1
|
El-Bouhali-Abdellaoui F, Voltas N, Morales-Hidalgo P, Canals J. Examining the Relationship Between Parental Broader Autism Phenotype Traits, Offspring Autism, and Parental Mental Health. Autism Res 2024. [PMID: 39713974 DOI: 10.1002/aur.3295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 11/26/2024] [Accepted: 12/05/2024] [Indexed: 12/24/2024]
Abstract
Broader Autism Phenotype (BAP) traits may be present in parents of children on the autism spectrum. However, the prevalence and impact of these traits on parental mental health is poorly understood. We explore BAP traits and its relationship to mental health in 228 fathers and 261 mothers from a sample of 266 scholars from the EPINED study (Spain) grouped as follows: non-autism (N = 122), autism traits (N = 93: 38 subthreshold autism and 55 autism symptoms) and autism (N = 51). BAP rates were higher in fathers (36.9%) than in mothers (26.1%). Moreover, BAP was significantly more frequent in fathers of autistic children (52.3%) than in fathers of children without autistic traits (28.0%), with no differences between autistic conditions groups. Mothers of autistic children exhibited higher psychological distress (36.0%) than mothers of comparison group (19.2%). Fathers with BAP obtained significantly higher scores in emotional problems than fathers without BAP. Multivariate analyses showed that, fathers' emotional problems were associated with their BAP traits, whereas in mothers they were associated with having a child with autism as well as the child's emotional dysregulation. Identifying BAP in parents of autistic conditions children can help professionals to provide specific strategies for improving the well-being of children and parents.
Collapse
Affiliation(s)
- Fátima El-Bouhali-Abdellaoui
- Research Group on Nutrition and Mental Health (NUTRISAM); Department of Psychology, Rovira i Virgili University, Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Rovira i Virgili University, Reus, Spain
- Research Center for Behavioral Assessment (CRAMC); Department of Psychology, Rovira i Virgili University, Tarragona, Spain
| | - Núria Voltas
- Research Group on Nutrition and Mental Health (NUTRISAM); Department of Psychology, Rovira i Virgili University, Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Rovira i Virgili University, Reus, Spain
- Research Center for Behavioral Assessment (CRAMC); Department of Psychology, Rovira i Virgili University, Tarragona, Spain
| | - Paula Morales-Hidalgo
- Research Group on Nutrition and Mental Health (NUTRISAM); Department of Psychology, Rovira i Virgili University, Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Rovira i Virgili University, Reus, Spain
- Research Center for Behavioral Assessment (CRAMC); Department of Psychology, Rovira i Virgili University, Tarragona, Spain
- Department of Psychology, Open University of Catalonia, Barcelona, Spain
| | - Josefa Canals
- Research Group on Nutrition and Mental Health (NUTRISAM); Department of Psychology, Rovira i Virgili University, Tarragona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Rovira i Virgili University, Reus, Spain
- Research Center for Behavioral Assessment (CRAMC); Department of Psychology, Rovira i Virgili University, Tarragona, Spain
| |
Collapse
|
2
|
De Felice S, Chand T, Croy I, Engert V, Goldstein P, Holroyd CB, Kirsch P, Krach S, Ma Y, Scheele D, Schurz M, Schweinberger SR, Hoehl S, Vrticka P. Relational neuroscience: Insights from hyperscanning research. Neurosci Biobehav Rev 2024; 169:105979. [PMID: 39674533 DOI: 10.1016/j.neubiorev.2024.105979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/16/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024]
Abstract
Humans are highly social, typically without this ability requiring noticeable efforts. Yet, such social fluency poses challenges both for the human brain to compute and for scientists to study. Over the last few decades, neuroscientific research of human sociality has witnessed a shift in focus from single-brain analysis to complex dynamics occurring across several brains, posing questions about what these dynamics mean and how they relate to multifaceted behavioural models. We propose the term 'Relational Neuroscience' to collate the interdisciplinary research field devoted to modelling the inter-brain dynamics subserving human connections, spanning from real-time joint experiences to long-term social bonds. Hyperscanning, i.e., simultaneously measuring brain activity from multiple individuals, has proven to be a highly promising technique to investigate inter-brain dynamics. Here, we discuss how hyperscanning can help investigate questions within the field of Relational Neuroscience, considering a variety of subfields, including cooperative interactions in dyads and groups, empathy, attachment and bonding, and developmental neuroscience. While presenting Relational Neuroscience in the light of hyperscanning, our discussion also takes into account behaviour, physiology and endocrinology to properly interpret inter-brain dynamics within social contexts. We consider the strengths but also the limitations and caveats of hyperscanning to answer questions about interacting people. The aim is to provide an integrative framework for future work to build better theories across a variety of contexts and research subfields to model human sociality.
Collapse
Affiliation(s)
| | - Tara Chand
- Jindal Institute of Behavioural Sciences, O. P. Jindal Global University, Sonipat, Haryana, India; Department of Clinical Psychology, Friedrich-Schiller University Jena, Jena, Germany
| | - Ilona Croy
- Department of Clinical Psychology, Friedrich-Schiller University Jena, Jena, Germany; German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany
| | - Veronika Engert
- German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany; Institute of Psychosocial Medicine, Psychotherapy and Psychooncology, Jena University Hospital, Jena, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Jena, Germany
| | - Pavel Goldstein
- Integrative Pain Laboratory, School of Public Health, University of Haifa, Haifa, Israel
| | - Clay B Holroyd
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Peter Kirsch
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany; Institute of Psychology, University of Heidelberg, Germany; German Center for Mental Health (DZPG), Site Mannheim-Heidelberg-Ulm, Germany
| | - Sören Krach
- Klinik für Psychiatrie und Psychotherapie, University of Lübeck, Lübeck, Germany
| | - Yina Ma
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; Chinese Institute for Brain Research, Beijing, China
| | - Dirk Scheele
- Department of Social Neuroscience, Faculty of Medicine, Ruhr University Bochum, Germany; Research Center One Health Ruhr of the University Alliance Ruhr, Ruhr University Bochum, Germany
| | - Matthias Schurz
- Department of Psychology, Faculty of Psychology and Sport Science, and Digital Science Center (DiSC), University of Innsbruck, Innsbruck, Austria
| | - Stefan R Schweinberger
- German Center for Mental Health (DZPG), Site Jena-Magdeburg-Halle, Germany; Department of General Psychology, Friedrich Schiller University, Jena, Germany
| | - Stefanie Hoehl
- Faculty of Psychology, University of Vienna, Vienna, Austria.
| | - Pascal Vrticka
- Centre for Brain Science, Department of Psychology, University of Essex, Colchester, United Kingdom
| |
Collapse
|
3
|
Zhou X, Wong PCM. Hyperscanning to explore social interaction among autistic minds. Neurosci Biobehav Rev 2024; 163:105773. [PMID: 38889594 DOI: 10.1016/j.neubiorev.2024.105773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Hyperscanning - the monitoring of brain activity of two or more people simultaneously - has emerged to be a popular tool for assessing neural features of social interaction. This perspective article focuses on hyperscanning studies that use functional near-infrared spectroscopy (fNIRS), a technique that is very conducive to studies requiring naturalistic paradigms. In particular, we are interested in neural features that are related to social interaction deficits among individuals with autism spectrum disorders (ASD). This population has received relatively little attention in research using neuroimaging hyperscanning techniques, compared to neurotypical individuals. The study is outlined as follows. First, we summarize the findings about brain-behavior connections related to autism from previously published fNIRS hyperscanning studies. Then, we propose a preliminary theoretical framework of inter-brain coherence (IBC) with testable hypotheses concerning this population. Finally, we provide two examples of areas of inquiry in which studies could be particularly relevant for social-emotional/behavioral development for autistic children, focusing on intergenerational relationships in family units and learning in classroom settings in mainstream schools.
Collapse
Affiliation(s)
- Xin Zhou
- Brain and Mind Institute, the Chinese University of Hong Kong, Hong Kong Special Administrative Region of China.
| | - Patrick C M Wong
- Brain and Mind Institute, the Chinese University of Hong Kong, Hong Kong Special Administrative Region of China; Department of Linguistics and Modern Languages, the Chinese University of Hong Kong, Hong Kong Special Administrative Region of China
| |
Collapse
|
4
|
Zhou X, Hong X, Wong PCM. Autistic Traits Modulate Social Synchronizations Between School-Aged Children: Insights From Three fNIRS Hyperscanning Experiments. Psychol Sci 2024; 35:840-857. [PMID: 38743614 DOI: 10.1177/09567976241237699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
The current study investigated how autistic traits modulate peer interactions using functional near-infrared spectroscopy (fNIRS) hyperscanning. Across three experiments, we tested the effect of copresence, joint activity, and a tangible goal during cooperative interactions on interbrain coherence (IBC) in school-aged children between 9 and 11 years old. Twenty-three dyads of children watched a video alone or together in Experiment 1, engaged in joint or self-paced book reading in Experiment 2, and pretended to play a Jenga game or played for real in Experiment 3. We found that all three formats of social interactions increased IBC in the frontotemporoparietal networks, which have been reported to support social interaction. Further, our results revealed the shared and unique interbrain connections that were predictive of the lower and higher parent-reported autism-spectrum quotient scores, which indicated child autistic traits. Results from a convergence of three experiments provide the first evidence to date that IBC is modulated by child autistic traits.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Linguistics and Modern Languages, the Chinese University of Hong Kong
- Brain and Mind Institute, the Chinese University of Hong Kong
- National Acoustic Laboratories, Macquarie Park, Australia
| | - Xuancu Hong
- Department of Linguistics and Modern Languages, the Chinese University of Hong Kong
| | - Patrick C M Wong
- Department of Linguistics and Modern Languages, the Chinese University of Hong Kong
- Brain and Mind Institute, the Chinese University of Hong Kong
| |
Collapse
|
5
|
Grootjans Y, Harrewijn A, Fornari L, Janssen T, de Bruijn ERA, van Atteveldt N, Franken IHA. Getting closer to social interactions using electroencephalography in developmental cognitive neuroscience. Dev Cogn Neurosci 2024; 67:101391. [PMID: 38759529 PMCID: PMC11127236 DOI: 10.1016/j.dcn.2024.101391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/12/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024] Open
Abstract
The field of developmental cognitive neuroscience is advancing rapidly, with large-scale, population-wide, longitudinal studies emerging as a key means of unraveling the complexity of the developing brain and cognitive processes in children. While numerous neuroscientific techniques like functional magnetic resonance imaging (fMRI), functional near-infrared spectroscopy (fNIRS), magnetoencephalography (MEG), and transcranial magnetic stimulation (TMS) have proved advantageous in such investigations, this perspective proposes a renewed focus on electroencephalography (EEG), leveraging underexplored possibilities of EEG. In addition to its temporal precision, low costs, and ease of application, EEG distinguishes itself with its ability to capture neural activity linked to social interactions in increasingly ecologically valid settings. Specifically, EEG can be measured during social interactions in the lab, hyperscanning can be used to study brain activity in two (or more) people simultaneously, and mobile EEG can be used to measure brain activity in real-life settings. This perspective paper summarizes research in these three areas, making a persuasive argument for the renewed inclusion of EEG into the toolkit of developmental cognitive and social neuroscientists.
Collapse
Affiliation(s)
- Yvette Grootjans
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, the Netherlands.
| | - Anita Harrewijn
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, the Netherlands
| | - Laura Fornari
- Department of Clinical, Neuro, and Developmental Psychology & Institute LEARN!, Vrije Universiteit Amsterdam, the Netherlands
| | - Tieme Janssen
- Department of Clinical, Neuro, and Developmental Psychology & Institute LEARN!, Vrije Universiteit Amsterdam, the Netherlands
| | | | - Nienke van Atteveldt
- Department of Clinical, Neuro, and Developmental Psychology & Institute LEARN!, Vrije Universiteit Amsterdam, the Netherlands
| | - Ingmar H A Franken
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, the Netherlands
| |
Collapse
|
6
|
Konrad K, Gerloff C, Kohl SH, Mehler DMA, Mehlem L, Volbert EL, Komorek M, Henn AT, Boecker M, Weiss E, Reindl V. Interpersonal neural synchrony and mental disorders: unlocking potential pathways for clinical interventions. Front Neurosci 2024; 18:1286130. [PMID: 38529267 PMCID: PMC10962391 DOI: 10.3389/fnins.2024.1286130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/30/2024] [Indexed: 03/27/2024] Open
Abstract
Introduction Interpersonal synchronization involves the alignment of behavioral, affective, physiological, and brain states during social interactions. It facilitates empathy, emotion regulation, and prosocial commitment. Mental disorders characterized by social interaction dysfunction, such as Autism Spectrum Disorder (ASD), Reactive Attachment Disorder (RAD), and Social Anxiety Disorder (SAD), often exhibit atypical synchronization with others across multiple levels. With the introduction of the "second-person" neuroscience perspective, our understanding of interpersonal neural synchronization (INS) has improved, however, so far, it has hardly impacted the development of novel therapeutic interventions. Methods To evaluate the potential of INS-based treatments for mental disorders, we performed two systematic literature searches identifying studies that directly target INS through neurofeedback (12 publications; 9 independent studies) or brain stimulation techniques (7 studies), following PRISMA guidelines. In addition, we narratively review indirect INS manipulations through behavioral, biofeedback, or hormonal interventions. We discuss the potential of such treatments for ASD, RAD, and SAD and using a systematic database search assess the acceptability of neurofeedback (4 studies) and neurostimulation (4 studies) in patients with social dysfunction. Results Although behavioral approaches, such as engaging in eye contact or cooperative actions, have been shown to be associated with increased INS, little is known about potential long-term consequences of such interventions. Few proof-of-concept studies have utilized brain stimulation techniques, like transcranial direct current stimulation or INS-based neurofeedback, showing feasibility and preliminary evidence that such interventions can boost behavioral synchrony and social connectedness. Yet, optimal brain stimulation protocols and neurofeedback parameters are still undefined. For ASD, RAD, or SAD, so far no randomized controlled trial has proven the efficacy of direct INS-based intervention techniques, although in general brain stimulation and neurofeedback methods seem to be well accepted in these patient groups. Discussion Significant work remains to translate INS-based manipulations into effective treatments for social interaction disorders. Future research should focus on mechanistic insights into INS, technological advancements, and rigorous design standards. Furthermore, it will be key to compare interventions directly targeting INS to those targeting other modalities of synchrony as well as to define optimal target dyads and target synchrony states in clinical interventions.
Collapse
Affiliation(s)
- Kerstin Konrad
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
- JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany
| | - Christian Gerloff
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
- JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany
- Department of Applied Mathematics and Theoretical Physics, Cambridge Centre for Data-Driven Discovery, University of Cambridge, Cambridge, United Kingdom
| | - Simon H. Kohl
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
- JARA Brain Institute II, Molecular Neuroscience and Neuroimaging (INM-11), Jülich Research Centre, Jülich, Germany
| | - David M. A. Mehler
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical School, RWTH Aachen University, Aachen, Germany
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- School of Psychology, Cardiff University Brain Research Imaging Center (CUBRIC), Cardiff University, Cardiff, United Kingdom
| | - Lena Mehlem
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
| | - Emily L. Volbert
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
| | - Maike Komorek
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
| | - Alina T. Henn
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
| | - Maren Boecker
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
- Institute of Medical Psychology and Medical Sociology, University Hospital RWTH, Aachen, Germany
| | - Eileen Weiss
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
- Institute of Medical Psychology and Medical Sociology, University Hospital RWTH, Aachen, Germany
| | - Vanessa Reindl
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital RWTH, Aachen, Germany
- Department of Psychology, School of Social Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
7
|
Cruz S, Zubizarreta SCP, Costa AD, Araújo R, Martinho J, Tubío-Fungueiriño M, Sampaio A, Cruz R, Carracedo A, Fernández-Prieto M. Is There a Bias Towards Males in the Diagnosis of Autism? A Systematic Review and Meta-Analysis. Neuropsychol Rev 2024:10.1007/s11065-023-09630-2. [PMID: 38285291 DOI: 10.1007/s11065-023-09630-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 12/11/2023] [Indexed: 01/30/2024]
Abstract
Autism is more frequently diagnosed in males, with evidence suggesting that females are more likely to be misdiagnosed or underdiagnosed. Possibly, the male/female ratio imbalance relates to phenotypic and camouflaging differences between genders. Here, we performed a comprehensive approach to phenotypic and camouflaging research in autism addressed in two studies. First (Study 1 - Phenotypic Differences in Autism), we conducted a systematic review and meta-analysis of gender differences in autism phenotype. The electronic datasets Pubmed, Scopus, Web of Science, and PsychInfo were searched. We included 67 articles that compared females and males in autism core symptoms, and in cognitive, socioemotional, and behavioural phenotypes. Autistic males exhibited more severe symptoms and social interaction difficulties on standard clinical measures than females, who, in turn, exhibited more cognitive and behavioural difficulties. Considering the hypothesis of camouflaging possibly underlying these differences, we then conducted a meta-analysis of gender differences in camouflaging (Study 2 - Camouflaging Differences in Autism). The same datasets as the first study were searched. Ten studies were included. Females used more compensation and masking camouflage strategies than males. The results support the argument of a bias in clinical procedures towards males and the importance of considering a 'female autism phenotype'-potentially involving camouflaging-in the diagnostic process.
Collapse
Affiliation(s)
- Sara Cruz
- Psychology of Development Research Center, Lusiada University of Porto, Porto, Portugal.
- Department of Psychology, School of Philosophy, Psychology & Language Sciences, University of Edinburgh, Edinburgh, UK.
| | - Sabela Conde-Pumpido Zubizarreta
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Ana Daniela Costa
- Psychological Neuroscience Laboratory (PNL), Research Center in Psychology (CIPsi), School of Psychology, University of Minho, Braga, Portugal
| | - Rita Araújo
- Psychological Neuroscience Laboratory (PNL), Research Center in Psychology (CIPsi), School of Psychology, University of Minho, Braga, Portugal
| | | | - María Tubío-Fungueiriño
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Santiago de Compostela, Spain
- Genetics Group, GC05, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
- Grupo de Medicina Xenómica, U-711, Centro de Investigación en Red de Enfermedades Raras (CIBERER), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Adriana Sampaio
- Psychological Neuroscience Laboratory (PNL), Research Center in Psychology (CIPsi), School of Psychology, University of Minho, Braga, Portugal
| | - Raquel Cruz
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- Grupo de Medicina Xenómica, U-711, Centro de Investigación en Red de Enfermedades Raras (CIBERER), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Angel Carracedo
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- Genetics Group, GC05, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
- Grupo de Medicina Xenómica, U-711, Centro de Investigación en Red de Enfermedades Raras (CIBERER), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- Fundación Pública Galega de Medicina Xenómica, Servicio Galego de Saúde (SERGAS), Santiago de Compostela, Spain
| | - Montse Fernández-Prieto
- Genomics and Bioinformatics Group, Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
- Fundación Instituto de Investigación Sanitaria de Santiago de Compostela (FIDIS), Santiago de Compostela, Spain
- Genetics Group, GC05, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
- Grupo de Medicina Xenómica, U-711, Centro de Investigación en Red de Enfermedades Raras (CIBERER), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| |
Collapse
|
8
|
Hakim U, De Felice S, Pinti P, Zhang X, Noah JA, Ono Y, Burgess PW, Hamilton A, Hirsch J, Tachtsidis I. Quantification of inter-brain coupling: A review of current methods used in haemodynamic and electrophysiological hyperscanning studies. Neuroimage 2023; 280:120354. [PMID: 37666393 DOI: 10.1016/j.neuroimage.2023.120354] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023] Open
Abstract
Hyperscanning is a form of neuroimaging experiment where the brains of two or more participants are imaged simultaneously whilst they interact. Within the domain of social neuroscience, hyperscanning is increasingly used to measure inter-brain coupling (IBC) and explore how brain responses change in tandem during social interaction. In addition to cognitive research, some have suggested that quantification of the interplay between interacting participants can be used as a biomarker for a variety of cognitive mechanisms aswell as to investigate mental health and developmental conditions including schizophrenia, social anxiety and autism. However, many different methods have been used to quantify brain coupling and this can lead to questions about comparability across studies and reduce research reproducibility. Here, we review methods for quantifying IBC, and suggest some ways moving forward. Following the PRISMA guidelines, we reviewed 215 hyperscanning studies, across four different brain imaging modalities: functional near-infrared spectroscopy (fNIRS), functional magnetic resonance (fMRI), electroencephalography (EEG) and magnetoencephalography (MEG). Overall, the review identified a total of 27 different methods used to compute IBC. The most common hyperscanning modality is fNIRS, used by 119 studies, 89 of which adopted wavelet coherence. Based on the results of this literature survey, we first report summary statistics of the hyperscanning field, followed by a brief overview of each signal that is obtained from each neuroimaging modality used in hyperscanning. We then discuss the rationale, assumptions and suitability of each method to different modalities which can be used to investigate IBC. Finally, we discuss issues surrounding the interpretation of each method.
Collapse
Affiliation(s)
- U Hakim
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom.
| | - S De Felice
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom; Department of Psychology, University of Cambridge, United Kingdom
| | - P Pinti
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom; Centre for Brain and Cognitive Development, Birkbeck, University of London, London, United Kingdom
| | - X Zhang
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - J A Noah
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Y Ono
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kawasaki, Kanagawa, Japan
| | - P W Burgess
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - A Hamilton
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - J Hirsch
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom; Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States; Departments of Neuroscience and Comparative Medicine, Yale School of Medicine, New Haven, CT, United States; Yale University, Wu Tsai Institute, New Haven, CT, United States
| | - I Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|