1
|
Zhao L, Silva AB, Kurteff GL, Chang EF. Inhibitory control of speech production in the human premotor frontal cortex. Nat Hum Behav 2025:10.1038/s41562-025-02118-4. [PMID: 40033133 DOI: 10.1038/s41562-025-02118-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/16/2025] [Indexed: 03/05/2025]
Abstract
Voluntary, flexible stopping of speech output is an essential aspect of speech motor control, especially during natural conversations. The cognitive and neural mechanisms of speech inhibition are not well understood. Here we have recorded direct high-density cortical activity while participants engaged in continuous speech production and were visually cued to stop speaking. Neural recordings revealed distinct activity in the premotor frontal cortex correlated with stopping speech. This activity was found in largely separate cortical sites from regions encoding vocal tract articulatory movements. Moreover, this activity primarily occurred with abrupt stopping in the middle of an utterance, rather than naturally completing a phrase. Electrocortical stimulation at many premotor sites with inhibitory stop activity caused involuntary speech arrest, which contradicts previous clinical interpretations of this effect as evidence for critical centres of speech production. Together, these results suggest a previously unknown premotor cortical network that supports the inhibitory control of speech, providing implications for understanding both natural and altered speech production.
Collapse
Affiliation(s)
- Lingyun Zhao
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Alexander B Silva
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, CA, USA
- University of California, Berkeley - University of California, San Francisco Graduate Program in Bioengineering, Berkeley, CA, USA
| | - G Lynn Kurteff
- Department of Neurological Surgery, University of California, San Francisco, CA, USA
| | - Edward F Chang
- Department of Neurological Surgery, University of California, San Francisco, CA, USA.
- Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.
| |
Collapse
|
2
|
Castellucci GA, Kovach CK, Tabasi F, Christianson D, Greenlee JDW, Long MA. Stimulation of caudal inferior and middle frontal gyri disrupts planning during spoken interaction. Curr Biol 2024; 34:2719-2727.e5. [PMID: 38823382 PMCID: PMC11187660 DOI: 10.1016/j.cub.2024.04.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/06/2024] [Accepted: 04/30/2024] [Indexed: 06/03/2024]
Abstract
Turn-taking is a central feature of conversation across languages and cultures.1,2,3,4 This key social behavior requires numerous sensorimotor and cognitive operations1,5,6 that can be organized into three general phases: comprehension of a partner's turn, preparation of a speaker's own turn, and execution of that turn. Using intracranial electrocorticography, we recently demonstrated that neural activity related to these phases is functionally distinct during turn-taking.7 In particular, networks active during the perceptual and articulatory stages of turn-taking consisted of structures known to be important for speech-related sensory and motor processing,8,9,10,11,12,13,14,15,16,17 while putative planning dynamics were most regularly observed in the caudal inferior frontal gyrus (cIFG) and the middle frontal gyrus (cMFG). To test if these structures are necessary for planning during spoken interaction, we used direct electrical stimulation (DES) to transiently perturb cortical function in neurosurgical patient-volunteers performing a question-answer task.7,18,19 We found that stimulating the cIFG and cMFG led to various response errors9,13,20,21 but not gross articulatory deficits, which instead resulted from DES of structures involved in motor control8,13,20,22 (e.g., the precentral gyrus). Furthermore, perturbation of the cIFG and cMFG delayed inter-speaker timing-consistent with slowed planning-while faster responses could result from stimulation of sites located in other areas. Taken together, our findings suggest that the cIFG and cMFG contain critical preparatory circuits that are relevant for interactive language use.
Collapse
Affiliation(s)
- Gregg A Castellucci
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA
| | - Christopher K Kovach
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Farhad Tabasi
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - David Christianson
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| | - Jeremy D W Greenlee
- Department of Neurosurgery, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA; Iowa Neuroscience Institute, Iowa City, IA 52242, USA
| | - Michael A Long
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
3
|
Tomasino B, Weis L, Maieron M, Pauletto G, Verriello L, Budai R, Ius T, D'Agostini S, Fadiga L, Skrap M. Motor or non-motor speech interference? A multimodal fMRI and direct cortical stimulation mapping study. Neuropsychologia 2024; 198:108876. [PMID: 38555064 DOI: 10.1016/j.neuropsychologia.2024.108876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
We retrospectively analyzed data from 15 patients, with a normal pre-operative cognitive performance, undergoing awake surgery for left fronto-temporal low-grade glioma. We combined a pre-surgical measure (fMRI maps of motor- and language-related centers) with intra-surgical measures (MNI-registered cortical sites data obtained during intra-operative direct electrical stimulation, DES, while they performed the two most common language tasks: number counting and picture naming). Selective DES effects along the precentral gyrus/inferior frontal gyrus (and/or the connected speech articulation network) were obtained. DES of the precentral gyrus evoked the motor speech arrest, i.e., anarthria (with apparent mentalis muscle movements). We calculated the number of shared voxels between the lip-tongue and overt counting related- and silent naming-related fMRI maps and the Volumes of Interest (VOIs) obtained by merging together the MNI sites at which a given speech disturbance was observed, normalized on their mean the values (i.e., Z score). Both tongue- and lips-related movements fMRI maps maximally overlapped (Z = 1.05 and Z = 0.94 for lips and tongue vs. 0.16 and -1.003 for counting and naming) with the motor speech arrest seed. DES of the inferior frontal gyrus, pars opercularis and the rolandic operculum induced speech arrest proper (without apparent mentalis muscle movements). This area maximally overlapped with overt counting-related fMRI map (Z = -0.11 and Z = 0.09 for lips and tongue vs. 0.9 and 0.0006 for counting and naming). Interestingly, our fMRI maps indicated reduced Broca's area activity during silent speech compared to overt speech. Lastly, DES of the inferior frontal gyrus, pars opercularis and triangularis evoked variations of the output, i.e., dysarthria, a motor speech disorder occurring when patients cannot control the muscles used to produce articulated sounds (phonemes). Silent object naming-related fMRI map maximally overlapped (Z = -0.93 and Z = -1.04 for lips and tongue vs. -1.07 and 0.99 for counting and naming) with this seed. Speech disturbances evoked by DES may be thought of as selective interferences with specific recruitment of left inferior frontal gyrus and precentral cortex which are differentiable in terms of the specific interference induced.
Collapse
Affiliation(s)
| | - Luca Weis
- Istituto Italiano di Tecnologia, Genova, Italy
| | - Marta Maieron
- Fisica Medica, Azienda Sanitaria Universitaria Friuli Centrale ASU FC, Italy
| | - Giada Pauletto
- Neurologia, Dipartimento "Testa, Collo e Neuroscienze", Azienda Sanitaria Universitaria Friuli Centrale ASU FC, Italy
| | - Lorenzo Verriello
- Neurologia, Dipartimento "Testa, Collo e Neuroscienze", Azienda Sanitaria Universitaria Friuli Centrale ASU FC, Italy
| | - Riccardo Budai
- Neurologia, Dipartimento "Testa, Collo e Neuroscienze", Azienda Sanitaria Universitaria Friuli Centrale ASU FC, Italy
| | - Tamara Ius
- Neurochirurgia, Dipartimento "Testa, Collo e Neuroscienze", Azienda Sanitaria Universitaria Friuli Centrale ASU FC, Italy
| | - Serena D'Agostini
- Neuroradiologia, Azienda Sanitaria Universitaria Friuli Centrale ASU FC, Italy
| | - Luciano Fadiga
- Istituto Italiano di Tecnologia, Genova, Italy; Dipartimento di Neuroscienze e Riabilitazione, Università di Ferrara, Italy
| | - Miran Skrap
- Neurochirurgia, Dipartimento "Testa, Collo e Neuroscienze", Azienda Sanitaria Universitaria Friuli Centrale ASU FC, Italy
| |
Collapse
|
4
|
de Zwart B, Ruis C. An update on tests used for intraoperative monitoring of cognition during awake craniotomy. Acta Neurochir (Wien) 2024; 166:204. [PMID: 38713405 PMCID: PMC11076349 DOI: 10.1007/s00701-024-06062-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/02/2024] [Indexed: 05/08/2024]
Abstract
PURPOSE Mapping higher-order cognitive functions during awake brain surgery is important for cognitive preservation which is related to postoperative quality of life. A systematic review from 2018 about neuropsychological tests used during awake craniotomy made clear that until 2017 language was most often monitored and that the other cognitive domains were underexposed (Ruis, J Clin Exp Neuropsychol 40(10):1081-1104, 218). The field of awake craniotomy and cognitive monitoring is however developing rapidly. The aim of the current review is therefore, to investigate whether there is a change in the field towards incorporation of new tests and more complete mapping of (higher-order) cognitive functions. METHODS We replicated the systematic search of the study from 2018 in PubMed and Embase from February 2017 to November 2023, yielding 5130 potentially relevant articles. We used the artificial machine learning tool ASReview for screening and included 272 papers that gave a detailed description of the neuropsychological tests used during awake craniotomy. RESULTS Comparable to the previous study of 2018, the majority of studies (90.4%) reported tests for assessing language functions (Ruis, J Clin Exp Neuropsychol 40(10):1081-1104, 218). Nevertheless, an increasing number of studies now also describe tests for monitoring visuospatial functions, social cognition, and executive functions. CONCLUSIONS Language remains the most extensively tested cognitive domain. However, a broader range of tests are now implemented during awake craniotomy and there are (new developed) tests which received more attention. The rapid development in the field is reflected in the included studies in this review. Nevertheless, for some cognitive domains (e.g., executive functions and memory), there is still a need for developing tests that can be used during awake surgery.
Collapse
Affiliation(s)
- Beleke de Zwart
- Experimental Psychology, Helmholtz Institution, Utrecht University, Utrecht, The Netherlands.
| | - Carla Ruis
- Experimental Psychology, Helmholtz Institution, Utrecht University, Utrecht, The Netherlands
- Department of Neurology and Neurosurgery, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
5
|
Peña-Casanova J, Sánchez-Benavides G, Sigg-Alonso J. Updating functional brain units: Insights far beyond Luria. Cortex 2024; 174:19-69. [PMID: 38492440 DOI: 10.1016/j.cortex.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/15/2024] [Accepted: 02/15/2024] [Indexed: 03/18/2024]
Abstract
This paper reviews Luria's model of the three functional units of the brain. To meet this objective, several issues were reviewed: the theory of functional systems and the contributions of phylogenesis and embryogenesis to the brain's functional organization. This review revealed several facts. In the first place, the relationship/integration of basic homeostatic needs with complex forms of behavior. Secondly, the multi-scale hierarchical and distributed organization of the brain and interactions between cells and systems. Thirdly, the phylogenetic role of exaptation, especially in basal ganglia and cerebellum expansion. Finally, the tripartite embryogenetic organization of the brain: rhinic, limbic/paralimbic, and supralimbic zones. Obviously, these principles of brain organization are in contradiction with attempts to establish separate functional brain units. The proposed new model is made up of two large integrated complexes: a primordial-limbic complex (Luria's Unit I) and a telencephalic-cortical complex (Luria's Units II and III). As a result, five functional units were delineated: Unit I. Primordial or preferential (brainstem), for life-support, behavioral modulation, and waking regulation; Unit II. Limbic and paralimbic systems, for emotions and hedonic evaluation (danger and relevance detection and contribution to reward/motivational processing) and the creation of cognitive maps (contextual memory, navigation, and generativity [imagination]); Unit III. Telencephalic-cortical, for sensorimotor and cognitive processing (gnosis, praxis, language, calculation, etc.), semantic and episodic (contextual) memory processing, and multimodal conscious agency; Unit IV. Basal ganglia systems, for behavior selection and reinforcement (reward-oriented behavior); Unit V. Cerebellar systems, for the prediction/anticipation (orthometric supervision) of the outcome of an action. The proposed brain units are nothing more than abstractions within the brain's simultaneous and distributed physiological processes. As function transcends anatomy, the model necessarily involves transition and overlap between structures. Beyond the classic approaches, this review includes information on recent systemic perspectives on functional brain organization. The limitations of this review are discussed.
Collapse
Affiliation(s)
- Jordi Peña-Casanova
- Integrative Pharmacology and Systems Neuroscience Research Group, Neuroscience Program, Hospital del Mar Medical Research Institute, Barcelona, Spain; Department of Psychiatry and Legal Medicine, Autonomous University of Barcelona, Bellaterra, Barcelona, Spain; Test Barcelona Services, Teià, Barcelona, Spain.
| | | | - Jorge Sigg-Alonso
- Department of Behavioral and Cognitive Neurobiology, Institute of Neurobiology, National Autonomous University of México (UNAM), Queretaro, Mexico
| |
Collapse
|
6
|
Nakamura-Palacios EM, Falçoni Júnior AT, Tanese GL, Vogeley ACE, Namasivayam AK. Enhancing Speech Rehabilitation in a Young Adult with Trisomy 21: Integrating Transcranial Direct Current Stimulation (tDCS) with Rapid Syllable Transition Training for Apraxia of Speech. Brain Sci 2024; 14:58. [PMID: 38248273 PMCID: PMC10813810 DOI: 10.3390/brainsci14010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Apraxia of speech is a persistent speech motor disorder that affects speech intelligibility. Studies on speech motor disorders with transcranial Direct Current Stimulation (tDCS) have been mostly directed toward examining post-stroke aphasia. Only a few tDCS studies have focused on apraxia of speech or childhood apraxia of speech (CAS), and no study has investigated individuals with CAS and Trisomy 21 (T21, Down syndrome). This N-of-1 randomized trial examined the effects of tDCS combined with a motor learning task in developmental apraxia of speech co-existing with T21 (ReBEC RBR-5435x9). The accuracy of speech sound production of nonsense words (NSWs) during Rapid Syllable Transition Training (ReST) over 10 sessions of anodal tDCS (1.5 mA, 25 cm) over Broca's area with the cathode over the contralateral region was compared to 10 sessions of sham-tDCS and four control sessions in a 20-year-old male individual with T21 presenting moderate-severe childhood apraxia of speech (CAS). The accuracy for NSW production progressively improved (gain of 40%) under tDCS (sham-tDCS and control sessions showed < 20% gain). A decrease in speech severity from moderate-severe to mild-moderate indicated transfer effects in speech production. Speech accuracy under tDCS was correlated with Wernicke's area activation (P3 current source density), which in turn was correlated with the activation of the left supramarginal gyrus and the Sylvian parietal-temporal junction. Repetitive bihemispheric tDCS paired with ReST may have facilitated speech sound acquisition in a young adult with T21 and CAS, possibly through activating brain regions required for phonological working memory.
Collapse
Affiliation(s)
| | | | - Gabriela Lolli Tanese
- Clinic of Speech-Language Pathology, Eldorado Business Tower, Goiânia 74280-010, GO, Brazil;
| | - Ana Carla Estellita Vogeley
- Department of Speech and Language Pathology, Federal University of Paraíba, João Pessoa 58051-900, PB, Brazil;
| | - Aravind Kumar Namasivayam
- Department of Speech-Language Pathology, University of Toronto, Toronto, ON M5G 1V7, Canada;
- Speech Research Centre Inc., Brampton, ON L7A 2T1, Canada
| |
Collapse
|
7
|
Castellucci GA, Kovach CK, Tabasi F, Christianson D, Greenlee JD, Long MA. A frontal cortical network is critical for language planning during spoken interaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.26.554639. [PMID: 37693383 PMCID: PMC10491113 DOI: 10.1101/2023.08.26.554639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Many brain areas exhibit activity correlated with language planning, but the impact of these dynamics on spoken interaction remains unclear. Here we use direct electrical stimulation to transiently perturb cortical function in neurosurgical patient-volunteers performing a question-answer task. Stimulating structures involved in speech motor function evoked diverse articulatory deficits, while perturbations of caudal inferior and middle frontal gyri - which exhibit preparatory activity during conversational turn-taking - led to response errors. Perturbation of the same planning-related frontal regions slowed inter-speaker timing, while faster responses could result from stimulation of sites located in other areas. Taken together, these findings further indicate that caudal inferior and middle frontal gyri constitute a critical planning network essential for interactive language use.
Collapse
|
8
|
Neef NE, Angstadt M, Koenraads SPC, Chang SE. Dissecting structural connectivity of the left and right inferior frontal cortex in children who stutter. Cereb Cortex 2023; 33:4085-4100. [PMID: 36057839 PMCID: PMC10068293 DOI: 10.1093/cercor/bhac328] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/12/2022] Open
Abstract
Inferior frontal cortex pars opercularis (IFCop) features a distinct cerebral dominance and vast functional heterogeneity. Left and right IFCop are implicated in developmental stuttering. Weak left IFCop connections and divergent connectivity of hyperactive right IFCop regions have been related to impeded speech. Here, we reanalyzed diffusion magnetic resonance imaging data from 83 children (41 stuttering). We generated connection probability maps of functionally segregated area 44 parcels and calculated hemisphere-wise analyses of variance. Children who stutter showed reduced connectivity of executive, rostral-motor, and caudal-motor corticostriatal projections from the left IFCop. We discuss this finding in the context of tracing studies from the macaque area 44, which leads to the need to reconsider current models of speech motor control. Unlike the left, the right IFCop revealed increased connectivity of the inferior posterior ventral parcel and decreased connectivity of the posterior dorsal parcel with the anterior insula, particularly in stuttering boys. This divergent connectivity pattern in young children adds to the debate on potential core deficits in stuttering and challenges the theory that right hemisphere differences might exclusively indicate compensatory changes that evolve from lifelong exposure. Instead, early right prefrontal connectivity differences may reflect additional brain signatures of aberrant cognition-emotion-action influencing speech motor control.
Collapse
Affiliation(s)
- Nicole E Neef
- Institute for Diagnostic and Interventional Neuroradiology, University Medical Center Göttingen, Robert-Koch-Straße 40, 37075 Göttingen, Germany
| | - Mike Angstadt
- Department of Psychiatry, University of Michigan, 4250 Plymouth Road, Ann Arbor, MI 48105, USA
| | - Simone P C Koenraads
- Department of Otorhinolaryngology and Head and Neck Surgery, Erasmus University Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
- The Generation R Study Group, Erasmus University Medical Center, Rotterdam, Wytemaweg 80, 3015 CNRotterdam, the Netherlands
| | - Soo-Eun Chang
- Department of Psychiatry, University of Michigan, 4250 Plymouth Road, Ann Arbor, MI 48105, USA
- Department of Communicative Sciences and Disorders, Michigan State University, 1026 Red Cedar Road, East Lansing, MI 48824, USA
- Cognitive Imaging Research Center, Department of Radiology, Michigan State University, 846 Service Road, East Lansing, MI 48824, USA
| |
Collapse
|
9
|
Suarez-Meade P, Marenco-Hillembrand L, Sabsevitz D, Okromelidze L, Blake Perdikis B, Sherman WJ, Quinones-Hinojosa A, Middlebrooks EH, Chaichana KL. Surgical Resection of Gliomas in the Dominant Inferior Frontal Gyrus: Consecutive Case Series and Anatomy Review of Broca’s Area. Clin Neurol Neurosurg 2022; 223:107512. [DOI: 10.1016/j.clineuro.2022.107512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
|
10
|
Castellucci GA, Guenther FH, Long MA. A Theoretical Framework for Human and Nonhuman Vocal Interaction. Annu Rev Neurosci 2022; 45:295-316. [PMID: 35316612 PMCID: PMC9909589 DOI: 10.1146/annurev-neuro-111020-094807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vocal communication is a critical feature of social interaction across species; however, the relation between such behavior in humans and nonhumans remains unclear. To enable comparative investigation of this topic, we review the literature pertinent to interactive language use and identify the superset of cognitive operations involved in generating communicative action. We posit these functions comprise three intersecting multistep pathways: (a) the Content Pathway, which selects the movements constituting a response; (b) the Timing Pathway, which temporally structures responses; and (c) the Affect Pathway, which modulates response parameters according to internal state. These processing streams form the basis of the Convergent Pathways for Interaction framework, which provides a conceptual model for investigating the cognitive and neural computations underlying vocal communication across species.
Collapse
Affiliation(s)
- Gregg A. Castellucci
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA
| | - Frank H. Guenther
- Departments of Speech, Language & Hearing Sciences and Biomedical Engineering, Boston University, Boston, MA, USA
| | - Michael A. Long
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA
| |
Collapse
|
11
|
Castellucci GA, Kovach CK, Howard MA, Greenlee JDW, Long MA. A speech planning network for interactive language use. Nature 2022; 602:117-122. [PMID: 34987226 PMCID: PMC9990513 DOI: 10.1038/s41586-021-04270-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/19/2021] [Indexed: 11/09/2022]
Abstract
During conversation, people take turns speaking by rapidly responding to their partners while simultaneously avoiding interruption1,2. Such interactions display a remarkable degree of coordination, as gaps between turns are typically about 200 milliseconds3-approximately the duration of an eyeblink4. These latencies are considerably shorter than those observed in simple word-production tasks, which indicates that speakers often plan their responses while listening to their partners2. Although a distributed network of brain regions has been implicated in speech planning5-9, the neural dynamics underlying the specific preparatory processes that enable rapid turn-taking are poorly understood. Here we use intracranial electrocorticography to precisely measure neural activity as participants perform interactive tasks, and we observe a functionally and anatomically distinct class of planning-related cortical dynamics. We localize these responses to a frontotemporal circuit centred on the language-critical caudal inferior frontal cortex10 (Broca's region) and the caudal middle frontal gyrus-a region not normally implicated in speech planning11-13. Using a series of motor tasks, we then show that this planning network is more active when preparing speech as opposed to non-linguistic actions. Finally, we delineate planning-related circuitry during natural conversation that is nearly identical to the network mapped with our interactive tasks, and we find this circuit to be most active before participant speech during unconstrained turn-taking. Therefore, we have identified a speech planning network that is central to natural language generation during social interaction.
Collapse
Affiliation(s)
- Gregg A Castellucci
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| | | | - Matthew A Howard
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | | | - Michael A Long
- NYU Neuroscience Institute and Department of Otolaryngology, New York University Langone Medical Center, New York, NY, USA.
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
12
|
Giannopulu I, Mizutani H. Neural Kinesthetic Contribution to Motor Imagery of Body Parts: Tongue, Hands, and Feet. Front Hum Neurosci 2021; 15:602723. [PMID: 34335202 PMCID: PMC8316994 DOI: 10.3389/fnhum.2021.602723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 05/31/2021] [Indexed: 11/16/2022] Open
Abstract
Motor imagery (MI) is assimilated to a perception-action process, which is mentally represented. Although several models suggest that MI, and its equivalent motor execution, engage very similar brain areas, the mechanisms underlying MI and their associated components are still under investigation today. Using 22 Ag/AgCl EEG electrodes, 19 healthy participants (nine males and 10 females) with an average age of 25.8 years old (sd = 3.5 years) were required to imagine moving several parts of their body (i.e., first-person perspective) one by one: left and right hand, tongue, and feet. Network connectivity analysis based on graph theory, together with a correlational analysis, were performed on the data. The findings suggest evidence for motor and somesthetic neural synchronization and underline the role of the parietofrontal network for the tongue imagery task only. At both unilateral and bilateral cortical levels, only the tongue imagery task appears to be associated with motor and somatosensory representations, that is, kinesthetic representations, which might contribute to verbal actions. As such, the present findings suggest the idea that imagined tongue movements, involving segmentary kinesthetic actions, could be the prerequisite of language.
Collapse
Affiliation(s)
- Irini Giannopulu
- Interdisciplinary Centre for the Artificial Mind, Bond University, Gold Coast, QLD, Australia
| | | |
Collapse
|
13
|
Delfino E, Pastore A, Zucchini E, Cruz MFP, Ius T, Vomero M, D'Ausilio A, Casile A, Skrap M, Stieglitz T, Fadiga L. Prediction of Speech Onset by Micro-Electrocorticography of the Human Brain. Int J Neural Syst 2021; 31:2150025. [PMID: 34130614 DOI: 10.1142/s0129065721500258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Recent technological advances show the feasibility of offline decoding speech from neuronal signals, paving the way to the development of chronically implanted speech brain computer interfaces (sBCI). Two key steps that still need to be addressed for the online deployment of sBCI are, on the one hand, the definition of relevant design parameters of the recording arrays, on the other hand, the identification of robust physiological markers of the patient's intention to speak, which can be used to online trigger the decoding process. To address these issues, we acutely recorded speech-related signals from the frontal cortex of two human patients undergoing awake neurosurgery for brain tumors using three different micro-electrocorticographic ([Formula: see text]ECoG) devices. First, we observed that, at the smallest investigated pitch (600[Formula: see text][Formula: see text]m), neighboring channels are highly correlated, suggesting that more closely spaced electrodes would provide some redundant information. Second, we trained a classifier to recognize speech-related motor preparation from high-gamma oscillations (70-150[Formula: see text]Hz), demonstrating that these neuronal signals can be used to reliably predict speech onset. Notably, our model generalized both across subjects and recording devices showing the robustness of its performance. These findings provide crucial information for the design of future online sBCI.
Collapse
Affiliation(s)
- Emanuela Delfino
- Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara 17-19, Ferrara 44121, Italy.,Section of Physiology, University of Ferrara, Via Fossato di Mortara 17-19, Ferrara 44121, Italy
| | - Aldo Pastore
- Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara 17-19, Ferrara 44121, Italy.,Section of Physiology, University of Ferrara, Via Fossato di Mortara 17-19, Ferrara 44121, Italy
| | - Elena Zucchini
- Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara 17-19, Ferrara 44121, Italy.,Section of Physiology, University of Ferrara, Via Fossato di Mortara 17-19, Ferrara 44121, Italy
| | - Maria Francisca Porto Cruz
- Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara 17-19, Ferrara 44121, Italy.,Section of Physiology, University of Ferrara, Via Fossato di Mortara 17-19, Ferrara 44121, Italy.,Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 102, Freiburg im Breisgau 79110, Germany
| | - Tamara Ius
- Struttura Complessa di Neurochirurgia, Azienda Ospedaliero-Universitaria Santa Maria, della Misericordia, Piazzale Santa Maria, della Misericordia 15, Udine 33100, Italy
| | - Maria Vomero
- Bioelectronic Systems Laboratory, Columbia University, 500 West 120th Street, New York, NY 10027, USA
| | - Alessandro D'Ausilio
- Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara 17-19, Ferrara 44121, Italy.,Section of Physiology, University of Ferrara, Via Fossato di Mortara 17-19, Ferrara 44121, Italy
| | - Antonino Casile
- Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara 17-19, Ferrara 44121, Italy
| | - Miran Skrap
- Struttura Complessa di Neurochirurgia, Azienda Ospedaliero-Universitaria Santa Maria, della Misericordia, Piazzale Santa Maria, della Misericordia 15, Udine 33100, Italy
| | - Thomas Stieglitz
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 102, Freiburg im Breisgau 79110, Germany.,BrainLinks-BrainTools Center, University of Freiburg, Georges-Köhler-Allee 80, Freiburg im Breisgau 79110, Germany
| | - Luciano Fadiga
- Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara 17-19, Ferrara 44121, Italy.,Section of Physiology, University of Ferrara, Via Fossato di Mortara 17-19, Ferrara 44121, Italy
| |
Collapse
|
14
|
Fornia L, Rossi M, Rabuffetti M, Leonetti A, Puglisi G, Viganò L, Simone L, Howells H, Bellacicca A, Bello L, Cerri G. Direct Electrical Stimulation of Premotor Areas: Different Effects on Hand Muscle Activity during Object Manipulation. Cereb Cortex 2021; 30:391-405. [PMID: 31504261 PMCID: PMC7029688 DOI: 10.1093/cercor/bhz139] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 06/04/2019] [Accepted: 06/04/2019] [Indexed: 12/25/2022] Open
Abstract
Dorsal and ventral premotor (dPM and vPM) areas are crucial in control of hand muscles during object manipulation, although their respective role in humans is still debated. In patients undergoing awake surgery for brain tumors, we studied the effect of direct electrical stimulation (DES) of the premotor cortex on the execution of a hand manipulation task (HMt). A quantitative analysis of the activity of extrinsic and intrinsic hand muscles recorded during and in absence of DES was performed. Results showed that DES applied to premotor areas significantly impaired HMt execution, affecting task-related muscle activity with specific features related to the stimulated area. Stimulation of dorsal vPM induced both a complete task arrest and clumsy task execution, characterized by general muscle suppression. Stimulation of ventrocaudal dPM evoked a complete task arrest mainly due to a dysfunctional recruitment of hand muscles engaged in task execution. These results suggest that vPM and dPM contribute differently to the control of hand muscles during object manipulation. Stimulation of both areas showed a significant impact on motor output, although the different effects suggest a stronger relationship of dPM with the corticomotoneuronal circuit promoting muscle recruitment and a role for vPM in supporting sensorimotor integration.
Collapse
Affiliation(s)
- Luca Fornia
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Humanitas Reasearch Hospital, IRCCS, Milano, Italy
| | - Marco Rossi
- Unit of Neurosurgical Oncology, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Humanitas Reasearch Hospital, IRCCS, Milano, Italy
| | - Marco Rabuffetti
- Biomedical Technology Department, IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milano, Italy
| | - Antonella Leonetti
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Humanitas Reasearch Hospital, IRCCS, Milano, Italy
| | - Guglielmo Puglisi
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Humanitas Reasearch Hospital, IRCCS, Milano, Italy
| | - Luca Viganò
- Unit of Neurosurgical Oncology, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Humanitas Reasearch Hospital, IRCCS, Milano, Italy
| | - Luciano Simone
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Humanitas Reasearch Hospital, IRCCS, Milano, Italy
| | - Henrietta Howells
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Humanitas Reasearch Hospital, IRCCS, Milano, Italy
| | - Andrea Bellacicca
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Humanitas Reasearch Hospital, IRCCS, Milano, Italy
| | - Lorenzo Bello
- Unit of Neurosurgical Oncology, Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Humanitas Reasearch Hospital, IRCCS, Milano, Italy
| | - Gabriella Cerri
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Humanitas Reasearch Hospital, IRCCS, Milano, Italy
| |
Collapse
|
15
|
Giampiccolo D, Howells H, Bährend I, Schneider H, Raffa G, Rosenstock T, Vergani F, Vajkoczy P, Picht T. Preoperative transcranial magnetic stimulation for picture naming is reliable in mapping segments of the arcuate fasciculus. Brain Commun 2020; 2:fcaa158. [PMID: 33543136 PMCID: PMC7846168 DOI: 10.1093/braincomms/fcaa158] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 11/14/2022] Open
Abstract
In preoperative planning for neurosurgery, both anatomical (diffusion imaging tractography) and functional tools (MR-navigated transcranial magnetic stimulation) are increasingly used to identify and preserve eloquent language structures specific to individuals. Using these tools in healthy adults shows that speech production errors occur mainly in perisylvian cortical sites that correspond to subject-specific terminations of the major language pathway, the arcuate fasciculus. It is not clear whether this correspondence remains in oncological patients with altered tissue. We studied a heterogeneous cohort of 30 patients (fourteen male, mean age 44), undergoing a first or second surgery for a left hemisphere brain tumour in a language-eloquent region, to test whether speech production errors induced by preoperative transcranial magnetic stimulation had consistent anatomical correspondence to the arcuate fasciculus. We used navigated repetitive transcranial magnetic stimulation during picture naming and recorded different perisylvian sites where transient interference to speech production occurred. Spherical deconvolution diffusion imaging tractography was performed to map the direct fronto-temporal and indirect (fronto-parietal and parieto-temporal) segments of the arcuate fasciculus in each patient. Speech production errors were reported in all patients when stimulating the frontal lobe, and in over 90% of patients in the parietal lobe. Errors were less frequent in the temporal lobe (54%). In all patients, at least one error site corresponded to a termination of the arcuate fasciculus, particularly in the frontal and parietal lobes, despite distorted anatomy due to a lesion and/or previous resection. Our results indicate that there is strong correspondence between terminations of the arcuate fasciculus and speech errors. This indicates that white matter anatomy may be a robust marker for identifying functionally eloquent cortex, particularly in the frontal and parietal lobe. This knowledge may improve targets for preoperative mapping of language in the neurosurgical setting.
Collapse
Affiliation(s)
- Davide Giampiccolo
- Department of Neurosurgery, Verona University Hospital, University of Verona, Verona, Italy
- Department of Neurosurgery, Charité University Hospital, Berlin, Germany
| | | | - Ina Bährend
- Department of Neurosurgery, Charité University Hospital, Berlin, Germany
| | - Heike Schneider
- Department of Neurosurgery, Charité University Hospital, Berlin, Germany
| | - Giovanni Raffa
- Department of Neurosurgery, Messina University Hospital, Italy
| | - Tizian Rosenstock
- Department of Neurosurgery, Charité University Hospital, Berlin, Germany
| | - Francesco Vergani
- Department of Neurosurgery, King’s College Hospital NHS Foundation Trust, London, UK
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité University Hospital, Berlin, Germany
| | - Thomas Picht
- Department of Neurosurgery, Charité University Hospital, Berlin, Germany
| |
Collapse
|
16
|
Dragoy O, Zyryanov A, Bronov O, Gordeyeva E, Gronskaya N, Kryuchkova O, Klyuev E, Kopachev D, Medyanik I, Mishnyakova L, Pedyash N, Pronin I, Reutov A, Sitnikov A, Stupina E, Yashin K, Zhirnova V, Zuev A. Functional linguistic specificity of the left frontal aslant tract for spontaneous speech fluency: Evidence from intraoperative language mapping. BRAIN AND LANGUAGE 2020; 208:104836. [PMID: 32673898 DOI: 10.1016/j.bandl.2020.104836] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 05/22/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
The left frontal aslant tract (FAT) has been proposed to be relevant for language, and specifically for spontaneous speech fluency. However, there is missing causal evidence that stimulation of the FAT affects spontaneous speech, and not language production in general. We present a series of 12 neurosurgical cases with awake language mapping of the cortex near the left FAT. Tasks for language mapping included the commonly used action picture naming, and sentence completion, tapping more specifically into spontaneous speech. A task dissociation was found in 10 participants: while being stimulated on specific sites, they were able to name a picture but could not complete a sentence. Overlaying of these sites on preoperative white-matter tract reconstructions revealed that in each individual case they were located on cortical terminations of the FAT. This corroborates the language functional specificity of the left FAT as a tract underlying fluent spontaneous speech.
Collapse
Affiliation(s)
- Olga Dragoy
- Center for Language and Brain, National Research University Higher School of Economics, Moscow, Russia.
| | - Andrey Zyryanov
- Center for Language and Brain, National Research University Higher School of Economics, Moscow, Russia
| | - Oleg Bronov
- Department of Radiology, National Medical and Surgical Center Named after N. I. Pirogov, Moscow, Russia
| | - Elizaveta Gordeyeva
- Center for Language and Brain, National Research University Higher School of Economics, Moscow, Russia
| | - Natalya Gronskaya
- Faculty of Humanities, National Research University Higher School of Economics, Nizhny Novgorod, Russia
| | - Oksana Kryuchkova
- Department of Radiology, Central Clinical Hospital with Outpatient Health Center of the Business Administration for the President of the Russian Federation, Moscow, Russia
| | - Evgenij Klyuev
- Department of Radiology, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Dmitry Kopachev
- Department of Neurosurgery, National Medical Research Center for Neurosurgery Named after N. N. Burdenko, Moscow, Russia
| | - Igor Medyanik
- Department of Neurosurgery, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Lidiya Mishnyakova
- Department of Neurosurgery, Federal Centre of Treatment and Rehabilitation of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Nikita Pedyash
- Department of Neurosurgery, National Medical and Surgical Center Named after N. I. Pirogov, Moscow, Russia
| | - Igor Pronin
- Department of Neuroradiology, National Medical Research Center for Neurosurgery Named after N. N. Burdenko, Moscow, Russia
| | - Andrey Reutov
- Department of Neurosurgery, Central Clinical Hospital with Outpatient Health Center of the Business Administration for the President of the Russian Federation, Moscow, Russia
| | - Andrey Sitnikov
- Department of Neurosurgery, Federal Centre of Treatment and Rehabilitation of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Ekaterina Stupina
- Center for Language and Brain, National Research University Higher School of Economics, Moscow, Russia
| | - Konstantin Yashin
- Department of Neurosurgery, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Valeriya Zhirnova
- Center for Language and Brain, National Research University Higher School of Economics, Moscow, Russia
| | - Andrey Zuev
- Department of Neurosurgery, National Medical and Surgical Center Named after N. I. Pirogov, Moscow, Russia
| |
Collapse
|
17
|
Torres-Prioris MJ, López-Barroso D, Càmara E, Fittipaldi S, Sedeño L, Ibáñez A, Berthier ML, García AM. Neurocognitive signatures of phonemic sequencing in expert backward speakers. Sci Rep 2020; 10:10621. [PMID: 32606382 PMCID: PMC7326922 DOI: 10.1038/s41598-020-67551-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/10/2020] [Indexed: 11/09/2022] Open
Abstract
Despite its prolific growth, neurolinguistic research on phonemic sequencing has largely neglected the study of individuals with highly developed skills in this domain. To bridge this gap, we report multidimensional signatures of two experts in backward speech, that is, the capacity to produce utterances by reversing the order of phonemes while retaining their identity. Our approach included behavioral assessments of backward and forward speech alongside neuroimaging measures of voxel-based morphometry, diffusion tensor imaging, and resting-state functional connectivity. Relative to controls, both backward speakers exhibited behavioral advantages for reversing words and sentences of varying complexity, irrespective of working memory skills. These patterns were accompanied by increased grey matter volume, higher mean diffusivity, and enhanced functional connectivity along dorsal and ventral stream regions mediating phonological and other linguistic operations, with complementary support of areas subserving associative-visual and domain-general processes. Still, the specific loci of these neural patterns differed between both subjects, suggesting individual variability in the correlates of expert backward speech. Taken together, our results offer new vistas on the domain of phonemic sequencing, while illuminating neuroplastic patterns underlying extraordinary language abilities.
Collapse
Affiliation(s)
- María José Torres-Prioris
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, Malaga, Spain.,Area of Psychobiology, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - Diana López-Barroso
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, Malaga, Spain.,Area of Psychobiology, Faculty of Psychology and Speech Therapy, University of Malaga, Malaga, Spain
| | - Estela Càmara
- Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sol Fittipaldi
- Universidad de San Andrés, Vito Dumas 284, B1644BID Victoria, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Lucas Sedeño
- National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - Agustín Ibáñez
- Universidad de San Andrés, Vito Dumas 284, B1644BID Victoria, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina.,Universidad Autónoma del Caribe, Barranquilla, Colombia.,Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibáñez, Santiago, Chile.,Global Brain Health Institute, University of California, San Francisco, United States
| | - Marcelo L Berthier
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, Malaga, Spain
| | - Adolfo M García
- Universidad de San Andrés, Vito Dumas 284, B1644BID Victoria, Buenos Aires, Argentina. .,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina. .,Global Brain Health Institute, University of California, San Francisco, United States. .,Faculty of Education, National University of Cuyo (UNCuyo), Mendoza, Argentina. .,Departamento de Lingüística Y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
18
|
Sefcikova V, Sporrer JK, Ekert JO, Kirkman MA, Samandouras G. High Interrater Variability in Intraoperative Language Testing and Interpretation in Awake Brain Mapping Among Neurosurgeons or Neuropsychologists: An Emerging Need for Standardization. World Neurosurg 2020; 141:e651-e660. [PMID: 32522656 DOI: 10.1016/j.wneu.2020.05.250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Brain mapping with direct electric stimulation is considered the gold standard for maximum safe resection of tumors affecting eloquent regions. However, no consensus exists in selection and interpretation of intraoperative testing for language and other cognitive domains. Our aim was to capture and statistically analyze variability in practices in intraoperative language testing among neurosurgeons and neuropsychologists in the United States, Europe, and the rest of the world. METHODS An electronic questionnaire was developed by a multidisciplinary team at Queen Square, London, and distributed internationally through selected organized societies. The survey included 2 domains: terminology and common understanding of clinical deficits; and selection of intraoperative tests used per specific brain region. Participants were stratified by specialty, years of experience, and monthly caseload. Data were analyzed using Krippendorff α, Wilcoxon rank sum test, and Kruskal-Wallis analysis of variance. RESULTS A total of 137 specialists participated. A low agreement was recorded for each of the 20 questions (Krippendorff α = -0.023 to 0.312). Further subgroup analysis revealed low interrater reliability independent of specialism (neurosurgeons, α = 0.013-0.318 compared with nonneurosurgeons, α = -0.021 to 0.398; P = 0.808) and years of experience (<1 years, α = -0.003 to 0.282; 2-5 years, α = 0.009-0.327; 6-10 years, α = 0.003-0.234; and >10 years, α = -0.003 to 0.372; P = 0.200). CONCLUSIONS The current study documents high interrater variability, regardless of specialism and years of experience in the cohort of neurosurgeons and language specialists surveyed and may be applicable to a wider group of specialists, indicating the need to reduce interobserver, interinstitutional and interspecialty variability, reach consensus, and increase the validity, interpretation, and predictive power of intraoperative mapping.
Collapse
Affiliation(s)
- Viktoria Sefcikova
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Juliana K Sporrer
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Justyna O Ekert
- Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| | - Matthew A Kirkman
- Victor Horsley Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - George Samandouras
- UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Victor Horsley Department of Neurosurgery, The National Hospital for Neurology and Neurosurgery, London, United Kingdom.
| |
Collapse
|
19
|
Origin and evolution of human speech: Emergence from a trimodal auditory, visual and vocal network. PROGRESS IN BRAIN RESEARCH 2019; 250:345-371. [PMID: 31703907 DOI: 10.1016/bs.pbr.2019.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In recent years, there have been important additions to the classical model of speech processing as originally depicted by the Broca-Wernicke model consisting of an anterior, productive region and a posterior, perceptive region, both connected via the arcuate fasciculus. The modern view implies a separation into a dorsal and a ventral pathway conveying different kinds of linguistic information, which parallels the organization of the visual system. Furthermore, this organization is highly conserved in evolution and can be seen as the neural scaffolding from which the speech networks originated. In this chapter we emphasize that the speech networks are embedded in a multimodal system encompassing audio-vocal and visuo-vocal connections, which can be referred to an ancestral audio-visuo-motor pathway present in nonhuman primates. Likewise, we propose a trimodal repertoire for speech processing and acquisition involving auditory, visual and motor representations of the basic elements of speech: phoneme, observation of mouth movements, and articulatory processes. Finally, we discuss this proposal in the context of a scenario for early speech acquisition in infants and in human evolution.
Collapse
|