1
|
Arif Y, Wiesman AI, Christopher-Hayes N, Okelberry HJ, Johnson HJ, Willett MP, Wilson TW. Altered age-related alpha and gamma prefrontal-occipital connectivity serving distinct cognitive interference variants. Neuroimage 2023; 280:120351. [PMID: 37659656 PMCID: PMC10545948 DOI: 10.1016/j.neuroimage.2023.120351] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/04/2023] Open
Abstract
The presence of conflicting stimuli adversely affects behavioral outcomes, which could either be at the level of stimulus (Flanker), response (Simon), or both (Multisource). Briefly, flanker interference involves conflicting stimuli requiring selective attention, Simon interference is caused by an incongruity between the spatial location of the task-relevant stimulus and prepotent motor mapping, and multisource is combination of both. Irrespective of the variant, interference resolution necessitates cognitive control to filter irrelevant information and allocate neural resources to task-related goals. Though previously studied in healthy young adults, the direct quantification of changes in oscillatory activity serving such cognitive control and associated inter-regional interactions in healthy aging are poorly understood. Herein, we used an adapted version of the multisource interference task and magnetoencephalography to investigate age-related alterations in the neural dynamics governing both divergent and convergent cognitive interference in 78 healthy participants (age range: 20-66 years). We identified weaker alpha connectivity between bilateral visual and right dorsolateral prefrontal cortices (DLPFC) and left dorsomedial prefrontal cortices (dmPFC), as well as weaker gamma connectivity between bilateral occipital regions and the right dmPFC during flanker interference with advancing age. Further, an age-related decrease in gamma power was observed in the left cerebellum and parietal region for Simon and differential interference effects (i.e., flanker-Simon), respectively. Moreover, the superadditivity model showed decreased gamma power in the right temporoparietal junction (TPJ) with increasing age. Overall, our findings suggest age-related declines in the engagement of top-down attentional control secondary to reduced alpha and gamma coupling between prefrontal and occipital cortices.
Collapse
Affiliation(s)
- Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA.
| | - Alex I Wiesman
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | | | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Hallie J Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Madelyn P Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
2
|
Holczer A, Vékony T, Klivényi P, Must A. Frontal two-electrode transcranial direct current stimulation protocols may not affect performance on a combined flanker Go/No-Go task. Sci Rep 2023; 13:11901. [PMID: 37488206 PMCID: PMC10366169 DOI: 10.1038/s41598-023-39161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) has been tested to modulate cognitive control or response inhibition using various electrode montages. However, electrode montages and current polarities have not been systematically compared when examining tDCS effects on cognitive control and response inhibition. In this randomized, sham-controlled study, 38 healthy volunteers were randomly grouped into receiving one session of sham, anodal, and cathodal each in an electrode montage that targeted either the dorsolateral prefrontal cortex (DLPFC) or the fronto-medial (FM) region. Participants performed a combined flanker Go/No-Go task during stimulation. No effect of tDCS was found in the DLPFC and FM groups neither using anodal nor cathodal stimulation. No major adverse effects of tDCS were identified using either montage or stimulation type and the two groups did not differ in terms of the reported sensations. The present study suggests that single-session tDCS delivered in two two-electrode montages might not affect cognitive control or response inhibition, despite using widely popular stimulation parameters. This is in line with the heterogeneous findings in the field and calls for further systematic research to exclude less reliable methods from those with more pronounced effects, identify the determinants of responsiveness, and develop optimal ways to utilize this technique.
Collapse
Affiliation(s)
- Adrienn Holczer
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, Szeged, Hungary.
| | - Teodóra Vékony
- Centre de Recherche en Neurosciences de Lyon CRNL U1028 UMR5292, Université Claude Bernard Lyon 1, CNRS, INSERM, 95 Boulevard Pinel, 69500, Bron, France
| | - Péter Klivényi
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, Szeged, Hungary
| | - Anita Must
- Chronos Systems on behalf of WCG Clinical Endpoint Solutions, Budapest, Hungary
| |
Collapse
|
3
|
Zhu Y, Wu D, Sun K, Chen X, Wang Y, He Y, Xiao W. Alpha and Theta Oscillations Are Causally Linked to Interference Inhibition: Evidence from High-Definition Transcranial Alternating Current Stimulation. Brain Sci 2023; 13:1026. [PMID: 37508958 PMCID: PMC10377194 DOI: 10.3390/brainsci13071026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/13/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: The Go/NoGo task and color-word Stroop task were used to investigate the effect of applying different frequency bands of neural oscillations to the lDLPFC on inhibitory control modulation. (2) Methods: Participants were randomly categorized into four groups and received HD-tACS at 6, 10, and 20 Hz or sham stimulation at 1.5 mA for 20 min. All participants performed a color-word Stroop task and Go/NoGo task before and immediately after the stimulation; closed-eye resting-state EEG signals were acquired for 3 min before and after the tasks. (3) Results: There were no significant differences in the Go/NoGo behavioral indices task across the four groups. In the color-word Stroop task, the Stroop effect of response time was significantly reduced by 6 and 10 Hz stimulations compared to sham stimulation, and the Stroop effect of accuracy was significantly reduced by 10 Hz stimulation. There were no significant differences in the frequency range-specific (delta, theta, alpha, beta, or gamma) resting EEG power before and after stimulation. (4) Conclusions: HD-tACS at 6 and 10 Hz effectively improved participants' performance on the color-word Stroop task, demonstrating the importance of the lDLPFC in interference inhibition and supporting a causal relationship between theta and alpha oscillations in interference inhibition.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Di Wu
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Kewei Sun
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Xianglong Chen
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Yifan Wang
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Yang He
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Wei Xiao
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| |
Collapse
|
4
|
Mattavelli G, Lo Presti S, Tornaghi D, Canessa N. High-definition transcranial direct current stimulation of the dorsal anterior cingulate cortex modulates decision-making and executive control. Brain Struct Funct 2022; 227:1565-1576. [PMID: 35102442 DOI: 10.1007/s00429-022-02456-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 01/13/2022] [Indexed: 11/02/2022]
Abstract
Previous neuroimaging evidence highlights the translational implications of targeting the dorsal anterior cingulate cortex (dACC), i.e. a key node of the networks underlying conflict monitoring and decision-making, in brain stimulation treatments with clinical or rehabilitative purposes. While the optimized modelling of "high-definition" current flows between multiple anode-cathode pairs might, in principle, allow to stimulate an otherwise challenging target, sensitive benchmark metrics of dACC neuromodulation are required to assess the effectiveness of this approach. On this basis, we aimed to assess the modulatory effect of anodal and cathodal high-definition tDCS (HD-tDCS) of the dACC on different facets of executive control and decision-making in healthy young individuals. A combined modelling/targeting procedure provided the optimal montage for the maximum intensity of dACC stimulation with six small "high-definition" electrodes delivering anodal, cathodal or sham HD-tDCS for 20 min in a within-subject design with three separate sessions. Following stimulation, participants performed Flanker and gambling tasks unveiling individual differences in executive control and both loss- and risk-aversion in decision-making, respectively. Compared to both anodal and sham conditions, cathodal dACC stimulation significantly affected task performance by increasing control over the Flanker conflict effect, and both loss and risk-aversion in decision-making. By confirming the feasibility and effectiveness of dACC stimulation with HD-tDCS, these findings highlight the implications of modelling and targeting procedures for neuromodulation in clinical research, whereby innovative protocols might serve as treatment addressing dysfunctional dACC activity, or combined with cognitive training, to enhance higher-order executive functioning in different neuropsychiatric conditions.
Collapse
Affiliation(s)
- Giulia Mattavelli
- IUSS Cognitive Neuroscience (ICoN) Center, Scuola Universitaria Superiore IUSS, 27100, Pavia, Italy.,Cognitive Neuroscience Laboratory of Pavia Institute, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100, Pavia, Italy
| | - Sara Lo Presti
- IUSS Cognitive Neuroscience (ICoN) Center, Scuola Universitaria Superiore IUSS, 27100, Pavia, Italy
| | - Diana Tornaghi
- IUSS Cognitive Neuroscience (ICoN) Center, Scuola Universitaria Superiore IUSS, 27100, Pavia, Italy
| | - Nicola Canessa
- IUSS Cognitive Neuroscience (ICoN) Center, Scuola Universitaria Superiore IUSS, 27100, Pavia, Italy. .,Cognitive Neuroscience Laboratory of Pavia Institute, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100, Pavia, Italy.
| |
Collapse
|
5
|
Multichannel anodal tDCS over the left dorsolateral prefrontal cortex in a paediatric population. Sci Rep 2021; 11:21512. [PMID: 34728684 PMCID: PMC8563927 DOI: 10.1038/s41598-021-00933-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/18/2021] [Indexed: 02/06/2023] Open
Abstract
Methodological studies investigating transcranial direct current stimulation (tDCS) over the left dorsolateral prefrontal cortex (lDLPFC) in paediatric populations are limited. Therefore, we investigated in a paediatric population whether stimulation success of multichannel tDCS over the lDLPFC depends on concurrent task performance and individual head anatomy. In a randomised, sham-controlled, double-blind crossover study 22 healthy participants (10–17 years) received 2 mA multichannel anodal tDCS (atDCS) over the lDLPFC with and without a 2-back working memory (WM) task. After stimulation, the 2-back task and a Flanker task were performed. Resting state and task-related EEG were recorded. In 16 participants we calculated the individual electric field (E-field) distribution. Performance and neurophysiological activity in the 2-back task were not affected by atDCS. atDCS reduced reaction times in the Flanker task, independent of whether atDCS had been combined with the 2-back task. Flanker task related beta oscillation increased following stimulation without 2-back task performance. atDCS effects were not correlated with the E-field. We found no effect of multichannel atDCS over the lDLPFC on WM in children/adolescents but a transfer effect on interference control. While this effect on behaviour was independent of concurrent task performance, neurophysiological activity might be more sensitive to cognitive activation during stimulation. However, our results are limited by the small sample size, the lack of an active control group and variations in WM performance.
Collapse
|
6
|
Noninvasive brain stimulation to lateral prefrontal cortex alters the novelty of creative idea generation. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 21:311-326. [PMID: 33624232 DOI: 10.3758/s13415-021-00869-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/16/2021] [Indexed: 11/08/2022]
Abstract
Theories of the processes involved in creative cognition posit that cognitive control has a negative effect on creative idea generation but a positive effect on creative idea evaluation. Brain stimulation research has started to examine empirically the effects of cognitive control, with several reports of decreased cognitive control facilitating creative ideation. Such studies have shown how decreased cognitive control mechanisms facilitate creative idea generation, potentially by allowing participants access to less inhibited weaker-related associations, thereby increasing novelty. In the current study, we advance this line of work by investigating how cognitive control affects creative thinking, potentially inhibiting or facilitating novel idea generation based on task demands. Participants read sentences with the final word missing and were instructed to complete the sentence with an uncommon (but appropriate) ending. Participants performed this task while undergoing either anodal (excitatory), cathodal (inhibitory), or sham (control) transcranial direct current stimulation over their left prefrontal cortex. These responses were then rated for their novelty and appropriateness by an independent sample of raters. We found that anodal stimulation increased the appropriateness and decreased the novelty of participants' responses. Contrary to previous studies, we did not find that cathodal stimulation increased the novelty of participants' responses, which may be due to the nature of our task. Overall, we demonstrate how cognitive control mechanisms may inhibit novel idea generation.
Collapse
|
7
|
Combined and Isolated Effects of Acute Exercise and Brain Stimulation on Executive Function in Healthy Young Adults. J Clin Med 2020; 9:jcm9051410. [PMID: 32397614 PMCID: PMC7291170 DOI: 10.3390/jcm9051410] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/04/2020] [Accepted: 05/04/2020] [Indexed: 12/20/2022] Open
Abstract
Abstract: Acute cognitive enhancement has been sought by healthy young individuals to improve academic and professional performance. Among several methods, physical exercise interventions and transcranial direct current brain stimulation (tDCS) have shown promise in impacting executive functions. Here, we observed a set of new findings about the causal effect of acute aerobic exercise and tDCS across three facets of executive function: Inhibition (as measured by a flanker task) was selectively impacted by acute aerobic exercise but not tDCS, whereas working memory (as measured by an n-back task) was impacted by both acute aerobic exercise and tDCS, with effects emerging on distinct processing components for each manipulation. Sustained attention (as measured by the Mackworth clock task), on the other hand, was not impacted by acute aerobic exercise or tDCS. Interestingly, no effects of combining acute aerobic exercise and tDCS emerged. We argue that understanding the unique and combined contributions of these cognitive enhancement techniques can not only contribute to a deeper mechanistic explanation in healthy individuals but also inform future research with clinical and aging populations.
Collapse
|
8
|
Dubreuil-Vall L, Chau P, Ruffini G, Widge AS, Camprodon JA. tDCS to the left DLPFC modulates cognitive and physiological correlates of executive function in a state-dependent manner. Brain Stimul 2019; 12:1456-1463. [PMID: 31221553 PMCID: PMC6851462 DOI: 10.1016/j.brs.2019.06.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 03/26/2019] [Accepted: 06/03/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The use of transcranial Direct Current Stimulation (tDCS) to study anatomical and physiological dynamics and circuits supporting cognition and executive functions in particular has dramatically increased in recent years. However, its mechanisms of action remain only partially understood. OBJECTIVE In this study we assess the cognitive and physiological effects of anodal tDCS to the DLPFC on executive function in order to understand (1) the role of DLPFC laterality, (2) the physiological dynamics sustaining the modulation of executive function by tDCS, and (3) the impact of state-dependent dynamics. METHODS In a randomized, placebo-controlled, cross-over study, we applied anodal tDCS targeting the left vs. right DLPFC vs. sham in 20 healthy individuals (10 males, 10 females). Immediately before and after tDCS, subjects performed the Flanker Task while we measured behavioral (reaction time and accuracy) and neurophysiological (ERP) responses. Specifically, the amplitude of N200, P300, ERN and Pe is compared before and after stimulation. RESULTS Anodal tDCS to the left DLPFC lead to a significant improvement in reaction time, an increase in P300 amplitude and a decrease in N200 amplitude in a state-dependent manner: baseline ERP amplitudes conditioned the effects of tDCS. CONCLUSION Given the role of these ERPs in conflict-related tasks, we speculate that tDCS is modulating the subconstructs of selective attention, conflict monitoring and response inhibition. These findings contribute to a further understanding of the role of left DLPFC in the modulation of executive function, and shed light into the mechanisms of action and the state dependent nature of tDCS.
Collapse
Affiliation(s)
- Laura Dubreuil-Vall
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Laboratory for Neuropsychiatry and Neuromodulation, 149 13th st. 2nd floor, Boston, MA, 02129, USA; Department of Psychiatry and Clinical Psychobiology, Universitat de Barcelona, Casanova 143, 08036, Barcelona, Spain; Neuroelectrics Corporation, 210 Broadway, Suite 201, Cambridge, MA, 02139, USA.
| | - Peggy Chau
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Laboratory for Neuropsychiatry and Neuromodulation, 149 13th st. 2nd floor, Boston, MA, 02129, USA
| | - Giulio Ruffini
- Neuroelectrics Corporation, 210 Broadway, Suite 201, Cambridge, MA, 02139, USA
| | - Alik S Widge
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Laboratory for Neuropsychiatry and Neuromodulation, 149 13th st. 2nd floor, Boston, MA, 02129, USA
| | - Joan A Camprodon
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Laboratory for Neuropsychiatry and Neuromodulation, 149 13th st. 2nd floor, Boston, MA, 02129, USA
| |
Collapse
|
9
|
McDermott TJ, Wiesman AI, Mills MS, Spooner RK, Coolidge NM, Proskovec AL, Heinrichs‐Graham E, Wilson TW. tDCS modulates behavioral performance and the neural oscillatory dynamics serving visual selective attention. Hum Brain Mapp 2019; 40:729-740. [PMID: 30368974 PMCID: PMC6328324 DOI: 10.1002/hbm.24405] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 12/24/2022] Open
Abstract
Transcranial direct-current stimulation (tDCS) is a noninvasive method for modulating human brain activity. Although there are several hypotheses about the net effects of tDCS on brain function, the field's understanding remains incomplete and this is especially true for neural oscillatory activity during cognitive task performance. In this study, we examined whether different polarities of occipital tDCS differentially alter flanker task performance and the underlying neural dynamics. To this end, 48 healthy adults underwent 20 min of anodal, cathodal, or sham occipital tDCS, and then completed a visual flanker task during high-density magnetoencephalography (MEG). The resulting oscillatory responses were imaged in the time-frequency domain using beamforming, and the effects of tDCS on task-related oscillations and spontaneous neural activity were assessed. The results indicated that anodal tDCS of the occipital cortices inhibited flanker task performance as measured by reaction time, elevated spontaneous activity in the theta (4-7 Hz) and alpha (9-14 Hz) bands in prefrontal and occipital cortices, respectively, and reduced task-related theta oscillatory activity in prefrontal cortices during task performance. Cathodal tDCS of the occipital cortices did not significantly affect behavior or any of these neuronal parameters in any brain region. Lastly, the power of theta oscillations in the prefrontal cortices was inversely correlated with reaction time. In conclusion, anodal tDCS modulated task-related oscillations and spontaneous activity across multiple cortical areas, both near the electrode and in distant sites that were putatively connected to the targeted regions.
Collapse
Affiliation(s)
- Timothy J. McDermott
- Center for MagnetoencephalographyUniversity of Nebraska Medical Center (UNMC)OmahaNebraska
| | - Alex I. Wiesman
- Center for MagnetoencephalographyUniversity of Nebraska Medical Center (UNMC)OmahaNebraska
- Department of Neurological SciencesUNMCOmahaNebraska
| | - Mackenzie S. Mills
- Center for MagnetoencephalographyUniversity of Nebraska Medical Center (UNMC)OmahaNebraska
| | - Rachel K. Spooner
- Center for MagnetoencephalographyUniversity of Nebraska Medical Center (UNMC)OmahaNebraska
- Department of Neurological SciencesUNMCOmahaNebraska
| | - Nathan M. Coolidge
- Center for MagnetoencephalographyUniversity of Nebraska Medical Center (UNMC)OmahaNebraska
- Department of PsychologyUniversity of NebraskaOmahaNebraska
| | - Amy L. Proskovec
- Center for MagnetoencephalographyUniversity of Nebraska Medical Center (UNMC)OmahaNebraska
- Department of PsychologyUniversity of NebraskaOmahaNebraska
| | - Elizabeth Heinrichs‐Graham
- Center for MagnetoencephalographyUniversity of Nebraska Medical Center (UNMC)OmahaNebraska
- Department of Neurological SciencesUNMCOmahaNebraska
| | - Tony W. Wilson
- Center for MagnetoencephalographyUniversity of Nebraska Medical Center (UNMC)OmahaNebraska
- Department of Neurological SciencesUNMCOmahaNebraska
| |
Collapse
|
10
|
Tardiff N, Graves KN, Thompson-Schill SL. The Role of Frontostriatal Systems in Instructed Reinforcement Learning: Evidence From Genetic and Experimentally-Induced Variation. Front Hum Neurosci 2019; 12:472. [PMID: 30618672 PMCID: PMC6304395 DOI: 10.3389/fnhum.2018.00472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/12/2018] [Indexed: 01/16/2023] Open
Abstract
Instructions have a powerful effect on learning and decision-making, biasing choice even in the face of disconfirming feedback. Detrimental biasing effects have been reported in a number of studies in which instruction was given prior to trial-and-error learning. Previous work has attributed individual differences in instructional bias to variations in prefrontal and striatal dopaminergic genes, suggesting a role for prefrontally-mediated cognitive control processes in biasing learning. The current study replicates and extends these findings. Human subjects performed a probabilistic reinforcement learning task after receiving inaccurate instructions about the quality of one of the options. In order to establish a causal relationship between prefrontal cortical mechanisms and instructional bias, we applied transcranial direct current stimulation over dorsolateral prefrontal cortex (anodal, cathodal, or sham) while subjects performed the task. We additionally genotyped subjects for the COMT Val158Met genetic polymorphism, which influences the breakdown of prefrontal dopamine, and for the DAT1/SLC6A3 variable number tandem repeat, which affects expression of striatal dopamine transporter. We replicated the finding that the COMT Met allele is associated with increased instructional bias and further demonstrated that variation in DAT1 has similar effects to variation in COMT, with 9-repeat carriers demonstrating increased bias relative to 10-repeat homozygotes. Consistent with increased top-down regulation of reinforcement learning, anodal subjects demonstrated greater bias relative to sham, though this effect was present only early in training. In contrast, there was no effect of cathodal stimulation. Finally, we fit computational models to subjects' data to better characterize the mechanisms underlying instruction bias. A novel choice bias model, in which instructions influence decision-making rather than learning, was found to best account for subjects' behavior. Overall, these data provide further evidence for the role of frontostriatal interactions in biasing instructed reinforcement learning, which adds to the growing literature documenting both costs and benefits of cognitive control.
Collapse
Affiliation(s)
- Nathan Tardiff
- Department of Psychology, University of Pennsylvania Philadelphia, PA, United States
| | - Kathryn N Graves
- Department of Psychology, University of Pennsylvania Philadelphia, PA, United States
| | | |
Collapse
|
11
|
Peanlikhit T, Van Waes V, Pedron S, Risold PY, Haffen E, Etiévant A, Monnin J. The antidepressant-like effect of tDCS in mice: A behavioral and neurobiological characterization. Brain Stimul 2017; 10:748-756. [PMID: 28416160 DOI: 10.1016/j.brs.2017.03.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/09/2017] [Accepted: 03/25/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is a non-invasive method increasingly popular for the treatment of several brain disorders, such as major depression. Despite great enthusiasm and promising results, some studies report discrepant findings and no consensus exists for the clinical use of tDCS. OBJECTIVE The present study aims to (i) determine the most effective stimulation parameters to optimize antidepressant-like effect of tDCS in the forced-swim test in mice and (ii) identify brain regions recruited by tDCS and possibly involved in its behavioral effect using Fos immunohistochemistry. RESULTS We reported that tDCS induced long-lasting antidepressant-like effect, which varied as a function of stimulation settings including number, duration, intensity and polarity of stimulation. Interestingly, the present study also demonstrated that tDCS reduced depressive-like behaviors induced by chronic corticosterone exposure. Furthermore, behavioral outcomes induced by a single stimulation were associated with neuronal activation in the prefrontal cortex, dorsal hippocampus, ventral tegmental area and nucleus accumbens, whereas no overexpression of c-fos was associated with 10 stimulations. CONCLUSION The strongest behavioral response was observed with an anodal stimulation of 200 μA during 20min. The repetition of this stimulation was necessary to induce long-lasting behavioral effects that are probably associated with plastic changes in the neuronal response.
Collapse
Affiliation(s)
- Tanat Peanlikhit
- Laboratoire de Neurosciences intégratives et cliniques, EA 481, Université Bourgogne Franche-Comté, 25000 Besançon, France.
| | - Vincent Van Waes
- Laboratoire de Neurosciences intégratives et cliniques, EA 481, Université Bourgogne Franche-Comté, 25000 Besançon, France.
| | - Solène Pedron
- Laboratoire de Neurosciences intégratives et cliniques, EA 481, Université Bourgogne Franche-Comté, 25000 Besançon, France.
| | - Pierre-Yves Risold
- Laboratoire de Neurosciences intégratives et cliniques, EA 481, Université Bourgogne Franche-Comté, 25000 Besançon, France.
| | - Emmanuel Haffen
- Laboratoire de Neurosciences intégratives et cliniques, EA 481, Université Bourgogne Franche-Comté, 25000 Besançon, France; Service de Psychiatrie, CHRU Besançon, 25000 Besançon, France; Centre d'Investigation Clinique CIC1431, Inserm, CHRU Besançon, France.
| | - Adeline Etiévant
- Laboratoire de Neurosciences intégratives et cliniques, EA 481, Université Bourgogne Franche-Comté, 25000 Besançon, France; Service de Psychiatrie, CHRU Besançon, 25000 Besançon, France.
| | - Julie Monnin
- Laboratoire de Neurosciences intégratives et cliniques, EA 481, Université Bourgogne Franche-Comté, 25000 Besançon, France; Service de Psychiatrie, CHRU Besançon, 25000 Besançon, France; Centre d'Investigation Clinique CIC1431, Inserm, CHRU Besançon, France.
| |
Collapse
|