intentional movement and relevant to both children with ADHD and controls, and the other seemingly more specific to ADHD (alpha, contralateral to movement).
Collapse
Affiliation(s)
| | | | | | - Yu Luo
- Kennedy Krieger Institute, Baltimore, MD, USA.,Beihan University, Beijing, China
| | | | - Ajay S Pillai
- Kennedy Krieger Institute, Baltimore, MD, USA.,Johns Hopkins University, Baltimore, MD, USA
| | - Yi Zhao
- Johns Hopkins University, Baltimore, MD, USA
| | | | - Stewart H Mostofsky
- Kennedy Krieger Institute, Baltimore, MD, USA.,Johns Hopkins University, Baltimore, MD, USA
| | - Joshua B Ewen
- Kennedy Krieger Institute, Baltimore, MD, USA.,Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|