1
|
Bukhteeva I, Rahman FA, Kendall B, Duncan RE, Quadrilatero J, Pavlov EV, Gingras MJP, Leonenko Z. Effects of lithium isotopes on sodium/lithium co-transport and calcium efflux through the sodium/calcium/lithium exchanger in mitochondria. Front Physiol 2024; 15:1354091. [PMID: 38655027 PMCID: PMC11036541 DOI: 10.3389/fphys.2024.1354091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/06/2024] [Indexed: 04/26/2024] Open
Abstract
The effects of lithium (Li) isotopes and their impact on biological processes have recently gained increased attention due to the significance of Li as a pharmacological agent and the potential that Li isotopic effects in neuroscience contexts may constitute a new example of quantum effects in biology. Previous studies have shown that the two Li isotopes, which differ in mass and nuclear spin, have unusual different effects in vivo and in vitro and, although some molecular targets for Li isotope fractionation have been proposed, it is not known whether those result in observable downstream neurophysiological effects. In this work we studied fluxes of Li+, sodium (Na+) and calcium (Ca2+) ions in the mitochondrial sodium/calcium/lithium exchanger (NCLX), the only transporter known with recognized specificity for Li+. We studied the effect of Li+ isotopes on Ca2+ efflux from heart mitochondria in comparison to natural Li+ and Na+ using Ca2+-induced fluorescence and investigated a possible Li isotope fractionation in mitochondria using inductively coupled plasma mass spectrometry (ICP-MS). Our fluorescence data indicate that Ca2+ efflux increases with higher concentrations of either Li+ or Na+. We found that the simultaneous presence of Li+ and Na+ increases Ca2+ efflux compared to Ca2+ efflux caused by the same concentration of Li+ alone. However, no differentiation in the Ca2+ efflux between the two Li+ isotopes was observed, either for Li+ alone or in mixtures of Li+ and Na+. Our ICP-MS data demonstrate that there is selectivity between Na+ and Li+ (greater Na+ than Li+ uptake) and, most interestingly, between the Li+ isotopes (greater 6Li+ than 7Li+ uptake) by the inner mitochondrial membrane. In summary, we observed no Li+ isotope differentiation for Ca2+ efflux in mitochondria via NCLX but found a Li+ isotope fractionation during Li+ uptake by mitochondria with NCLX active or blocked. Our results suggest that the transport of Li+ via NCLX is not the main pathway for Li+ isotope fractionation and that this differentiation does not affect Ca2+ efflux in mitochondria. Therefore, explaining the puzzling effects of Li+ isotopes observed in other contexts will require further investigation to identify the molecular targets for Li+ isotope differentiation.
Collapse
Affiliation(s)
- Irina Bukhteeva
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Fasih A. Rahman
- Department of Kinesiology & Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Brian Kendall
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Robin E. Duncan
- Department of Kinesiology & Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Joe Quadrilatero
- Department of Kinesiology & Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Evgeny V. Pavlov
- Department of Molecular Pathobiology, New York University, New York, NY, United States
| | - Michel J. P. Gingras
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
| | - Zoya Leonenko
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, Canada
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
2
|
Livingstone JD, Gingras MJ, Leonenko Z, Beazely MA. Search for lithium isotope effects in neuronal HT22 cells. Biochem Biophys Rep 2023; 34:101461. [PMID: 37063814 PMCID: PMC10102007 DOI: 10.1016/j.bbrep.2023.101461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/11/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Lithium has been used as a treatment for bipolar disorder for over half a century, but there has thus far been no clinical differentiation made between the two naturally occurring stable isotopes (6Li and 7Li). While the natural lithium salts commonly used in treatments are composed of a mixture of these two stable isotopes (approximately 7.59% 6Li and 92.41% 7Li), some preliminary research indicates the above two stable isotopes of lithium may have differential effects on rat behaviour and neurophysiology. Here, we evaluate whether lithium isotopes may have distinct effects on HT22 neuronal cell viability, GSK-3-β phosphorylation in HT22 cells, and GSK-3-β kinase activity. We report no significant difference in lithium isotope toxicity on HT22 cells, nor in GSK-3-β phosphorylation, nor in GSK-3-β kinase activity between the two isotopes of lithium.
Collapse
|
3
|
Sergi A, Messina A, Vicario CM, Martino G. A Quantum-Classical Model of Brain Dynamics. ENTROPY (BASEL, SWITZERLAND) 2023; 25:e25040592. [PMID: 37190380 PMCID: PMC10138112 DOI: 10.3390/e25040592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023]
Abstract
The study of the human psyche has elucidated a bipartite structure of logic reflecting the quantum-classical nature of the world. Accordingly, we posited an approach toward studying the brain by means of the quantum-classical dynamics of a mixed Weyl symbol. The mixed Weyl symbol can be used to describe brain processes at the microscopic level and, when averaged over an appropriate ensemble, can provide a link to the results of measurements made at the meso and macro scale. Within this approach, quantum variables (such as, for example, nuclear and electron spins, dipole momenta of particles or molecules, tunneling degrees of freedom, and so on) can be represented by spinors, whereas the electromagnetic fields and phonon modes can be treated either classically or semi-classically in phase space by also considering quantum zero-point fluctuations. Quantum zero-point effects can be incorporated into numerical simulations by controlling the temperature of each field mode via coupling to a dedicated Nosé-Hoover chain thermostat. The temperature of each thermostat was chosen in order to reproduce quantum statistics in the canonical ensemble. In this first paper, we introduce a general quantum-classical Hamiltonian model that can be tailored to study physical processes at the interface between the quantum and the classical world in the brain. While the approach is discussed in detail, numerical calculations are not reported in the present paper, but they are planned for future work. Our theory of brain dynamics subsumes some compatible aspects of three well-known quantum approaches to brain dynamics, namely the electromagnetic field theory approach, the orchestrated objective reduction theory, and the dissipative quantum model of the brain. All three models are reviewed.
Collapse
Affiliation(s)
- Alessandro Sergi
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
- Institute of Systems Science, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Antonino Messina
- Dipartimento di Matematica ed Informatica, Università degli Studi di Palermo, Via Archirafi 34, 90123 Palermo, Italy
| | - Carmelo M Vicario
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e degli Studi Culturali, Università degli Studi di Messina, Via Concezione 6, 98121 Messina, Italy
| | - Gabriella Martino
- Dipartimento di Medicina e Clinica Sperimentale, Università degli Studi di Messina, A.O.U. "G. Martino", Via Consolare Valeria, 98125 Messina, Italy
| |
Collapse
|
4
|
Agarwal S, Kattnig DR, Aiello CD, Banerjee AS. The Biological Qubit: Calcium Phosphate Dimers, Not Trimers. J Phys Chem Lett 2023; 14:2518-2525. [PMID: 36876913 DOI: 10.1021/acs.jpclett.2c03945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The Posner molecule (calcium phosphate trimer, Ca9(PO4)6) has been hypothesized to function as a biological quantum information processor due to its supposedly long-lived entangled 31P nuclear spin states. This hypothesis was challenged by our recent finding that the molecule lacks a well-defined rotational axis of symmetry─an essential assumption in the proposal for Posner-mediated neural processing─and exists as an asymmetric dynamical ensemble. Following up, we investigate here the spin dynamics of the molecule's entangled 31P nuclear spins within the asymmetric ensemble. Our simulations show that entanglement between two nuclear spins prepared in a Bell state in separate Posner molecules decays on a subsecond time scale─much faster than previously hypothesized, and not long enough for supercellular neuronal processing. Calcium phosphate dimers (Ca6(PO4)4) however, are found to be surprisingly resilient to decoherence and are able to preserve entangled nuclear spins for hundreds of seconds, suggesting that neural processing might occur through them instead.
Collapse
Affiliation(s)
- Shivang Agarwal
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
| | - Daniel R Kattnig
- Department of Physics and Living Systems Institute, University of Exeter, EX4 4QL, Exeter, U.K
| | - Clarice D Aiello
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California 90095, United States
| | - Amartya S Banerjee
- Department of Materials Science and Engineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
5
|
Korenchan DE, Lu J, Sabba M, Dagys L, Brown LJ, Levitt MH, Jerschow A. 31P spin-lattice and singlet order relaxation mechanisms in pyrophosphate studied by isotopic substitution, field shuttling NMR, and molecular dynamics simulation. Phys Chem Chem Phys 2022; 24:24238-24245. [PMID: 36168981 DOI: 10.1039/d2cp03801c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Nuclear spin relaxation mechanisms are often difficult to isolate and identify, especially in molecules with internal flexibility. Here we combine experimental work with computation in order to determine the major mechanisms responsible for 31P spin-lattice and singlet order (SO) relaxation in pyrophosphate, a physiologically relevant molecule. Using field-shuttling relaxation measurements (from 2 μT to 9.4 T) and rates calculated from molecular dynamics (MD) trajectories, we identified chemical shift anisotropy (CSA) and spin-rotation as the major mechanisms, with minor contributions from intra- and intermolecular coupling. The significant spin-rotation interaction is a consequence of the relatively rapid rotation of the -PO32- entities around the bridging P-O bonds, and is treated by a combination of MD simulations and quantum chemistry calculations. Spin-lattice relaxation was predicted well without adjustable parameters, and for SO relaxation one parameter was extracted from the comparison between experiment and computation (a correlation coefficient between the rotational motion of the groups).
Collapse
Affiliation(s)
- David E Korenchan
- Department of Chemistry, New York University, 100 Washington Square E, New York, NY 10003, USA.
| | - Jiaqi Lu
- Department of Chemistry, New York University, 100 Washington Square E, New York, NY 10003, USA.
| | - Mohamed Sabba
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Laurynas Dagys
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Lynda J Brown
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Malcolm H Levitt
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Alexej Jerschow
- Department of Chemistry, New York University, 100 Washington Square E, New York, NY 10003, USA.
| |
Collapse
|
6
|
Agarwal S, Aiello CD, Kattnig DR, Banerjee AS. The Dynamical Ensemble of the Posner Molecule Is Not Symmetric. J Phys Chem Lett 2021; 12:10372-10379. [PMID: 34668712 DOI: 10.1021/acs.jpclett.1c02796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The Posner molecule, Ca9(PO4)6, has long been recognized to have biochemical relevance in various physiological processes. It has found recent attention for its possible role as a biological quantum information processor, whereby the molecule purportedly maintains long-lived nuclear spin coherences among its 31P nuclei (presumed to be symmetrically arranged), allowing it to function as a room temperature qubit. The structure of the molecule has been of much dispute in the literature, although the S6 point group symmetry has often been assumed and exploited in calculations. Using a variety of simulation techniques (including ab initio molecular dynamics and structural relaxation), rigorous data analysis tools, and by exploring thousands of individual configurations, we establish that the molecule predominantly assumes low-symmetry structures (Cs and Ci) at room temperature, as opposed to the higher-symmetry configurations explored previously. Our findings have important implications for the viability of this molecule as a qubit.
Collapse
Affiliation(s)
- Shivang Agarwal
- Department of Electrical and Computer Engineering, University of California, Los Angeles 90095, United States
| | - Clarice D Aiello
- Department of Electrical and Computer Engineering, University of California, Los Angeles 90095, United States
| | - Daniel R Kattnig
- Department of Physics and Living Systems Institute, University of Exeter, Exeter EX4 4QD, U.K
| | - Amartya S Banerjee
- Department of Materials Science and Engineering, University of California, Los Angeles 90095, United States
| |
Collapse
|
7
|
Quantum superposition inspired spiking neural network. iScience 2021; 24:102880. [PMID: 34401664 PMCID: PMC8348858 DOI: 10.1016/j.isci.2021.102880] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/21/2021] [Accepted: 07/14/2021] [Indexed: 11/21/2022] Open
Abstract
Despite advances in artificial intelligence models, neural networks still cannot achieve human performance, partly due to differences in how information is encoded and processed compared with human brain. Information in an artificial neural network (ANN) is represented using a statistical method and processed as a fitting function, enabling handling of structural patterns in image, text, and speech processing. However, substantial changes to the statistical characteristics of the data, for example, reversing the background of an image, dramatically reduce the performance. Here, we propose a quantum superposition spiking neural network (QS-SNN) inspired by quantum mechanisms and phenomena in the brain, which can handle reversal of image background color. The QS-SNN incorporates quantum theory with brain-inspired spiking neural network models from a computational perspective, resulting in more robust performance compared with traditional ANN models, especially when processing noisy inputs. The results presented here will inform future efforts to develop brain-inspired artificial intelligence.
Collapse
|
8
|
Biochemical basis of Quantum-like neuronal dynamics. BRAIN MULTIPHYSICS 2020. [DOI: 10.1016/j.brain.2020.100017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
9
|
Bordoni B, Walkowski S, Ducoux B, Tobbi F. The Cranial Bowl in the New Millennium and Sutherland's Legacy for Osteopathic Medicine: Part 1. Cureus 2020; 12:e10410. [PMID: 33062527 PMCID: PMC7550223 DOI: 10.7759/cureus.10410] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/12/2020] [Indexed: 12/12/2022] Open
Abstract
A theoretical model that does not evolve with new information deriving from scientific research, by changing the assumptions from which it was born, becomes a philosophy; the scientist becomes a scholarch. Cranial manual osteopathic medicine is very controversial, although it is commonly practiced, from the clinician to the nonmedical health worker. The article, divided into two parts, reviews the assumptions with which the cranial model was created, highlighting the scientific innovations and new anatomical-physiological reflections. In the first part we will review the synthesis and movement of cerebrospinal fluid (CSF), the movement of the central and peripheral nervous system; we will highlight the mechanical characteristics of the meninges. The aim of the article is to highlight the need to renew the existing cranial model.
Collapse
Affiliation(s)
- Bruno Bordoni
- Physical Medicine and Rehabilitation, Foundation Don Carlo Gnocchi, Milan, ITA
| | - Stevan Walkowski
- Osteopathic Manipulative Medicine, Heritage College of Osteopathic Medicine-Dublin, Ohio, USA
| | - Bruno Ducoux
- Osteopathy, Formation Recherche Osteopathie Prévention, Bordeaux, FRA
| | - Filippo Tobbi
- Osteopathy, Poliambulatorio Medico e Odontoiatrico, Varese, ITA
| |
Collapse
|
10
|
Abstract
The QBIT theory is an attempt toward solving the problem of consciousness based on empirical evidence provided by various scientific disciplines including quantum mechanics, biology, information theory, and thermodynamics. This theory formulates the problem of consciousness in the following four questions, and provides preliminary answers for each question: Question 1: What is the nature of qualia? ANSWER A quale is a superdense pack of quantum information encoded in maximally entangled pure states. Question 2: How are qualia generated? ANSWER When a pack of quantum information is compressed beyond a certain threshold, a quale is generated. Question 3: Why are qualia subjective? ANSWER A quale is subjective because a pack of information encoded in maximally entangled pure states are essentially private and unshareable. Question 4: Why does a quale have a particular meaning? ANSWER A pack of information within a cognitive system gradually obtains a particular meaning as it undergoes a progressive process of interpretation performed by an internal model installed in the system. This paper introduces the QBIT theory of consciousness, and explains its basic assumptions and conjectures.
Collapse
Affiliation(s)
- Majid Beshkar
- Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
|
12
|
Hunt T, Schooler JW. The Easy Part of the Hard Problem: A Resonance Theory of Consciousness. Front Hum Neurosci 2019; 13:378. [PMID: 31736728 PMCID: PMC6834646 DOI: 10.3389/fnhum.2019.00378] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 10/07/2019] [Indexed: 11/13/2022] Open
Abstract
Synchronization, harmonization, vibrations, or simply resonance in its most general sense seems to have an integral relationship with consciousness itself. One of the possible “neural correlates of consciousness” in mammalian brains is a specific combination of gamma, beta and theta electrical synchrony. More broadly, we see similar kinds of resonance patterns in living and non-living structures of many types. What clues can resonance provide about the nature of consciousness more generally? This paper provides an overview of resonating structures in the fields of neuroscience, biology and physics and offers a possible solution to what we see as the “easy part” of the “Hard Problem” of consciousness, which is generally known as the “combination problem.” The combination problem asks: how do micro-conscious entities combine into a higher-level macro-consciousness? The proposed solution in the context of mammalian consciousness suggests that a shared resonance is what allows different parts of the brain to achieve a phase transition in the speed and bandwidth of information flows between the constituent parts. This phase transition allows for richer varieties of consciousness to arise, with the character and content of that consciousness in each moment determined by the particular set of constituent neurons. We also offer more general insights into the ontology of consciousness and suggest that consciousness manifests as a continuum of increasing richness in all physical processes, distinguishing our view from emergentist materialism. We refer to this approach, a meta-synthesis, as a (general) resonance theory of consciousness. We offer some suggestions for testing the theory.
Collapse
Affiliation(s)
- Tam Hunt
- Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| | - Jonathan W Schooler
- Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
13
|
Poznanski RR, Cacha LA, Latif AZA, Salleh SH, Ali J, Yupapin P, Tuszynski JA, Ariff TM. Molecular orbitals of delocalized electron clouds in neuronal domains. Biosystems 2019; 183:103982. [PMID: 31195028 DOI: 10.1016/j.biosystems.2019.103982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 02/08/2023]
Abstract
We have further developed the two-brains hypothesis as a form of complementarity (or complementary relationship) of endogenously induced weak magnetic fields in the electromagnetic brain. The locally induced magnetic field between electron magnetic dipole moments of delocalized electron clouds in neuronal domains is complementary to the exogenous electromagnetic waves created by the oscillating molecular dipoles in the electro-ionic brain. In this paper, we mathematically model the operation of the electromagnetic grid, especially in regard to the functional role of atomic orbitals of dipole-bound delocalized electrons. A quantum molecular dynamic approach under quantum equilibrium conditions is taken to illustrate phase differences between quasi-free electrons tethered to an oscillating molecular core. We use a simplified version of the many-body problem to analytically solve the macro-quantum wave equation (equivalent to the Kohn-Sham equation). The resultant solution for the mechanical angular momentum can be used to approximate the molecular orbital of the dipole-bound delocalized electrons. In addition to non-adiabatic motion of the molecular core, 'guidance waves' may contribute to the delocalized macro-quantum wave functions in generating nonlocal phase correlations. The intrinsic magnetic properties of the origins of the endogenous electromagnetic field are considered to be a nested hierarchy of electromagnetic fields that may also include electromagnetic patterns in three-dimensional space. The coupling between the two-brains may involve an 'anticipatory affect' based on the conceptualization of anticipation as potentiality, arising either from the macro-quantum potential energy or from the electrostatic effects of residual charges in the quantum and classical subsystems of the two-brains that occurs through partitioning of the potential energy of the combined quantum molecular dynamic system.
Collapse
Affiliation(s)
- Roman R Poznanski
- Faculty of Medicine, Universiti Sultan Zainal Abidin, 21300 Kuala Nerus, Terengganu, Malaysia.
| | - Lleuvelyn A Cacha
- Faculty of Medicine, Universiti Sultan Zainal Abidin, 21300 Kuala Nerus, Terengganu, Malaysia
| | - Ahmad Z A Latif
- Faculty of Medicine, Universiti Sultan Zainal Abidin, 21300 Kuala Nerus, Terengganu, Malaysia
| | - Sheik H Salleh
- Centre for Biomedical Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - Jalil Ali
- Laser Centre, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - Preecha Yupapin
- Computational Optics Research Group, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Jack A Tuszynski
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, T6G 2R7, Canada; Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129, Torino, Italy
| | - Tengku M Ariff
- Faculty of Medicine, Universiti Sultan Zainal Abidin, 21300 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
14
|
Latif WA, Ggha S. Understanding Neurobehavioural Dynamics: A Close-Up View on Psychiatry and Quantum Mechanics. Malays J Med Sci 2019; 26:147-156. [PMID: 30914902 PMCID: PMC6419875 DOI: 10.21315/mjms2019.26.1.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 08/27/2018] [Indexed: 12/01/2022] Open
Abstract
Psychiatric disorders are prevalent throughout the world and causes heavy burden on mankind. Alone in US, billions of dollars are used for treatment purposes annually. Although advances in treatment strategies had witnessed recently, however the efficacy and overall outcome weren’t quite promising. In neurobehavioural sciences, old problems survive through ages and with psychiatric disease, the phenomenon turns intensely complex. While our understanding of brain is mostly based on concepts of particle physics, its functions largely follow the principles of quantum mechanics. The current therapeutics relies on understanding of brain as a material entity that turns to be one of the chief reasons for the unsatisfactory therapeutic outcomes. Collectively, as mankind we are suffering huge loss due to the least effective treatment strategies. Even though we just begin to understand about how brain works, we also do not know much about quantum mechanics and how subatomic particles behave with quantum properties. Though it is apparent that quantum properties like particle and wave function duality coincides with the fundamental aspects of brain and mind duality, thus must share some common basis. Here in this article, an opinion is set that quantum mechanics in association with brain and more specifically psychiatry may take us towards a better understanding about brain, behaviour and how we approach towards treatment.
Collapse
Affiliation(s)
- Wani Ab Latif
- Cytogenetics and Molecular Toxicology Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Science, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| | - Shadab Ggha
- Cytogenetics and Molecular Toxicology Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Science, Aligarh Muslim University, Aligarh, 202002, Uttar Pradesh, India
| |
Collapse
|
15
|
Player TC, Hore PJ. Posner qubits: spin dynamics of entangled Ca 9(PO 4) 6 molecules and their role in neural processing. J R Soc Interface 2018; 15:20180494. [PMID: 30381344 PMCID: PMC6228494 DOI: 10.1098/rsif.2018.0494] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/08/2018] [Indexed: 11/12/2022] Open
Abstract
It has been suggested that 31P nuclear spins in Ca9(PO4)6 molecules could form the basis of a quantum mechanism for neural processing in the brain. A fundamental requirement of this proposal is that spins in different Ca9(PO4)6 molecules can become entangled and remain so for periods (estimated at many hours) that hugely exceed typical 31P spin relaxation times. Here, we consider the coherent and incoherent spin dynamics of Ca9(PO4)6 arising from dipolar and scalar spin-spin interactions and derive an upper bound of 37 min on the entanglement lifetime under idealized physiological conditions. We argue that the spin relaxation in Ca9(PO4)6 is likely to be much faster than this estimate.
Collapse
Affiliation(s)
- Thomas C Player
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| | - P J Hore
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, UK
| |
Collapse
|
16
|
Rourk CJ. Ferritin and neuromelanin "quantum dot" array structures in dopamine neurons of the substantia nigra pars compacta and norepinephrine neurons of the locus coeruleus. Biosystems 2018; 171:48-58. [PMID: 30048795 DOI: 10.1016/j.biosystems.2018.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 07/13/2018] [Accepted: 07/22/2018] [Indexed: 01/28/2023]
Abstract
In this review, the author shows that ferritin has documented quantum dot material properties that have been reported in numerous independent studies, and can enable quantum mechanical electron transport over substantial distances. In addition, neuromelanin is a pi-conjugated polymer, and quantum dot/pi-conjugated polymer combinations have been reported in numerous independent studies to facilitate electron transport for solar photovoltaic and other applications. Both ferritin and neuromelanin are present in large quantities in the dopamine neurons of the substantia nigra pars compactaand the norepinephrine neurons of the locus coeruleus. The unique structure of subgroups of these neurons that have a large number of axon branches and synapses may have evolved to take advantage of this electron transport mechanism, if it is present, such as to coordinate conscious action, or for other purposes. Independent clinical and laboratory studies are also reviewed that corroborate this theory of coordinated action in these neuron groups. Research to validate the theory using charge transport measurements, materials characterization, existing fluorescent probe material and reaction time testing is proposed.
Collapse
|
17
|
Jedlicka P. Revisiting the Quantum Brain Hypothesis: Toward Quantum (Neuro)biology? Front Mol Neurosci 2017; 10:366. [PMID: 29163041 PMCID: PMC5681944 DOI: 10.3389/fnmol.2017.00366] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022] Open
Abstract
The nervous system is a non-linear dynamical complex system with many feedback loops. A conventional wisdom is that in the brain the quantum fluctuations are self-averaging and thus functionally negligible. However, this intuition might be misleading in the case of non-linear complex systems. Because of an extreme sensitivity to initial conditions, in complex systems the microscopic fluctuations may be amplified and thereby affect the system's behavior. In this way quantum dynamics might influence neuronal computations. Accumulating evidence in non-neuronal systems indicates that biological evolution is able to exploit quantum stochasticity. The recent rise of quantum biology as an emerging field at the border between quantum physics and the life sciences suggests that quantum events could play a non-trivial role also in neuronal cells. Direct experimental evidence for this is still missing but future research should address the possibility that quantum events contribute to an extremely high complexity, variability and computational power of neuronal dynamics.
Collapse
|