1
|
Chikhi S, Matton N, Sanna M, Blanchet S. Effects of one session of theta or high alpha neurofeedback on EEG activity and working memory. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:1065-1083. [PMID: 39322825 DOI: 10.3758/s13415-024-01218-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 09/27/2024]
Abstract
Neurofeedback techniques provide participants immediate feedback on neuronal signals, enabling them to modulate their brain activity. This technique holds promise to unveil brain-behavior relationship and offers opportunities for neuroenhancement. Establishing causal relationships between modulated brain activity and behavioral improvements requires rigorous experimental designs, including appropriate control groups and large samples. Our primary objective was to examine whether a single neurofeedback session, designed to enhance working memory through the modulation of theta or high-alpha frequencies, elicits specific changes in electrophysiological and cognitive outcomes. Additionally, we explored predictors of successful neuromodulation. A total of 101 healthy adults were assigned to groups trained to increase frontal theta, parietal high alpha, or random frequencies (active control group). We measured resting-state EEG, working memory performance, and self-reported psychological states before and after one neurofeedback session. Although our analyses revealed improvements in electrophysiological and behavioral outcomes, these gains were not specific to the experimental groups. An increase in the frequency targeted by the training has been observed for the theta and high alpha groups, but training designed to increase randomly selected frequencies appears to induce more generalized neuromodulation compared with targeting a specific frequency. Among all the predictors of neuromodulation examined, resting theta and high alpha amplitudes predicted specifically the increase of those frequencies during the training. These results highlight the challenge of integrating a control group based on enhancing randomly selected frequency bands and suggest potential avenues for optimizing interventions (e.g., by including a control group trained in both up- and down-regulation).
Collapse
Affiliation(s)
- Samy Chikhi
- Laboratoire Mémoire, Cerveau et Cognition, Université Paris Cité, F-92100, Boulogne-Billancourt, France.
- Integrative Neuroscience and Cognition Center, Université Paris Cité, F-75006, Paris, France.
| | - Nadine Matton
- CLLE - Cognition, Langues, Langage, Ergonomie, Université de Toulouse, Toulouse, France
- Fédération ENAC ISAE-SUPAERO ONERA, Université de Toulouse, Toulouse, France
| | - Marie Sanna
- Laboratoire Mémoire, Cerveau et Cognition, Université Paris Cité, F-92100, Boulogne-Billancourt, France
| | - Sophie Blanchet
- Laboratoire Mémoire, Cerveau et Cognition, Université Paris Cité, F-92100, Boulogne-Billancourt, France
| |
Collapse
|
2
|
Tanaka M, Battaglia S, Giménez-Llort L, Chen C, Hepsomali P, Avenanti A, Vécsei L. Innovation at the Intersection: Emerging Translational Research in Neurology and Psychiatry. Cells 2024; 13:790. [PMID: 38786014 PMCID: PMC11120114 DOI: 10.3390/cells13100790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
Translational research in neurological and psychiatric diseases is a rapidly advancing field that promises to redefine our approach to these complex conditions [...].
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
| | - Simone Battaglia
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology “Renzo Canestrari”, Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy;
- Department of Psychology, University of Turin, 10124 Turin, Italy
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain;
- Department of Psychiatry & Forensic Medicine, Faculty of Medicine, Campus Bellaterra, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Chong Chen
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi 755-8505, Japan;
| | - Piril Hepsomali
- School of Psychology and Clinical Language Sciences, University of Reading, Reading RG6 6ET, UK;
| | - Alessio Avenanti
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology “Renzo Canestrari”, Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy;
- Neuropsychology and Cognitive Neuroscience Research Center (CINPSI Neurocog), Universidad Católica del Maule, Talca 3460000, Chile
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
3
|
Lee YS, Shim M, Choi GY, Kim SH, Lim W, Jeong JW, Jung YJ, Hwang HJ. Neuromodulatory feasibility of a current limiter-based tDCS device: a resting-state electroencephalography study. Biomed Eng Lett 2023; 13:407-415. [PMID: 37519870 PMCID: PMC10382376 DOI: 10.1007/s13534-023-00269-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/02/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Recently, we introduced a current limiter-based novel transcranial direct-current stimulation (tDCS) device that does not generate significant tDCS-induced electrical artifacts, thereby facilitating simultaneous electroencephalography (EEG) measurement during tDCS application. In this study, we investigated the neuromodulatory effect of the tDCS device using resting-state EEG data measured during tDCS application in terms of EEG power spectral densities (PSD) and brain network indices (clustering coefficient and path length). Resting-state EEG data were recorded from 10 healthy subjects during both eyes-open (EO) and eyes-closed (EC) states for each of five different conditions (baseline, sham, post-sham, tDCS, and post-tDCS). In the tDCS condition, tDCS was applied for 12 min with a current intensity of 1.5 mA, whereas tDCS was applied only for the first 30 s in the sham condition. EEG PSD and brain network indices were computed for the alpha frequency band most closely associated with resting-state EEG. Both alpha PSD and network indices were found to significantly increase during and after tDCS application compared to those of the baseline condition in the EO state, but not in the EC state owing to the ceiling effect. Our results demonstrate the neuromodulatory effect of the tDCS device that does not generate significant tDCS-induced electrical artifacts, thereby allowing simultaneous measurement of electrical brain activity. We expect our novel tDCS device to be practically useful in exploring the impact of tDCS on neuromodulation more precisely using ongoing EEG data simultaneously measured during tDCS application.
Collapse
Affiliation(s)
- Yun-Sung Lee
- Department of Electronics and Information, Korea University, 30019 Sejong, Republic of Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, Republic of Korea
| | - Miseon Shim
- Department of Electronics and Information, Korea University, 30019 Sejong, Republic of Korea
| | - Ga-Young Choi
- Department of Electronics and Information, Korea University, 30019 Sejong, Republic of Korea
| | - Sang Ho Kim
- Department of Industrial Engineering, Kumoh National Institute of Technology, 39177 Gumi, Republic of Korea
| | - Wansu Lim
- Department of Aeronautics, Mechanical, and Electronic Convergence Engineering, Kumoh National Institute of Technology, 39177 Gumi, Republic of Korea
| | - Jin-Woo Jeong
- Department of Data Science, Seoul National University of Science and Technology, 01811 Seoul, Republic of Korea
| | - Young-Jin Jung
- School of Healthcare and Biomedical Engineering, Chonnam National University, 59626 Yeosu, Republic of Korea
- 50, Daehak-ro, 59626 Yeosu-si, Jeollanam-do Republic of Korea
| | - Han-Jeong Hwang
- Department of Electronics and Information, Korea University, 30019 Sejong, Republic of Korea
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, Republic of Korea
- Sejong-ro, Jochiwon-eup, 2511, 30019 Sejong-si, Republic of Korea
| |
Collapse
|
4
|
Zhu Y, Wu D, Sun K, Chen X, Wang Y, He Y, Xiao W. Alpha and Theta Oscillations Are Causally Linked to Interference Inhibition: Evidence from High-Definition Transcranial Alternating Current Stimulation. Brain Sci 2023; 13:1026. [PMID: 37508958 PMCID: PMC10377194 DOI: 10.3390/brainsci13071026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/13/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: The Go/NoGo task and color-word Stroop task were used to investigate the effect of applying different frequency bands of neural oscillations to the lDLPFC on inhibitory control modulation. (2) Methods: Participants were randomly categorized into four groups and received HD-tACS at 6, 10, and 20 Hz or sham stimulation at 1.5 mA for 20 min. All participants performed a color-word Stroop task and Go/NoGo task before and immediately after the stimulation; closed-eye resting-state EEG signals were acquired for 3 min before and after the tasks. (3) Results: There were no significant differences in the Go/NoGo behavioral indices task across the four groups. In the color-word Stroop task, the Stroop effect of response time was significantly reduced by 6 and 10 Hz stimulations compared to sham stimulation, and the Stroop effect of accuracy was significantly reduced by 10 Hz stimulation. There were no significant differences in the frequency range-specific (delta, theta, alpha, beta, or gamma) resting EEG power before and after stimulation. (4) Conclusions: HD-tACS at 6 and 10 Hz effectively improved participants' performance on the color-word Stroop task, demonstrating the importance of the lDLPFC in interference inhibition and supporting a causal relationship between theta and alpha oscillations in interference inhibition.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Di Wu
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Kewei Sun
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Xianglong Chen
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Yifan Wang
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Yang He
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| | - Wei Xiao
- Department of Military Medical Psychology, Air Force Medical University, Xi'an 710032, China
| |
Collapse
|
5
|
Jones KT, Ostrand AE, Gazzaley A, Zanto TP. Enhancing cognitive control in amnestic mild cognitive impairment via at-home non-invasive neuromodulation in a randomized trial. Sci Rep 2023; 13:7435. [PMID: 37156876 PMCID: PMC10167304 DOI: 10.1038/s41598-023-34582-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 05/03/2023] [Indexed: 05/10/2023] Open
Abstract
Individuals with multi-domain amnestic mild cognitive impairment (md-aMCI) have an elevated risk of dementia and need interventions that may retain or remediate cognitive function. In a feasibility pilot study, 30 older adults aged 60-80 years with md-aMCI were randomized to 8 sessions of transcranial alternating current stimulation (tACS) with simultaneous cognitive control training (CCT). The intervention took place within the participant's home without direct researcher assistance. Half of the participants received prefrontal theta tACS during CCT and the other half received control tACS. We observed high tolerability and adherence for at-home tACS + CCT. Within 1-week, only those who received theta tACS exhibited improved attentional abilities. Neuromodulation is feasible for in-home settings, which can be conducted by the patient, thereby enabling treatment in difficult to reach populations. TACS with CCT may facilitate cognitive control abilities in md-aMCI, but research in a larger population is needed to validate efficacy.
Collapse
Affiliation(s)
- Kevin T Jones
- Department of Neurology, University of California-San Francisco, 675 Nelson Rising Ln, San Francisco, CA, 94158, USA.
- Neuroscape, University of California-San Francisco, 675 Nelson Rising Ln, San Francisco, CA, 94158, USA.
- Sandler Neurosciences Center, 675 Nelson Rising Lane, San Francisco, CA, 94158, USA.
| | - Avery E Ostrand
- Department of Neurology, University of California-San Francisco, 675 Nelson Rising Ln, San Francisco, CA, 94158, USA
- Neuroscape, University of California-San Francisco, 675 Nelson Rising Ln, San Francisco, CA, 94158, USA
| | - Adam Gazzaley
- Department of Neurology, University of California-San Francisco, 675 Nelson Rising Ln, San Francisco, CA, 94158, USA
- Neuroscape, University of California-San Francisco, 675 Nelson Rising Ln, San Francisco, CA, 94158, USA
- Departments of Physiology and Psychiatry, University of California-San Francisco, 675 18th St, San Francisco, CA, 94143, USA
| | - Theodore P Zanto
- Department of Neurology, University of California-San Francisco, 675 Nelson Rising Ln, San Francisco, CA, 94158, USA
- Neuroscape, University of California-San Francisco, 675 Nelson Rising Ln, San Francisco, CA, 94158, USA
| |
Collapse
|
6
|
Perrey S. Probing the Promises of Noninvasive Transcranial Electrical Stimulation for Boosting Mental Performance in Sports. Brain Sci 2023; 13:brainsci13020282. [PMID: 36831825 PMCID: PMC9954379 DOI: 10.3390/brainsci13020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
While the importance of physical abilities is noncontested to perform in elite sport, more focus has recently been turned toward cognitive processes involved in sport performance. Practicing any sport requires a high demand of cognitive functioning including, but not limited to, decision-making, processing speed, working memory, perceptual processing, motor functioning, and attention. Noninvasive transcranial electrical stimulation (tES) has recently attracted considerable scientific interest due to its ability to modulate brain functioning. Neuromodulation apparently improves cognitive functions engaged in sports performance. This opinion manuscript aimed to reveal that tES is likely an adjunct ergogenic resource for improving cognitive processes, counteracting mental fatigue, and managing anxiety in elite athletes. Nevertheless, the first evidence is insufficient to guarantee its real effectiveness and benefits. All tES techniques could be add-ons to make performance-related cognitive functions more efficient and obtain better results. Modulating inhibitory control through tES over the frontal cortex might largely contribute to the improvement of mental performance. Nevertheless, studies in elite athletes are required to assess the long-term effects of tES application as an ergogenic aid in conjunction with other training methods (e.g., neurofeedback, mental imagery) where cognitive abilities are trainable.
Collapse
Affiliation(s)
- Stephane Perrey
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, 34090 Montpellier, France
| |
Collapse
|
7
|
Hao Z, He C, Ziqian Y, Haotian L, Xiaoli L. Neurofeedback training for children with ADHD using individual beta rhythm. Cogn Neurodyn 2022; 16:1323-1333. [PMID: 36408061 PMCID: PMC9666577 DOI: 10.1007/s11571-022-09798-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 11/29/2022] Open
Abstract
Neurofeedback training (NFT) is a noninvasive neuromodulation method for children with attention-deficit/hyperactivity disorder (ADHD). Brain rhythms, the unique pattern in electroencephalogram (EEG), are widely used as the training target. Most of current studies used a fixed frequency division of brain rhythms, which ignores the individual developmental difference of each child. In this study, we validated the feasibility of NFT using individual beta rhythm. A total of 55 children with ADHD were divided into two groups using the relative power of individual or fixed beta rhythms as the training index. ADHD rating scale (ADHD-RS) was completed before and after NFT, and the EEG and behavioral features were extracted during the training process. After intervention, the attention ability of both groups was significantly improved, showing a significant increase in beta power, a decrease in scores of ADHD-RS and an improvement in behavioral and other EEG features. The training effect was significantly better with individualized beta training, showing more improvement in ADHD-RS scores. Furthermore, the distribution of brain rhythms moved towards high frequency after intervention. This study demonstrates the effectiveness of NFT based on individual beta rhythm for the intervention of children with ADHD. When designing a NFT protocol and the corresponding data analysis process, an individualized brain rhythm division should be applied to reflect the actual brain state and to accurately evaluate the effect of NFT.
Collapse
Affiliation(s)
- Zhang Hao
- The State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875 China
| | - Chen He
- The State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875 China
- School of Systems Science, Beijing Normal University, Beijing, 100875 China
| | - Yuan Ziqian
- The State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875 China
| | - Liao Haotian
- The State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875 China
| | - Li Xiaoli
- The State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875 China
| |
Collapse
|
8
|
Rodriguez-Larios J, ElShafei A, Wiehe M, Haegens S. Visual working memory recruits two functionally distinct alpha rhythms in posterior cortex. eNeuro 2022; 9:ENEURO.0159-22.2022. [PMID: 36171059 PMCID: PMC9536853 DOI: 10.1523/eneuro.0159-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/20/2022] [Accepted: 07/12/2022] [Indexed: 11/21/2022] Open
Abstract
Oscillatory activity in the human brain is dominated by posterior alpha oscillations (8-14 Hz), which have been shown to be functionally relevant in a wide variety of cognitive tasks. Although posterior alpha oscillations are commonly considered a single oscillator anchored at an individual alpha frequency (IAF; ∼10 Hz), previous work suggests that IAF reflects a spatial mixture of different brain rhythms. In this study, we assess whether Independent Component Analysis (ICA) can disentangle functionally distinct posterior alpha rhythms in the context of visual short-term memory retention. Magnetoencephalography (MEG) was recorded in 33 subjects while performing a visual working memory task. Group analysis at sensor level suggested the existence of a single posterior alpha oscillator that increases in power and decreases in frequency during memory retention. Conversely, single-subject analysis of independent components revealed the existence of two dissociable alpha rhythms: one that increases in power during memory retention (Alpha1) and another one that decreases in power (Alpha2). Alpha1 and Alpha2 rhythms were differentially modulated by the presence of visual distractors (Alpha1 increased in power while Alpha2 decreased) and had an opposite relationship with accuracy (positive for Alpha1 and negative for Alpha2). In addition, Alpha1 rhythms showed a lower peak frequency, a narrower peak width, a greater relative peak amplitude and a more central source than Alpha2 rhythms. Together, our results demonstrate that modulations in posterior alpha oscillations during short-term memory retention reflect the dynamics of at least two distinct brain rhythms with different functions and spatiospectral characteristics.Significance statementAlpha oscillations are the most prominent feature of the human brain's electrical activity, and consist of rhythmic neuronal activity in posterior parts of the cortex. Alpha is usually considered a single brain rhythm that changes in power and frequency to support cognitive operations. We here show that posterior alpha entails at least two dissociable rhythms with distinct functions and characteristics. These findings could solve previous inconsistencies in the literature regarding the direction of task-related alpha power/frequency modulations and their relation to cognitive performance. In addition, the existence of two distinct posterior alpha rhythms could have important consequences for the design of neurostimulation protocols aimed at modulating alpha oscillations and subsequently cognition.
Collapse
Affiliation(s)
- Julio Rodriguez-Larios
- Dept. of Psychiatry, Columbia University, New York, USA, NY 10032
- Div. of Systems Neuroscience, New York State Psychiatric Institute, New York, USA, NY 10032
| | - Alma ElShafei
- Donders Institute for Brain, Cognition & Behavior, Radboud University, Nijmegen, The Netherlands, 6525 EN
| | - Melanie Wiehe
- Donders Institute for Brain, Cognition & Behavior, Radboud University, Nijmegen, The Netherlands, 6525 EN
| | - Saskia Haegens
- Dept. of Psychiatry, Columbia University, New York, USA, NY 10032
- Div. of Systems Neuroscience, New York State Psychiatric Institute, New York, USA, NY 10032
- Donders Institute for Brain, Cognition & Behavior, Radboud University, Nijmegen, The Netherlands, 6525 EN
| |
Collapse
|
9
|
Kricheldorff J, Göke K, Kiebs M, Kasten FH, Herrmann CS, Witt K, Hurlemann R. Evidence of Neuroplastic Changes after Transcranial Magnetic, Electric, and Deep Brain Stimulation. Brain Sci 2022; 12:929. [PMID: 35884734 PMCID: PMC9313265 DOI: 10.3390/brainsci12070929] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 02/04/2023] Open
Abstract
Electric and magnetic stimulation of the human brain can be used to excite or inhibit neurons. Numerous methods have been designed over the years for this purpose with various advantages and disadvantages that are the topic of this review. Deep brain stimulation (DBS) is the most direct and focal application of electric impulses to brain tissue. Electrodes are placed in the brain in order to modulate neural activity and to correct parameters of pathological oscillation in brain circuits such as their amplitude or frequency. Transcranial magnetic stimulation (TMS) is a non-invasive alternative with the stimulator generating a magnetic field in a coil over the scalp that induces an electric field in the brain which, in turn, interacts with ongoing brain activity. Depending upon stimulation parameters, excitation and inhibition can be achieved. Transcranial electric stimulation (tES) applies electric fields to the scalp that spread along the skull in order to reach the brain, thus, limiting current strength to avoid skin sensations and cranial muscle pain. Therefore, tES can only modulate brain activity and is considered subthreshold, i.e., it does not directly elicit neuronal action potentials. In this review, we collect hints for neuroplastic changes such as modulation of behavior, the electric activity of the brain, or the evolution of clinical signs and symptoms in response to stimulation. Possible mechanisms are discussed, and future paradigms are suggested.
Collapse
Affiliation(s)
- Julius Kricheldorff
- Department of Neurology, School of Medicine and Health Sciences, Carl von Ossietzky University, 26129 Oldenburg, Germany; (J.K.); (K.W.)
| | - Katharina Göke
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany; (K.G.); (M.K.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Maximilian Kiebs
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany; (K.G.); (M.K.)
| | - Florian H. Kasten
- Experimental Psychology Lab, Carl von Ossietzky University, 26129 Oldenburg, Germany; (F.H.K.); (C.S.H.)
| | - Christoph S. Herrmann
- Experimental Psychology Lab, Carl von Ossietzky University, 26129 Oldenburg, Germany; (F.H.K.); (C.S.H.)
- Research Center Neurosensory Sciences, Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Karsten Witt
- Department of Neurology, School of Medicine and Health Sciences, Carl von Ossietzky University, 26129 Oldenburg, Germany; (J.K.); (K.W.)
- Research Center Neurosensory Sciences, Carl von Ossietzky University, 26129 Oldenburg, Germany
| | - Rene Hurlemann
- Division of Medical Psychology, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany; (K.G.); (M.K.)
- Research Center Neurosensory Sciences, Carl von Ossietzky University, 26129 Oldenburg, Germany
- Department of Psychiatry and Psychotherapy, Carl von Ossietzky University, 26129 Oldenburg, Germany
| |
Collapse
|