1
|
Godet A, Serrand Y, Léger B, Moirand R, Bannier E, Val-Laillet D, Coquery N. Functional near-infrared spectroscopy-based neurofeedback training targeting the dorsolateral prefrontal cortex induces changes in cortico-striatal functional connectivity. Sci Rep 2024; 14:20025. [PMID: 39198481 PMCID: PMC11358514 DOI: 10.1038/s41598-024-69863-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Due to its central role in cognitive control, the dorso-lateral prefrontal cortex (dlPFC) has been the target of multiple brain modulation studies. In the context of the present pilot study, the dlPFC was the target of eight repeated neurofeedback (NF) sessions with functional near infrared spectroscopy (fNIRS) to assess the brain responses during NF and with functional and resting state magnetic resonance imaging (task-based fMRI and rsMRI) scanning. Fifteen healthy participants were recruited. Cognitive task fMRI and rsMRI were performed during the 1st and the 8th NF sessions. During NF, our data revealed an increased activity in the dlPFC as well as in brain regions involved in cognitive control and self-regulation learning (pFWE < 0.05). Changes in functional connectivity between the 1st and the 8th session revealed increased connectivity between the posterior cingulate cortex and the dlPFC, and between the posterior cingulate cortex and the dorsal striatum (pFWE < 0.05). Decreased left dlPFC-left insula connectivity was also observed. Behavioural results revealed a significant effect of hunger and motivation on the participant control feeling and a lower control feeling when participants did not identify an effective mental strategy, providing new insights on the effects of behavioural factors that may affect the NF learning.
Collapse
Affiliation(s)
- A Godet
- INRAE, INSERM, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Univ Rennes, Rennes, France
| | - Y Serrand
- INRAE, INSERM, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Univ Rennes, Rennes, France
| | - B Léger
- INRAE, INSERM, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Univ Rennes, Rennes, France
| | - R Moirand
- INRAE, INSERM, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Univ Rennes, Rennes, France
- Unité d'Addictologie, CHU Rennes, Rennes, France
| | - E Bannier
- Inria, CRNS, Inserm, IRISA UMR 6074, Empenn U1228, Univ Rennes, Rennes, France.
- Radiology Department, CHU Rennes, Rennes, France.
| | - D Val-Laillet
- INRAE, INSERM, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Univ Rennes, Rennes, France.
| | - N Coquery
- INRAE, INSERM, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Univ Rennes, Rennes, France
| |
Collapse
|
2
|
Yang X, Zeng Y, Jiao G, Gan X, Linden D, Hernaus D, Zhu C, Li K, Yao D, Yao S, Jiang Y, Becker B. A brief real-time fNIRS-informed neurofeedback training of the prefrontal cortex changes brain activity and connectivity during subsequent working memory challenge. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110968. [PMID: 38354898 DOI: 10.1016/j.pnpbp.2024.110968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/06/2023] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Working memory (WM) represents a building-block of higher cognitive functions and a wide range of mental disorders are associated with WM impairments. Initial studies have shown that several sessions of functional near-infrared spectroscopy (fNIRS) informed real-time neurofeedback (NF) allow healthy individuals to volitionally increase activity in the dorsolateral prefrontal cortex (DLPFC), a region critically involved in WM. For the translation to therapeutic or neuroenhancement applications, however, it is critical to assess whether fNIRS-NF success transfers into neural and behavioral WM enhancement in the absence of feedback. We therefore combined single-session fNIRS-NF of the left DLPFC with a randomized sham-controlled design (N = 62 participants) and a subsequent WM challenge with concomitant functional MRI. Over four runs of fNIRS-NF, the left DLPFC NF training group demonstrated enhanced neural activity in this region, reflecting successful acquisition of neural self-regulation. During the subsequent WM challenge, we observed no evidence for performance differences between the training and the sham group. Importantly, however, examination of the fMRI data revealed that - compared to the sham group - the training group exhibited significantly increased regional activity in the bilateral DLPFC and decreased left DLPFC - left anterior insula functional connectivity during the WM challenge. Exploratory analyses revealed a negative association between DLPFC activity and WM reaction times in the NF group. Together, these findings indicate that healthy individuals can learn to volitionally increase left DLPFC activity in a single training session and that the training success translates into WM-related neural activation and connectivity changes in the absence of feedback. This renders fNIRS-NF as a promising and scalable WM intervention approach that could be applied to various mental disorders.
Collapse
Affiliation(s)
- Xi Yang
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital; University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Yixu Zeng
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital; University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Guojuan Jiao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital; University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianyang Gan
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital; University of Electronic Science and Technology of China, Chengdu, China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - David Linden
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Dennis Hernaus
- Department of Psychiatry and Neuropsychology, Maastricht University, Maastricht, the Netherlands
| | - Chaozhe Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Keshuang Li
- School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Dezhong Yao
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Shuxia Yao
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Yihan Jiang
- Center for the Cognitive Science of Language, Beijing Language and Culture University, Beijing, China.
| | - Benjamin Becker
- The University of Hong Kong, State Key Laboratory of Brain and Cognitive Sciences, Hong Kong, China; The University of Hong Kong, Department of Psychology, Hong Kong, China.
| |
Collapse
|
3
|
Takahashi S, Takahashi D, Kuroiwa Y, Sakurai N, Kodama N. Construction and evaluation of a neurofeedback system using finger tapping and near-infrared spectroscopy. FRONTIERS IN NEUROIMAGING 2024; 3:1361513. [PMID: 38726042 PMCID: PMC11079114 DOI: 10.3389/fnimg.2024.1361513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024]
Abstract
Introduction Neurofeedback using near-infrared spectroscopy (NIRS) has been used in patients with stroke and other patients, but few studies have included older people or patients with cognitive impairment. Methods We constructed a NIRS-based neurofeedback system and used finger tapping to investigate whether neurofeedback can be implemented in older adults while finger tapping and whether brain activity improves in older adults and healthy participants. Our simple neurofeedback system was constructed using a portable wearable optical topography (WOT-HS) device. Brain activity was evaluated in 10 older and 31 healthy young individuals by measuring oxygenated hemoglobin concentration during finger tapping and neurofeedback implementation. Results During neurofeedback, the concentration of oxygenated hemoglobin increased in the prefrontal regions in both the young and older participants. Discussion The results of this study demonstrate the usefulness of neurofeedback using simple NIRS devices for older adults and its potential to mitigate cognitive decline.
Collapse
Affiliation(s)
- Shingo Takahashi
- Department of Healthcare Informatics, Faculty of Health and Welfare, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Daishi Takahashi
- Department of Healthcare Informatics, Faculty of Health and Welfare, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Yuki Kuroiwa
- Department of Healthcare Informatics, Faculty of Health and Welfare, Takasaki University of Health and Welfare, Takasaki, Japan
| | - Noriko Sakurai
- Department of Radiological Technology, Faculty of Medical Technology, Niigata University of Health and Welfare, Niigata, Japan
| | - Naoki Kodama
- Department of Radiological Technology, Faculty of Medical Technology, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
4
|
Wimmer J, Rösch SA, Schmidt R, Hilbert A. Neurofeedback strategies in binge-eating disorder as predictors of EEG-neurofeedback regulation success. Front Hum Neurosci 2023; 17:1234085. [PMID: 38021247 PMCID: PMC10645064 DOI: 10.3389/fnhum.2023.1234085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Treatment options such as neurofeedback (NF) that directly target the link between aberrant brain activity patterns and dysfunctional eating behaviors in binge-eating disorder (BED) are emerging. However, virtually nothing is known about mental strategies used to modulate food-specific brain activity and the associated brain-based or subjective success of specific strategies. This study firstly investigated the use of mental strategies in response to individually appetitive food cues in adults with BED and overweight or obesity based on a randomized-controlled trial providing electroencephalography (EEG)- or real-time functional near-infrared spectroscopy (rtfNIRS)-NF to BED. Methods Strategy reports written by participants were classified with qualitative content analysis. Additionally, the mental strategies employed by the N = 23 patients who received EEG-NF targeting the reduction of fronto-central high beta activity were analyzed quantitatively through their link with subjective and EEG-NF regulation success. Results The following eight categories, ordered by frequency in descending order, were found: "Behavior," "Imagination," "Emotion," "Distraction," "Thought," "Concentration," "Self-Talk" and "No Strategy." Linear mixed models revealed "Imagination," "Behavior," and "Thought" strategies as positive predictors of EEG-NF regulation success (defined as high beta activity during regulation beneath the baseline), and "Concentration" as a negative predictor of subjective (i.e., self-reported) NF regulation success. Discussion In conclusion, our study offers a classification system that may be used in future studies assessing strategy use for regulating food-related responses in patients with BED and associated overweight/obesity, providing valuable information on potential benefits of specific strategies and transferability to situations outside the NF treatment.
Collapse
Affiliation(s)
- Jytte Wimmer
- Integrated Research and Treatment Center Adiposity Diseases, Behavioral Medicine Research Unit, Leipzig University Medical Center, Leipzig, Germany
| | - Sarah Alica Rösch
- Integrated Research and Treatment Center Adiposity Diseases, Behavioral Medicine Research Unit, Leipzig University Medical Center, Leipzig, Germany
- International Max Planck Research School NeuroCom, Leipzig, Germany
| | - Ricarda Schmidt
- Integrated Research and Treatment Center Adiposity Diseases, Behavioral Medicine Research Unit, Leipzig University Medical Center, Leipzig, Germany
| | - Anja Hilbert
- Integrated Research and Treatment Center Adiposity Diseases, Behavioral Medicine Research Unit, Leipzig University Medical Center, Leipzig, Germany
| |
Collapse
|
5
|
Godet A, Serrand Y, Fortier A, Léger B, Bannier E, Val-Laillet D, Coquery N. Subjective feeling of control during fNIRS-based neurofeedback targeting the DL-PFC is related to neural activation determined with short-channel correction. PLoS One 2023; 18:e0290005. [PMID: 37585456 PMCID: PMC10431651 DOI: 10.1371/journal.pone.0290005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
Neurofeedback (NF) training is a promising preventive and therapeutic approach for brain and behavioral impairments, the dorsolateral prefrontal cortex (DL-PFC) being a relevant region of interest. Functional near-infrared spectroscopy (NIRS) has recently been applied in NF training. However, this approach is highly sensitive to extra-cerebral vascularization, which could bias measurements of cortical activity. Here, we examined the feasibility of a NF training targeting the DL-PFC and its specificity by assessing the impact of physiological confounds on NF success via short-channel offline correction under different signal filtering conditions. We also explored whether the individual mental strategies affect the NF success. Thirty volunteers participated in a single 15-trial NF session in which they had to increase the oxy-hemoglobin (HbO2) level of their bilateral DL-PFC. We found that 0.01-0.09 Hz band-pass filtering was more suited than the 0.01-0.2 Hz band-pass filter to highlight brain activation restricted to the NF channels in the DL-PFC. Retaining the 10 out of 15 best trials, we found that 18 participants (60%) managed to control their DL-PFC. This number dropped to 13 (43%) with short-channel correction. Half of the participants reported a positive subjective feeling of control, and the "cheering" strategy appeared to be more effective in men (p<0.05). Our results showed successful DL-PFC fNIRS-NF in a single session and highlighted the value of accounting for extra cortical signals, which can profoundly affect the success and specificity of NF training.
Collapse
Affiliation(s)
- Ambre Godet
- INRAE, INSERM, Univ Rennes, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, France
| | - Yann Serrand
- INRAE, INSERM, Univ Rennes, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, France
| | - Alexandra Fortier
- INRAE, INSERM, Univ Rennes, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, France
| | - Brieuc Léger
- INRAE, INSERM, Univ Rennes, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, France
| | - Elise Bannier
- Inria, CRNS, Inserm, IRISA UMR 6074, Empenn U1228, Univ Rennes, Rennes, France
- CHU Rennes, Radiology Department, Rennes, France
| | - David Val-Laillet
- INRAE, INSERM, Univ Rennes, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, France
| | - Nicolas Coquery
- INRAE, INSERM, Univ Rennes, CHU Rennes, Nutrition Metabolisms and Cancer, NuMeCan, Rennes, France
| |
Collapse
|
6
|
Tetsuka M, Sakurada T, Matsumoto M, Nakajima T, Morita M, Fujimoto S, Kawai K. Higher prefrontal activity based on short-term neurofeedback training can prevent working memory decline in acute stroke. Front Syst Neurosci 2023; 17:1130272. [PMID: 37388942 PMCID: PMC10300420 DOI: 10.3389/fnsys.2023.1130272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/29/2023] [Indexed: 07/01/2023] Open
Abstract
This study aimed to clarify whether short-term neurofeedback training during the acute stroke phase led to prefrontal activity self-regulation, providing positive efficacy to working memory. A total of 30 patients with acute stroke performed functional near-infrared spectroscopy-based neurofeedback training for a day to increase their prefrontal activity. A randomized, Sham-controlled, double-blind study protocol was used comparing working memory ability before and after neurofeedback training. Working memory was evaluated using a target-searching task requiring spatial information retention. A decline in spatial working memory performance post-intervention was prevented in patients who displayed a higher task-related right prefrontal activity during neurofeedback training compared with the baseline. Neurofeedback training efficacy was not associated with the patient's clinical background such as Fugl-Meyer Assessment score and time since stroke. These findings demonstrated that even short-term neurofeedback training can strengthen prefrontal activity and help maintain cognitive ability in acute stroke patients, at least immediately after training. However, further studies investigating the influence of individual patient clinical background, especially cognitive impairment, on neurofeedback training is needed. Current findings provide an encouraging option for clinicians to design neurorehabilitation programs, including neurofeedback protocols, for acute stroke patients.
Collapse
Affiliation(s)
- Masayuki Tetsuka
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| | - Takeshi Sakurada
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
- Faculty of Science and Technology, Seikei University, Tokyo, Japan
- Functional Brain Science Laboratory, Center for Development of Advanced Medical Technology, Jichi Medical University, Tochigi, Japan
| | - Mayuko Matsumoto
- Functional Brain Science Laboratory, Center for Development of Advanced Medical Technology, Jichi Medical University, Tochigi, Japan
- College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama, Japan
| | - Takeshi Nakajima
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
- Rehabilitation Center, Jichi Medical University Hospital, Tochigi, Japan
| | - Mitsuya Morita
- Rehabilitation Center, Jichi Medical University Hospital, Tochigi, Japan
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Shigeru Fujimoto
- Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, Japan
| | - Kensuke Kawai
- Department of Neurosurgery, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
7
|
Li K, Yang J, Becker B, Li X. Functional near-infrared spectroscopy neurofeedback of dorsolateral prefrontal cortex enhances human spatial working memory. NEUROPHOTONICS 2023; 10:025011. [PMID: 37275655 PMCID: PMC10234406 DOI: 10.1117/1.nph.10.2.025011] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/06/2023] [Accepted: 05/11/2023] [Indexed: 06/07/2023]
Abstract
Significance Spatial working memory (SWM) is essential for daily life and deficits in this domain represent a common impairment across aging and several mental disorders. Impaired SWM has been closely linked to dysregulations in dorsolateral prefrontal cortex (DLPFC) activation. Aim The present study evaluates the feasibility and maintenance of functional near-infrared spectroscopy neurofeedback (fNIRS-NF) training of the DLPFC to enhance SWM in healthy individuals using a real-time fNIRS-NF platform developed by the authors. Approach We used a randomized sham-controlled between-subject fNIRS-NF design with 60 healthy subjects as a sample. Training-induced changes in the DLPFC, SWM, and attention performance served as primary outcomes. Results Feedback from the target channel significantly increased regional-specific DLPFC activation over the fNIRS-NF training compared to sham NF. A significant group difference in NF-induced frontoparietal connectivity was observed. Compared to the control group, the experimental group demonstrated significantly improved SWM and attention performance that were maintained for 1 week. Furthermore, a mediation analysis demonstrated that increased DLPFC activation mediated the effects of fNIRS-NF treatment on better SWM performance. Conclusions The present results demonstrated that successful self-regulation of DLPFC activation may represent a long-lasting intervention to improve human SWM and has the potential for further applications.
Collapse
Affiliation(s)
- Keshuang Li
- East China Normal University, School of Psychology and Cognitive Science, Affiliated Mental Health Center, Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Shanghai, China
| | - Jinhao Yang
- East China Normal University, School of Psychology and Cognitive Science, Affiliated Mental Health Center, Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Shanghai, China
| | - Benjamin Becker
- University of Electronic Science and Technology of China, The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Chengdu, China
| | - Xianchun Li
- East China Normal University, School of Psychology and Cognitive Science, Affiliated Mental Health Center, Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, Shanghai, China
| |
Collapse
|
8
|
Cognitive Training with Neurofeedback Using fNIRS Improves Cognitive Function in Older Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19095531. [PMID: 35564926 PMCID: PMC9104766 DOI: 10.3390/ijerph19095531] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/10/2022]
Abstract
This study examined the effects of a 4-week cognitive training program with neurofeedback (CT-NF) among 86 healthy adults (M = 66.34 years, range 54-84) randomized to either a treatment (app-based ABC games) or control (Tetris) group. Participants completed seven cognitive assessments, pre- and post-intervention, and measured their cortical brain activity using a XB-01 functional near-infrared spectroscopy (fNIRS) brain sensor, while engaging in CT-NF. The treatment (ABC) group showed significant (pre/post-intervention) improvements in memory (MEM), verbal memory (VBM), and composite cognitive function, while the control group did not. However, both groups showed significant improvements in processing speed (PS) and executive function (EF). In line with other studies, we found that strength of cortical brain activity (measured during CT-NF) was associated with both cognitive (pre and post) and game performance. In sum, our findings suggest that CT-NF and specifically ABC exercises, confer improved cognition in the domains of MEM, VBM, PS, and EF.
Collapse
|
9
|
Hou X, Xiao X, Gong Y, Li Z, Chen A, Zhu C. Functional Near-Infrared Spectroscopy Neurofeedback Enhances Human Spatial Memory. Front Hum Neurosci 2021; 15:681193. [PMID: 34658812 PMCID: PMC8511425 DOI: 10.3389/fnhum.2021.681193] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/09/2021] [Indexed: 11/13/2022] Open
Abstract
Spatial memory is an important cognitive function for human daily life and may present dysfunction or decline due to aging or clinical diseases. Functional near-infrared spectroscopy neurofeedback (fNIRS-NFB) is a promising neuromodulation technique with several special advantages that can be used to improve human cognitive functions by manipulating the neural activity of targeted brain regions or networks. In this pilot study, we intended to test the feasibility of fNIRS-NFB to enhance human spatial memory ability. The lateral parietal cortex, an accessible cortical region in the posterior medial hippocampal-cortical network that plays a crucial role in human spatial memory processing, was selected as the potential feedback target. A placebo-controlled fNIRS-NFB experiment was conducted to instruct individuals to regulate the neural activity in this region or an irrelevant control region. Experimental results showed that individuals learned to up-regulate the neural activity in the region of interest successfully. A significant increase in spatial memory performance was found after 8-session neurofeedback training in the experimental group but not in the control group. Furthermore, neurofeedback-induced neural activation increase correlated with spatial memory improvement. In summary, this study preliminarily demonstrated the feasibility of fNIRS-NFB to improve human spatial memory and has important implications for further applications.
Collapse
Affiliation(s)
- Xin Hou
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,School of Education, Chongqing Normal University, Chongqing, China
| | - Xiang Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yilong Gong
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Zheng Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Center for Cognition and Neuroergonomics, Beijing Normal University at Zhuhai, Zhuhai, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Antao Chen
- Key Laboratory of Cognition and Personality of the Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Chaozhe Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
10
|
Maier MJ, Schiel JE, Rosenbaum D, Hautzinger M, Fallgatter AJ, Ehlis AC. To Regulate or Not to Regulate: Emotion Regulation in Participants With Low and High Impulsivity. Front Behav Neurosci 2021; 15:645052. [PMID: 34393732 PMCID: PMC8363082 DOI: 10.3389/fnbeh.2021.645052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 07/06/2021] [Indexed: 11/13/2022] Open
Abstract
Successful emotion regulation plays a key role in psychological health and well-being. This study examines (1) whether cognitive control and corresponding neural connectivity are associated with emotion regulation and (2) to what extent external instructions can improve emotion regulation in individuals with low vs. high cognitive control capacity. For this, emotion regulation capabilities and the impact of emotion regulation on a subsequent emotional Stroop task was tested in participants with low (N = 25) vs. high impulsivity (N = 32). The classification according to impulsivity is based upon the stable correlation between high impulsivity and reduced cognitive control capacity. A negative emotion inducing movie scene was presented with the instruction to either suppress or allow all emotions that arose. This was followed by an emotional Stroop task. Electromyography (EMG) over the corrugator supercilii was used to assess the effects of emotion regulation. Neurophysiological mechanisms were measured using functional near-infrared spectroscopy over frontal brain areas. While EMG activation was low in the low-impulsive group independent of instruction, high-impulsive participants showed increased EMG activity when they were not explicitly instructed to suppress arising emotions. Given the same extent of functional connectivity within frontal lobe networks, the low-impulsive participants controlled their emotions better (less EMG activation) than the high-impulsive participants. In the Stroop task, the low-impulsive subjects performed significantly better. The emotion regulation condition had no significant effect on the results. We conclude that the cognitive control network is closely associated with emotion regulation capabilities. Individuals with high cognitive control show implicit capabilities for emotion regulation. Individuals with low cognitive control require external instructions (= explicit emotion regulation) to achieve similarly low expressions of emotionality. Implications for clinical applications aiming to improve emotion regulation are discussed.
Collapse
Affiliation(s)
- Moritz Julian Maier
- Center for Responsible Research and Innovation, Fraunhofer Institute for Industrial Engineering, Berlin, Germany
| | - Julian Elias Schiel
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, Medical Center – University of Freiburg, Freiburg, Germany
| | - David Rosenbaum
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany
| | - Martin Hautzinger
- Department of Psychology, Eberhard Karls University, Tübingen, Germany
| | - Andreas Jochen Fallgatter
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany
| | - Ann-Christine Ehlis
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health (TüCMH), University of Tübingen, Tübingen, Germany
| |
Collapse
|
11
|
Tang Y, Chen Z, Jiang Y, Zhu C, Chen A. From reversal to normal: Robust improvement in conflict adaptation through real-time functional near infrared spectroscopy-based neurofeedback training. Neuropsychologia 2021; 157:107866. [PMID: 33932482 DOI: 10.1016/j.neuropsychologia.2021.107866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/12/2021] [Accepted: 04/18/2021] [Indexed: 12/01/2022]
Abstract
Conflict adaptation refers to the improved conflict control induced after experiencing conflict and is a prominent index of adaptive cognitive control. Reversal of conflict adaptation may be maladaptive and predictive of certain mental disorders. Here, we employed real-time functional near infrared spectroscopy-based neurofeedback training, with the left dorsolateral prefrontal cortex as the target brain area, to investigate whether reversal of conflict adaptation during a word-color Stroop task could be recovered to be normal. Healthy human individuals with reversal pattern of conflict adaptation in the pretest were randomly assigned into the experimental or control groups. Distributed training for 80 min led to greater improvements in the experimental group who received real neurofeedback compared to those in the control group who received sham neurofeedback. These results indicated causal evidence for understanding the generation of conflict adaptation and heighten the prospects of clinical application of neurofeedback training.
Collapse
Affiliation(s)
- Yancheng Tang
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Zijun Chen
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, 400715, China
| | - Yihan Jiang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Chaozhe Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Antao Chen
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
12
|
Yu L, Long Q, Tang Y, Yin S, Chen Z, Zhu C, Chen A. Improving Emotion Regulation Through Real-Time Neurofeedback Training on the Right Dorsolateral Prefrontal Cortex: Evidence From Behavioral and Brain Network Analyses. Front Hum Neurosci 2021; 15:620342. [PMID: 33815078 PMCID: PMC8010650 DOI: 10.3389/fnhum.2021.620342] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/24/2021] [Indexed: 11/15/2022] Open
Abstract
We investigated if emotion regulation can be improved through self-regulation training on non-emotional brain regions, as well as how to change the brain networks implicated in this process. During the training period, the participants were instructed to up-regulate their right dorsolateral prefrontal cortex (rDLPFC) activity according to real-time functional near-infrared spectroscopy (fNIRS) neurofeedback signals, and there was no emotional element. The results showed that the training significantly increased emotion regulation, resting-state functional connectivity (rsFC) within the emotion regulation network (ERN) and frontoparietal network (FPN), and rsFC between the ERN and amygdala; however, training did not influence the rsFC between the FPN and the amygdala. However, self-regulation training on rDLPFC significantly improved emotion regulation and generally increased the rsFCs within the networks; the rsFC between the ERN and amygdala was also selectively increased. The present study also described a safe approach that may improve emotion regulation through self-regulation training on non-emotional brain regions.
Collapse
Affiliation(s)
- Linlin Yu
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Quanshan Long
- Faculty of Education, Yunnan Normal University, Kunming, China
| | - Yancheng Tang
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Shouhang Yin
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Zijun Chen
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Chaozhe Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, China
| | - Antao Chen
- Key Laboratory of Cognition and Personality of Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
13
|
Charles F, De Castro Martins C, Cavazza M. Prefrontal Asymmetry BCI Neurofeedback Datasets. Front Neurosci 2020; 14:601402. [PMID: 33390885 PMCID: PMC7775574 DOI: 10.3389/fnins.2020.601402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/25/2020] [Indexed: 12/14/2022] Open
Abstract
Prefrontal cortex (PFC) asymmetry is an important marker in affective neuroscience and has attracted significant interest, having been associated with studies of motivation, eating behavior, empathy, risk propensity, and clinical depression. The data presented in this paper are the result of three different experiments using PFC asymmetry neurofeedback (NF) as a Brain-Computer Interface (BCI) paradigm, rather than a therapeutic mechanism aiming at long-term effects, using functional near-infrared spectroscopy (fNIRS) which is known to be particularly well-suited to the study of PFC asymmetry and is less sensitive to artifacts. From an experimental perspective the BCI context brings more emphasis on individual subjects' baselines, successful and sustained activation during epochs, and minimal training. The subject pool is also drawn from the general population, with less bias toward specific behavioral patterns, and no inclusion of any patient data. We accompany our datasets with a detailed description of data formats, experiment and protocol designs, as well as analysis of the individualized metrics for definitions of success scores based on baseline thresholds as well as reference tasks. The work presented in this paper is the result of several experiments in the domain of BCI where participants are interacting with continuous visual feedback following a real-time NF paradigm, arising from our long-standing research in the field of affective computing. We offer the community access to our fNIRS datasets from these experiments. We specifically provide data drawn from our empirical studies in the field of affective interactions with computer-generated narratives as well as interfacing with algorithms, such as heuristic search, which all provide a mechanism to improve the ability of the participants to engage in active BCI due to their realistic visual feedback. Beyond providing details of the methodologies used where participants received real-time NF of left-asymmetric increase in activation in their dorsolateral prefrontal cortex (DLPFC), we re-establish the need for carefully designing protocols to ensure the benefits of NF paradigm in BCI are enhanced by the ability of the real-time visual feedback to adapt to the individual responses of the participants. Individualized feedback is paramount to the success of NF in BCIs.
Collapse
Affiliation(s)
- Fred Charles
- Faculty of Science and Technology, Bournemouth University, Poole, United Kingdom
| | - Caio De Castro Martins
- School of Computing and Mathematical Sciences, University of Greenwich, London, United Kingdom
| | - Marc Cavazza
- School of Computing and Mathematical Sciences, University of Greenwich, London, United Kingdom
| |
Collapse
|
14
|
Lim LG, Ung WC, Chan YL, Lu CK, Sutoko S, Funane T, Kiguchi M, Tang TB. A Unified Analytical Framework With Multiple fNIRS Features for Mental Workload Assessment in the Prefrontal Cortex. IEEE Trans Neural Syst Rehabil Eng 2020; 28:2367-2376. [PMID: 32986555 DOI: 10.1109/tnsre.2020.3026991] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Knowing the actual level of mental workload is important to ensure the efficacy of brain-computer interface (BCI) based cognitive training. Extracting signals from limited area of a brain region might not reveal the actual information. In this study, a functional near-infrared spectroscopy (fNIRS) device equipped with multi-channel and multi-distance measurement capability was employed for the development of an analytical framework to assess mental workload in the prefrontal cortex (PFC). In addition to the conventional features, e.g. hemodynamic slope, we introduced a new feature - deep contribution ratio which is the proportion of cerebral hemodynamics to the fNIRS signals. Multiple sets of features were examined by a simple logical operator to suppress the false detection rate in identifying the activated channels. Using the number of activated channels as input to a linear support vector machine (SVM), the performance of the proposed analytical framework was assessed in classifying three levels of mental workload. The best set of features involves the combination of hemodynamic slope and deep contribution ratio, where the identified number of activated channels returned an average accuracy of 80.6% in predicting mental workload, compared to a single conventional feature (accuracy: 59.8%). This suggests the feasibility of the proposed analytical framework with multiple features as a means towards a more accurate assessment of mental workload in fNIRS-based BCI applications.
Collapse
|
15
|
Kohl SH, Mehler DMA, Lührs M, Thibault RT, Konrad K, Sorger B. The Potential of Functional Near-Infrared Spectroscopy-Based Neurofeedback-A Systematic Review and Recommendations for Best Practice. Front Neurosci 2020; 14:594. [PMID: 32848528 PMCID: PMC7396619 DOI: 10.3389/fnins.2020.00594] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/14/2020] [Indexed: 01/04/2023] Open
Abstract
Background: The effects of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI)-neurofeedback on brain activation and behaviors have been studied extensively in the past. More recently, researchers have begun to investigate the effects of functional near-infrared spectroscopy-based neurofeedback (fNIRS-neurofeedback). FNIRS is a functional neuroimaging technique based on brain hemodynamics, which is easy to use, portable, inexpensive, and has reduced sensitivity to movement artifacts. Method: We provide the first systematic review and database of fNIRS-neurofeedback studies, synthesizing findings from 22 peer-reviewed studies (including a total of N = 441 participants; 337 healthy, 104 patients). We (1) give a comprehensive overview of how fNIRS-neurofeedback training protocols were implemented, (2) review the online signal-processing methods used, (3) evaluate the quality of studies using pre-set methodological and reporting quality criteria and also present statistical sensitivity/power analyses, (4) investigate the effectiveness of fNIRS-neurofeedback in modulating brain activation, and (5) review its effectiveness in changing behavior in healthy and pathological populations. Results and discussion: (1–2) Published studies are heterogeneous (e.g., neurofeedback targets, investigated populations, applied training protocols, and methods). (3) Large randomized controlled trials are still lacking. In view of the novelty of the field, the quality of the published studies is moderate. We identified room for improvement in reporting important information and statistical power to detect realistic effects. (4) Several studies show that people can regulate hemodynamic signals from cortical brain regions with fNIRS-neurofeedback and (5) these studies indicate the feasibility of modulating motor control and prefrontal brain functioning in healthy participants and ameliorating symptoms in clinical populations (stroke, ADHD, autism, and social anxiety). However, valid conclusions about specificity or potential clinical utility are premature. Conclusion: Due to the advantages of practicability and relatively low cost, fNIRS-neurofeedback might provide a suitable and powerful alternative to EEG and fMRI neurofeedback and has great potential for clinical translation of neurofeedback. Together with more rigorous research and reporting practices, further methodological improvements may lead to a more solid understanding of fNIRS-neurofeedback. Future research will benefit from exploiting the advantages of fNIRS, which offers unique opportunities for neurofeedback research.
Collapse
Affiliation(s)
- Simon H Kohl
- JARA-Institute Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany.,Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - David M A Mehler
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Michael Lührs
- Brain Innovation B.V., Research Department, Maastricht, Netherlands.,Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Robert T Thibault
- School of Psychological Science, University of Bristol, Bristol, United Kingdom.,MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Kerstin Konrad
- JARA-Institute Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany.,Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Bettina Sorger
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
16
|
Weber LA, Ethofer T, Ehlis AC. Predictors of neurofeedback training outcome: A systematic review. NEUROIMAGE-CLINICAL 2020; 27:102301. [PMID: 32604020 PMCID: PMC7327249 DOI: 10.1016/j.nicl.2020.102301] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/30/2020] [Accepted: 05/26/2020] [Indexed: 11/21/2022]
Abstract
Best available evidence exists for neurophysiological baseline parameters. No substantial effect of age and intelligence on training outcome in most cases. Neurofeedback learning success predicts treatment outcome. To date, a reliable selection of participants based on predictors is not possible.
Neurofeedback (NF), a training tool aimed at enhancing neural self-regulation, has been suggested as a complementary treatment option for neuropsychiatric disorders. Despite its potential as a neurobiological intervention directly targeting neural alterations underlying clinical symptoms, the efficacy of NF for the treatment of mental disorders has been questioned recently by negative findings obtained in randomized controlled trials (e.g., Cortese et al., 2016). A possible reason for insufficient group effects of NF trainings vs. placebo could be related to the high rate of participants who fail to self-regulate brain activity by NF (“non-learners”). Another reason could be the application of standardized NF protocols not adjusted to individual differences in pathophysiology. Against this background, we have summarized information on factors determining training and treatment success to provide a basis for the development of individualized training protocols and/or clinical indications. The present systematic review included 25 reports investigating predictors for the outcome of NF trainings in healthy individuals as well as patients affected by mental disorders or epilepsy. We selected these studies based on searches in EBSCOhost using combinations of the keywords “neurofeedback” and “predictor/predictors”. As “NF training” we defined all NF applications with at least two sessions. The best available evidence exists for neurophysiological baseline parameters. Among them, the target parameters of the respective training seem to be of particular importance. However, particularities of the different experimental designs and outcome criteria restrict the interpretability of some of the information we extracted. Therefore, further research is needed to gain more profound knowledge about predictors of NF outcome.
Collapse
Affiliation(s)
- Lydia Anna Weber
- Department of Psychiatry and Psychotherapy, University Hospital Tuebingen, Calwerstr.14, D-72076 Tuebingen, Germany.
| | - Thomas Ethofer
- Department of Psychiatry and Psychotherapy, University Hospital Tuebingen, Calwerstr.14, D-72076 Tuebingen, Germany; Department for Biomedical Resonance, University Hospital Tuebingen, Otfried-Müller-Str.51, D-72076 Tuebingen, Germany.
| | - Ann-Christine Ehlis
- Department of Psychiatry and Psychotherapy, University Hospital Tuebingen, Calwerstr.14, D-72076 Tuebingen, Germany; LEAD Graduate School & Research Network, University of Tuebingen, Walter-Simon-Straße 12, D-72074 Tuebingen, Germany.
| |
Collapse
|
17
|
Fede SJ, Dean SF, Manuweera T, Momenan R. A Guide to Literature Informed Decisions in the Design of Real Time fMRI Neurofeedback Studies: A Systematic Review. Front Hum Neurosci 2020; 14:60. [PMID: 32161529 PMCID: PMC7052377 DOI: 10.3389/fnhum.2020.00060] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 02/07/2020] [Indexed: 11/26/2022] Open
Abstract
Background: Although biofeedback using electrophysiology has been explored extensively, the approach of using neurofeedback corresponding to hemodynamic response is a relatively young field. Real time functional magnetic resonance imaging-based neurofeedback (rt-fMRI-NF) uses sensory feedback to operantly reinforce patterns of neural response. It can be used, for example, to alter visual perception, increase brain connectivity, and reduce depression symptoms. Within recent years, interest in rt-fMRI-NF in both research and clinical contexts has expanded considerably. As such, building a consensus regarding best practices is of great value. Objective: This systematic review is designed to describe and evaluate the variations in methodology used in previous rt-fMRI-NF studies to provide recommendations for rt-fMRI-NF study designs that are mostly likely to elicit reproducible and consistent effects of neurofeedback. Methods: We conducted a database search for fMRI neurofeedback papers published prior to September 26th, 2019. Of 558 studies identified, 146 met criteria for inclusion. The following information was collected from each study: sample size and type, task used, neurofeedback calculation, regulation procedure, feedback, whether feedback was explicitly related to changing brain activity, feedback timing, control group for active neurofeedback, how many runs and sessions of neurofeedback, if a follow-up was conducted, and the results of neurofeedback training. Results: rt-fMRI-NF is typically upregulation practice based on hemodynamic response from a specific region of the brain presented using a continually updating thermometer display. Most rt-fMRI-NF studies are conducted in healthy samples and half evaluate its effect on immediate changes in behavior or affect. The most popular control group method is to provide sham signal from another region; however, many studies do not compare use a comparison group. Conclusions: We make several suggestions for designs of future rt-fMRI-NF studies. Researchers should use feedback calculation methods that consider neural response across regions (i.e., SVM or connectivity), which should be conveyed as intermittent, auditory feedback. Participants should be given explicit instructions and should be assessed on individual differences. Future rt-fMRI-NF studies should use clinical samples; effectiveness of rt-fMRI-NF should be evaluated on clinical/behavioral outcomes at follow-up time points in comparison to both a sham and no feedback control group.
Collapse
Affiliation(s)
| | | | | | - Reza Momenan
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
18
|
Shultz SJ, Schmitz RJ, Cameron KL, Ford KR, Grooms DR, Lepley LK, Myer GD, Pietrosimone B. Anterior Cruciate Ligament Research Retreat VIII Summary Statement: An Update on Injury Risk Identification and Prevention Across the Anterior Cruciate Ligament Injury Continuum, March 14-16, 2019, Greensboro, NC. J Athl Train 2019; 54:970-984. [PMID: 31461312 PMCID: PMC6795093 DOI: 10.4085/1062-6050-54.084] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sandra J. Shultz
- Applied Neuromechanics Research Laboratory, University of North Carolina at Greensboro
| | - Randy J. Schmitz
- Applied Neuromechanics Research Laboratory, University of North Carolina at Greensboro
| | - Kenneth L. Cameron
- John A. Feagin Jr Sports Medicine Fellowship, Keller Army Hospital, United States Military Academy, West Point, NY
| | - Kevin R. Ford
- Human Biomechanics and Physiology Laboratory, Department of Physical Therapy, High Point University, NC
| | - Dustin R. Grooms
- Ohio Musculoskeletal & Neurological Institute and Division of Athletic Training, School of Applied Health Sciences and Wellness, College of Health Sciences and Professions, Ohio University, Athens
| | | | - Gregory D. Myer
- The SPORT Center, Division of Sports Medicine, and Departments of Pediatrics and Orthopaedic Surgery, Cincinnati Children's Hospital Medical Center, College of Medicine, University of Cincinnati, OH
| | - Brian Pietrosimone
- MOTION Science Institute, Department of Exercise and Sport Science, University of North Carolina at Chapel Hill
| |
Collapse
|
19
|
Neurofeedback bei adulter Aufmerksamkeitsdefizit‑/Hyperaktivitätsstörung. PSYCHOTHERAPEUT 2019. [DOI: 10.1007/s00278-019-0350-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Storchak H, Hudak J, Fallgatter AJ, Ehlis AC. Entwicklung eines Neurofeedback-Protokolls zur Reduktion verbal akustischer Halluzinationen. PSYCHOTHERAPEUT 2019. [DOI: 10.1007/s00278-019-0353-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
21
|
Kutscheidt K, Dresler T, Hudak J, Barth B, Blume F, Ethofer T, Fallgatter AJ, Ehlis AC. Interoceptive awareness in patients with attention-deficit/hyperactivity disorder (ADHD). ACTA ACUST UNITED AC 2019; 11:395-401. [DOI: 10.1007/s12402-019-00299-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/18/2019] [Indexed: 10/27/2022]
|
22
|
Sorger B, Scharnowski F, Linden DEJ, Hampson M, Young KD. Control freaks: Towards optimal selection of control conditions for fMRI neurofeedback studies. Neuroimage 2019; 186:256-265. [PMID: 30423429 PMCID: PMC6338498 DOI: 10.1016/j.neuroimage.2018.11.004] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022] Open
Abstract
fMRI Neurofeedback research employs many different control conditions. Currently, there is no consensus as to which control condition is best, and the answer depends on what aspects of the neurofeedback-training design one is trying to control for. These aspects can range from determining whether participants can learn to control brain activity via neurofeedback to determining whether there are clinically significant effects of the neurofeedback intervention. Lack of consensus over criteria for control conditions has hampered the design and interpretation of studies employing neurofeedback protocols. This paper presents an overview of the most commonly employed control conditions currently used in neurofeedback studies and discusses their advantages and disadvantages. Control conditions covered include no control, treatment-as-usual, bidirectional-regulation control, feedback of an alternative brain signal, sham feedback, and mental-rehearsal control. We conclude that the selection of the control condition(s) should be determined by the specific research goal of the study and best procedures that effectively control for relevant confounding factors.
Collapse
Affiliation(s)
- Bettina Sorger
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Frank Scharnowski
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zürich, Zürich, Switzerland; Neuroscience Center Zürich, University of Zürich and Swiss Federal Institute of Technology, Zürich, Switzerland; Zürich Center for Integrative Human Physiology (ZIHP), University of Zürich, Zürich, Switzerland
| | - David E J Linden
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom; School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Michelle Hampson
- Department of Radiology and Biomedical Imaging, Psychiatry and the Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Kymberly D Young
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
23
|
Practice makes perfect: High performance gains in older adults engaged in selective attention within and across sensory modalities. Acta Psychol (Amst) 2018; 191:101-111. [PMID: 30240890 DOI: 10.1016/j.actpsy.2018.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/06/2018] [Accepted: 09/10/2018] [Indexed: 11/22/2022] Open
Abstract
Selective attention has been found to decline with aging, possibly depending on the sensory modality through which targets and distractors are presented. We investigated the capacity of older adults to improve performance on visual and auditory selective attention tasks. 31 younger (mean age = 22.8 years, SD = 2.1) and 29 older participants (mean age = 69.5 years, SD = 5.8) performed visual and auditory tasks with and without unimodal and cross-modal distraction across five practice sessions. Reaction time decreased with practice in both age groups. Strikingly, this performance improvement was similar across the age groups. Moreover, distractor modality did not affect performance gains in either age group. Older adults were disproportionally affected by cross-modal visual distraction, however, corroborating previous studies. This age-related effect was mitigated during the practice sessions. Finally, there was no transfer of practice to neuropsychological test performance. These results suggest a high capacity of older individuals to improve selective attention functions within and across sensory modalities.
Collapse
|
24
|
Ehlis AC, Barth B, Hudak J, Storchak H, Weber L, Kimmig ACS, Kreifelts B, Dresler T, Fallgatter AJ. Near-Infrared Spectroscopy as a New Tool for Neurofeedback Training: Applications in Psychiatry and Methodological Considerations. JAPANESE PSYCHOLOGICAL RESEARCH 2018. [DOI: 10.1111/jpr.12225] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
25
|
Hudak J, Rosenbaum D, Barth B, Fallgatter AJ, Ehlis AC. Functionally disconnected: A look at how study design influences neurofeedback data and mechanisms in attention-deficit/hyperactivity disorder. PLoS One 2018; 13:e0200931. [PMID: 30096196 PMCID: PMC6086395 DOI: 10.1371/journal.pone.0200931] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 07/04/2018] [Indexed: 01/13/2023] Open
Abstract
Neurofeedback (NF) is a form of behavioral therapy used to treat e.g. attention-deficit/hyperactivity disorder (ADHD). Briefly, subjects are fed-back a putatively dysfunctional parameter of their brain activity in real time and must learn to control it in a suggested direction. NF protocols for ADHD have been used in practice for decades, though no clear standards on NF design have been implemented. Furthermore, studies often present only data from the general outcome of the NF treatment and do not look at how exactly the NF paradigm affects brain functionality, or what exactly the NF is training. The current study is two-fold: firstly, we look at how the functional connectivity (FC) patterns within key networks associated with ADHD differ between rests, feedback trials, success and failure in a complete functional near-infrared spectroscopy-based NF experiment on adults with ADHD. Secondly, due to methodological concerns discovered during the analysis of our data, we address important considerations in the design of NF that are often ignored in protocols being used widely in therapy and research today. In particular, we examine the common average reference and its impact on network activity as well as the importance of balancing the randomization in a design. Finally, we discuss how these methodological considerations may have influenced our FC results.
Collapse
Affiliation(s)
- Justin Hudak
- LEAD Graduate School & Research Network, University of Tübingen, Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
- * E-mail:
| | - David Rosenbaum
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Beatrix Barth
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Andreas J. Fallgatter
- LEAD Graduate School & Research Network, University of Tübingen, Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
- Graduate School of Neural and Behavioral Sciences, University of Tübingen, Tübingen, Germany
| | - Ann-Christine Ehlis
- LEAD Graduate School & Research Network, University of Tübingen, Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
26
|
Trainability of hemodynamic parameters: A near-infrared spectroscopy based neurofeedback study. Biol Psychol 2018; 136:168-180. [DOI: 10.1016/j.biopsycho.2018.05.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/17/2018] [Accepted: 05/16/2018] [Indexed: 11/22/2022]
|
27
|
Liu T, Liu X, Yi L, Zhu C, Markey PS, Pelowski M. Assessing autism at its social and developmental roots: A review of Autism Spectrum Disorder studies using functional near-infrared spectroscopy. Neuroimage 2017; 185:955-967. [PMID: 28966083 DOI: 10.1016/j.neuroimage.2017.09.044] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/16/2017] [Accepted: 09/20/2017] [Indexed: 12/15/2022] Open
Abstract
We review a relatively new method for studying the developing brain in children and infants with Autism Spectrum Disorder (ASD). Despite advances in behavioral screening and brain imaging, due to paradigms that do not easily allow for testing of awake, very young, and socially-engaged children-i.e., the social and the baby brain-the biological underpinnings of this disorder remain a mystery. We introduce an approach based on functional near-infrared spectroscopy (fNIRS), which offers a noninvasive imaging technique for studying functional activations by measuring changes in the brain's hemodynamic properties. This further enables measurement of brain activation in upright, interactive settings, while maintaining general equivalence to fMRI findings. We review the existing studies that have used fNIRS for ASD, discussing their promise, limitations, and their technical aspects, gearing this study to the researcher who may be new to this technique and highlighting potential targets for future research.
Collapse
Affiliation(s)
- Tao Liu
- School of Management, Zhejiang University, Hangzhou, China.
| | - Xingchen Liu
- College of Education and Psychology, Hainan Normal University, Haikou, China
| | - Li Yi
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China; Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Chaozhe Zhu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | | | | |
Collapse
|