1
|
Zhang P, Feng S, Zhang Q, Chen Y, Liu Y, Liu T, Bai X, Yin J. Online chasing action recruits both mirror neuron and mentalizing systems: A pilot fNIRS study. Acta Psychol (Amst) 2024; 248:104363. [PMID: 38905953 DOI: 10.1016/j.actpsy.2024.104363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/28/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024] Open
Abstract
Engaging in chasing, where an actor actively pursues a target, is considered a crucial activity for the development of social skills. Previous studies have focused predominantly on understanding the neural correlates of chasing from an observer's perspective, but the neural mechanisms underlying the real-time implementation of chasing action remain poorly understood. To gain deeper insights into this phenomenon, the current study employed functional near-infrared spectroscopy (fNIRS) techniques and a novel interactive game. In this interactive game, participants (N = 29) were tasked to engage in chasing behavior by controlling an on-screen character using a gamepad, with the goal of catching a virtual partner. To specifically examine the brain activations associated with the interactive nature of chasing, we included two additional interactive actions: following action of following the path of a virtual partner and free action of moving without a specific pursuit goal. The results revealed that chasing and following actions elicited activation in a broad and overlapping network of brain regions, including the temporoparietal junction (TPJ), medial prefrontal cortex (mPFC), premotor cortex (PMC), primary somatosensory cortex (SI), and primary motor cortex (M1). Crucially, these regions were found to be modulated by the type of interaction, with greater activation and functional connectivity during the chasing interaction than during the following and free interactions. These findings suggested that both the MNS, encompassing regions such as the PMC, M1 and SI, and the mentalizing system (MS), involving the TPJ and mPFC, contribute to the execution of online chasing actions. Thus, the present study represents an initial step toward future investigations into the roles of MNS and MS in real-time chasing interactions.
Collapse
Affiliation(s)
- Peng Zhang
- Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
| | - Shuyuan Feng
- Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
| | - Qihan Zhang
- Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
| | - Yixin Chen
- Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
| | - Yu Liu
- Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China
| | - Tao Liu
- School of Management, Shanghai University, Shanghai, China
| | - Xuejun Bai
- Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China.
| | - Jun Yin
- Department of Psychology, Ningbo University, Ningbo, China.
| |
Collapse
|
2
|
Liu C, You J, Wang K, Zhang S, Huang Y, Xu M, Ming D. Decoding the EEG patterns induced by sequential finger movement for brain-computer interfaces. Front Neurosci 2023; 17:1180471. [PMID: 37706155 PMCID: PMC10495835 DOI: 10.3389/fnins.2023.1180471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/26/2023] [Indexed: 09/15/2023] Open
Abstract
Objective In recent years, motor imagery-based brain-computer interfaces (MI-BCIs) have developed rapidly due to their great potential in neurological rehabilitation. However, the controllable instruction set limits its application in daily life. To extend the instruction set, we proposed a novel movement-intention encoding paradigm based on sequential finger movement. Approach Ten subjects participated in the offline experiment. During the experiment, they were required to press a key sequentially [i.e., Left→Left (LL), Right→Right (RR), Left→Right (LR), and Right→Left (RL)] using the left or right index finger at about 1 s intervals under an auditory prompt of 1 Hz. The movement-related cortical potential (MRCP) and event-related desynchronization (ERD) features were used to investigate the electroencephalography (EEG) variation induced by the sequential finger movement tasks. Twelve subjects participated in an online experiment to verify the feasibility of the proposed paradigm. Main results As a result, both the MRCP and ERD features showed the specific temporal-spatial EEG patterns of different sequential finger movement tasks. For the offline experiment, the average classification accuracy of the four tasks was 71.69%, with the highest accuracy of 79.26%. For the online experiment, the average accuracies were 83.33% and 82.71% for LL-versus-RR and LR-versus-RL, respectively. Significance This paper demonstrated the feasibility of the proposed sequential finger movement paradigm through offline and online experiments. This study would be helpful for optimizing the encoding method of motor-related EEG information and providing a promising approach to extending the instruction set of the movement intention-based BCIs.
Collapse
Affiliation(s)
- Chang Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Jia You
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Kun Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Shanshan Zhang
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Yining Huang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Minpeng Xu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- International School for Optoelectronic Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- School of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| |
Collapse
|
3
|
Su WC, Dashtestani H, Miguel HO, Condy E, Buckley A, Park S, Perreault JB, Nguyen T, Zeytinoglu S, Millerhagen J, Fox N, Gandjbakhche A. Simultaneous multimodal fNIRS-EEG recordings reveal new insights in neural activity during motor execution, observation, and imagery. Sci Rep 2023; 13:5151. [PMID: 36991003 PMCID: PMC10060581 DOI: 10.1038/s41598-023-31609-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Motor execution, observation, and imagery are important skills used in motor learning and rehabilitation. The neural mechanisms underlying these cognitive-motor processes are still poorly understood. We used a simultaneous recording of functional near-infrared spectroscopy (fNIRS) and electroencephalogram (EEG) to elucidate the differences in neural activity across three conditions requiring these processes. Additionally, we used a new method called structured sparse multiset Canonical Correlation Analysis (ssmCCA) to fuse the fNIRS and EEG data and determine the brain regions of neural activity consistently detected by both modalities. Unimodal analyses revealed differentiated activation between conditions; however, the activated regions did not fully overlap across the two modalities (fNIRS: left angular gyrus, right supramarginal gyrus, as well as right superior and inferior parietal lobes; EEG: bilateral central, right frontal, and parietal). These discrepancies might be because fNIRS and EEG detect different signals. Using fused fNIRS-EEG data, we consistently found activation over the left inferior parietal lobe, superior marginal gyrus, and post-central gyrus during all three conditions, suggesting that our multimodal approach identifies a shared neural region associated with the Action Observation Network (AON). This study highlights the strengths of using the multimodal fNIRS-EEG fusion technique for studying AON. Neural researchers should consider using the multimodal approach to validate their findings.
Collapse
Affiliation(s)
- Wan-Chun Su
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, USA
| | - Hadis Dashtestani
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, USA
| | - Helga O Miguel
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, USA
| | - Emma Condy
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, USA
| | - Aaron Buckley
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, USA
| | - Soongho Park
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, USA
| | - John B Perreault
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, USA
| | - Thien Nguyen
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, USA
| | - Selin Zeytinoglu
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD, USA
| | - John Millerhagen
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, USA
| | - Nathan Fox
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD, USA
| | - Amir Gandjbakhche
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Song Q, Cheng X, Zheng R, Yang J, Wu H. Effects of different exercise intensities of race-walking on brain functional connectivity as assessed by functional near-infrared spectroscopy. Front Hum Neurosci 2022; 16:1002793. [PMID: 36310841 PMCID: PMC9614086 DOI: 10.3389/fnhum.2022.1002793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/28/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction Race-walking is a sport that mimics normal walking and running. Previous studies on sports science mainly focused on the cardiovascular and musculoskeletal systems. However, there is still a lack of research on the central nervous system, especially the real-time changes in brain network characteristics during race-walking exercise. This study aimed to use a network perspective to investigate the effects of different exercise intensities on brain functional connectivity. Materials and methods A total of 16 right-handed healthy young athletes were recruited as participants in this study. The cerebral cortex concentration of oxyhemoglobin was measured by functional near-infrared spectroscopy in the bilateral prefrontal cortex (PFC), the motor cortex (MC) and occipital cortex (OC) during resting and race-walking states. Three specific periods as time windows corresponding to different exercise intensities were divided from the race-walking time of participants, including initial, intermediate and sprint stages. The brain activation and functional connectivity (FC) were calculated to describe the 0.01-0.1 Hz frequency-specific cortical activities. Results Compared to the resting state, FC changes mainly exist between MC and OC in the initial stage, while PFC was involved in FC changes in the intermediate stage, and FC changes in the sprint stage were widely present in PFC, MC and OC. In addition, from the initial-development to the sprint stage, the significant changes in FC were displayed in PFC and MC. Conclusion This brain functional connectivity-based study confirmed that hemodynamic changes at different exercise intensities reflected different brain network-specific characteristics. During race-walking exercise, more extensive brain activation might increase information processing speed. Increased exercise intensity could facilitate the integration of neural signals such as proprioception, motor control and motor planning, which may be an important factor for athletes to maintain sustained motor coordination and activity control at high intensity. This study was beneficial to understanding the neural mechanisms of brain networks under different exercise intensities.
Collapse
Affiliation(s)
- Qianqian Song
- Capital University of Physical Education and Sports, Beijing, China
- School of Physical Education, Yanshan University, Qinhuangdao, China
| | - Xiaodong Cheng
- Capital University of Physical Education and Sports, Beijing, China
| | - Rongna Zheng
- School of Physical Education, Ludong University, Yantai, China
| | - Jie Yang
- School of Physical Education, Ludong University, Yantai, China
- Jie Yang,
| | - Hao Wu
- Capital University of Physical Education and Sports, Beijing, China
- *Correspondence: Hao Wu,
| |
Collapse
|
5
|
Yao L, Sun G, Wang J, Hai Y. Effects of Baduanjin imagery and exercise on cognitive function in the elderly: A functional near-infrared spectroscopy study. Front Public Health 2022; 10:968642. [PMID: 36249264 PMCID: PMC9557749 DOI: 10.3389/fpubh.2022.968642] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/12/2022] [Indexed: 01/25/2023] Open
Abstract
Objective Cognitive function is essential in ensuring the quality of life of the elderly. This study aimed to investigate the effects of Baduanjin imagery and Baduanjin movement (a traditional Chinese health exercise, TCHE) on cognitive function in the elderly using functional near-infrared spectroscopy (fNIRS). Methods 72 participants with a mean age of 66.92 years (SD = 4.77) were recruited for this study. The participants were randomly assigned to three groups: the Baduanjin imagery, the Baduanjin exercise, and the Control. Stroop task was used to record the accuracy and reaction times, and a near-infrared spectral brain imaging system was used to monitor the brain's oxy-hemoglobin concentration responses. Results (1) For the reaction times of Stroop incongruent tasks, the main effect of the test phase (F = 114.076, p < 0.001) and the interaction effect between test phase and group (F = 10.533, p < 0.001) were all significant. The simple effect analysis further demonstrated that the reaction times of the Baduanjin imagery group and Baduanjin exercise group in the post-test was faster than that in the pre-test (ps < 0.001); (2) Analysis of fNIRS data showed the significant interaction effect (F = 2.554, p = 0.013) between the test phase and group in the left dorsolateral prefrontal cortex. Further analysis showed that, during the post-test incongruent tasks, the oxy-Hb variations were significantly higher in participants of the Baduanjin imagery group (p = 0.005) and Baduanjin exercise group (p = 0.002) than in the control group; For the right inferior frontal gyrus, the interaction between the test phase and group was significant (F = 2.060, p = 0.044). Further analysis showed that, during the post-test incongruent tasks, the oxy-Hb variations were significantly higher in participants of the Baduanjin imagery group than in the control group (p = 0.001). Conclusion Baduanjin imagery and exercise positively affect cognitive performance; Baduanjin imagery and exercise activated the left dorsolateral prefrontal cortex; Baduanjin imagery activated the right inferior frontal gyrus, while Baduanjin exercise could not.
Collapse
|
6
|
Zou Y, Li J, Fan Y, Zhang C, Kong Y. Functional near-infrared spectroscopy during motor imagery and motor execution in healthy adults. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:920-927. [PMID: 36039589 PMCID: PMC10930295 DOI: 10.11817/j.issn.1672-7347.2022.210689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Studies on the influence of motor imagery (MI) on brain structure and function are limited to traditional imaging techniques and the mechanism for MI therapy is not clear. By observing the brain activation mode during MI and motor execution (ME) in healthy adults, this study aims to use near-infrared brain imaging technology to provide theoretical basis for the treatment of MI. METHODS A total of 30 healthy adults recruited to the public from June 2021 to August 2021. The MI and ME of the right knee movement served as the task mode. Block design was repeated 5 times alternately in a 20 s task period and a 30 s resting period. The activation patterns of brain regions were compared between the 2 tasks, and the regression coefficient was calculated to reflect the activation intensity of each brain region by Nirspark and SPSS 23.0 softwares. RESULTS Lane 2, 3, 4, 5, 7, 9, 19, 20, 21, 24, 25, 26, 27, 32, 33, and 34 were significantly activated during the ME task (P<0.05, corrected by FDR) and lane 2, 5, 9, 16, 27, 29, 33, 34, and 35 were significantly activated during the MI task (P<0.05, corrected by FDR). According to the channel brain region registration information, the brain region activation pattern was similar during both MI and ME tasks in healthy adults, including left primary motor cortex (LM1), left primary sensory cortex (LS1), prefrontal pole, Broca area, and right supramarginal gyrus. Both LM1 and left pre-motor cortex (LPMC) were activated during MI in healthy adults, whereas dorsolateral prefrontal cortex (DLPFC) and only LM1 of the motor region were activated during ME. Compared to MI, the activation intensity of left sensory and left motor cortex was significantly enhanced in ME, and that of left and right prefrontal cortex especially left and right pars triangularis Broca's area (P<0.001, corrected by FDR) were significantly enhanced. CONCLUSIONS The rationality of MI therapy is proved by functional near-infrared spectroscopy. The involvement of DLPFC in motor decision-making may regulate the two-way feedback of premoter cortex-M1 during ME; and Broca area, closely related to the motor program understanding, participates in MI and ME.
Collapse
Affiliation(s)
- Ying Zou
- Medical School, Yueyang Vocational Technical College, Yueyang Hunan 414000.
| | - Jing Li
- Department of Rehabilitation, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yongmei Fan
- Department of Rehabilitation, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Changjie Zhang
- Department of Rehabilitation, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Ying Kong
- Department of Rehabilitation, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
7
|
Wang S, Lu S. Brain Functional Connectivity in the Resting State and the Exercise State in Elite Tai Chi Chuan Athletes: An fNIRS Study. Front Hum Neurosci 2022; 16:913108. [PMID: 35782040 PMCID: PMC9243259 DOI: 10.3389/fnhum.2022.913108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
This study aimed to reveal the characteristics of multi-circuit brain synergy between elite tai chi chuan athletes in resting and exercise states and to provide neuroimaging evidence of improvements in brain function by motor skill training. Functional near-infrared spectroscopy (fNIRS) was used to compare the brain activity of professional tai chi chuan athletes (expert group) and beginners (novice group) in resting and exercise states, and to assess functional connectivity (FC) between the prefrontal lobe and the sensorimotor zone. In the resting state, the FC between the left prefrontal lobe and the right sensorimotor area in the expert group was significantly lower than that in the novice group (P < 0.05). In the exercise state, the patterns of FC between the left prefrontal lobe and right sensorimotor area, the right prefrontal lobe and left sensorimotor area, and the left and right sensorimotor areas in the expert group were significantly lower than that in the novice group (P < 0.05). From the resting state to the locomotor state, the expert group experienced a greater absolute value of functional connection increment between the left prefrontal cortex and right sensorimotor area, and between the left sensorimotor area and right sensorimotor area (P < 0.05). This was positively correlated with the self-evaluation results of motor performance behavior. Under sports conditions, professional athletes’ multi-circuit brain FC strength is significantly reduced, and their elite motor skill performance supports the neural efficiency hypothesis. This may be related to the high adaptation of the brain to specific tasks and the improvement of the integration of somatic perception processing and motor function.
Collapse
Affiliation(s)
- Shilong Wang
- Wushu School of China, Beijing Sports University, Beijing, China
| | - Shengnan Lu
- College of Dance and Martial Arts, Capital University of Physical Education and Sport, Beijing, China
- *Correspondence: Shengnan Lu
| |
Collapse
|
8
|
Khaksari K, Smith EG, Miguel HO, Zeytinoglu S, Fox N, Gandjbakhche AH. An fNIRS Study of Brain Lateralization During Observation and Execution of a Fine Motor Task. Front Hum Neurosci 2022; 15:798870. [PMID: 35153703 PMCID: PMC8825352 DOI: 10.3389/fnhum.2021.798870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/28/2021] [Indexed: 11/21/2022] Open
Abstract
Brain activity in the action observation network (AON) is lateralized during action execution, with greater activation in the contralateral hemisphere to the side of the body used to perform the task. However, it is unknown whether the AON is also lateralized when watching another person perform an action. In this study, we use fNIRS to measure brain activity over the left and right cortex while participants completed actions with their left and right hands and watched an actor complete action with their left and right hands. We show that while activation is lateralized when the participants themselves are moving, brain lateralization is not affected by the side of the body when the participant is observing another person's action. In addition, we demonstrate that individual differences in hand preference and dexterity between the right and left hands are related to brain lateralization patterns.
Collapse
Affiliation(s)
- Kosar Khaksari
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Elizabeth G. Smith
- Department of Behavioral Medicine and Clinical Psychology, Cincinnati Children’s Hospital, Cincinnati, OH, United States
| | - Helga O. Miguel
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Selin Zeytinoglu
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD, United States
| | - Nathan Fox
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD, United States
| | - Amir H. Gandjbakhche
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
9
|
Miguel HO, Condy EE, Nguyen T, Zeytinoglu S, Blick E, Bress K, Khaksari K, Dashtestani H, Millerhagen J, Shahmohammadi S, Fox NA, Gandjbakhche A. Cerebral hemodynamic response during a live action-observation and action-execution task: A fNIRS study. PLoS One 2021; 16:e0253788. [PMID: 34388157 PMCID: PMC8362964 DOI: 10.1371/journal.pone.0253788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/14/2021] [Indexed: 11/25/2022] Open
Abstract
Although many studies have examined the location of the action observation network (AON) in human adults, the shared neural correlates of action-observation and action-execution are still unclear partially due to lack of ecologically valid neuroimaging measures. In this study, we aim to demonstrate the feasibility of using functional near infrared spectroscopy (fNIRS) to measure the neural correlates of action-observation and action execution regions during a live task. Thirty adults reached for objects or observed an experimenter reaching for objects while their cerebral hemodynamic responses including oxy-hemoglobin (HbO) and deoxy-hemoglobin (HbR) were recorded in the sensorimotor and parietal regions. Our results indicated that the parietal regions, including bilateral superior parietal lobule (SPL), bilateral inferior parietal lobule (IPL), right supra-marginal region (SMG) and right angular gyrus (AG) share neural activity during action-observation and action-execution. Our findings confirm the applicability of fNIRS for the study of the AON and lay the foundation for future work with developmental and clinical populations.
Collapse
Affiliation(s)
- Helga O. Miguel
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Emma E. Condy
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Thien Nguyen
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Selin Zeytinoglu
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, Maryland, United States of America
| | - Emily Blick
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kimberly Bress
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kosar Khaksari
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hadis Dashtestani
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - John Millerhagen
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sheida Shahmohammadi
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nathan A. Fox
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, Maryland, United States of America
| | - Amir Gandjbakhche
- National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
10
|
Condy EE, Miguel HO, Millerhagen J, Harrison D, Khaksari K, Fox N, Gandjbakhche A. Characterizing the Action-Observation Network Through Functional Near-Infrared Spectroscopy: A Review. Front Hum Neurosci 2021; 15:627983. [PMID: 33679349 PMCID: PMC7930074 DOI: 10.3389/fnhum.2021.627983] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/18/2021] [Indexed: 12/19/2022] Open
Abstract
Functional near-infrared spectroscopy (fNIRS) is a neuroimaging technique that has undergone tremendous growth over the last decade due to methodological advantages over other measures of brain activation. The action-observation network (AON), a system of brain structures proposed to have “mirroring” abilities (e.g., active when an individual completes an action or when they observe another complete that action), has been studied in humans through neural measures such as fMRI and electroencephalogram (EEG); however, limitations of these methods are problematic for AON paradigms. For this reason, fNIRS is proposed as a solution to investigating the AON in humans. The present review article briefly summarizes previous neural findings in the AON and examines the state of AON research using fNIRS in adults. A total of 14 fNIRS articles are discussed, paying particular attention to methodological choices and considerations while summarizing the general findings to aid in developing better protocols to study the AON through fNIRS. Additionally, future directions of this work are discussed, specifically in relation to researching AON development and potential multimodal imaging applications.
Collapse
Affiliation(s)
- Emma E Condy
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, United States
| | - Helga O Miguel
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, United States
| | - John Millerhagen
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, United States
| | - Doug Harrison
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, United States
| | - Kosar Khaksari
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, United States
| | - Nathan Fox
- Department of Human Development and Quantitative Methodology, University of Maryland, College Park, MD, United States
| | - Amir Gandjbakhche
- Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
11
|
Gu L, Yang R, Zhang Q, Zhang P, Bai X. Reinforcement-Sensitive Personality Traits Associated With Passion in Heterosexual Intimate Relationships: An fNIRS Investigation. Front Behav Neurosci 2020; 14:126. [PMID: 32792923 PMCID: PMC7385243 DOI: 10.3389/fnbeh.2020.00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/25/2020] [Indexed: 11/13/2022] Open
Abstract
According to the triangular theory of love, passion is an indispensable component of romantic love. Some brain imaging studies have shown that passionate arousal in intimate relationships is associated with the reward circuits in the brain. We hypothesized that the individual reward sensitivity trait is also related to passion in intimate relationships, and two separate studies were conducted in the present research. In the first study, 558 college students who were currently in love were selected as participants. The correlation between intimacy and reinforcement sensitivity in individuals identifying as heterosexual was explored using the Sensitivity to Punishment and Sensitivity to Reward Questionnaire, the Passionate Love Scale, and the Triangular Love Scale. In the second study, participants were 42 college students who were also currently in love. Functional near-infrared spectroscopy (fNIRS) was adopted to explore the neurophysiological interaction between reward sensitivity and emotional arousal induced in participants when presented a photograph of their partner, a friend, or a stranger. The results showed that reward sensitivity was positively correlated with passion, and punishment sensitivity was negatively correlated with intimacy and commitment. Significant interactions between reward sensitivity and photograph type were found, and the triangular part of the inferior frontal gyrus showed a particular relevance to the reward-sensitive personality trait toward partners. Overall, the findings support reinforcement sensitivity theory and suggest that reinforcement-sensitive personality traits (personality traits of reward and punishment sensitivity) are associated with all three components of love, with only reward sensitivity being related to passion.
Collapse
Affiliation(s)
- Li Gu
- Department of Psychology, School of Humanities and Management, Guangdong Medical University, Dongguan, China.,Faculty of Psychology, Tianjin Normal University, Tianjin, China.,Center of Collaborative Innovation for Assessment and Promotion of Mental Health, Tianjin, China
| | - Ruoxi Yang
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Qihan Zhang
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Peng Zhang
- Faculty of Psychology, Tianjin Normal University, Tianjin, China
| | - Xuejun Bai
- Faculty of Psychology, Tianjin Normal University, Tianjin, China.,Center of Collaborative Innovation for Assessment and Promotion of Mental Health, Tianjin, China
| |
Collapse
|