1
|
Rubio-Martín S, García-Ordás MT, Bayón-Gutiérrez M, Prieto-Fernández N, Benítez-Andrades JA. Enhancing ASD detection accuracy: a combined approach of machine learning and deep learning models with natural language processing. Health Inf Sci Syst 2024; 12:20. [PMID: 38455725 PMCID: PMC10917721 DOI: 10.1007/s13755-024-00281-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 02/04/2024] [Indexed: 03/09/2024] Open
Abstract
Purpose The main aim of our study was to explore the utility of artificial intelligence (AI) in diagnosing autism spectrum disorder (ASD). The study primarily focused on using machine learning (ML) and deep learning (DL) models to detect ASD potential cases by analyzing text inputs, especially from social media platforms like Twitter. This is to overcome the ongoing challenges in ASD diagnosis, such as the requirement for specialized professionals and extensive resources. Timely identification, particularly in children, is essential to provide immediate intervention and support, thereby improving the quality of life for affected individuals. Methods We employed natural language processing (NLP) techniques along with ML models like decision trees, extreme gradient boosting (XGB), k-nearest neighbors algorithm (KNN), and DL models such as recurrent neural networks (RNN), long short-term memory (LSTM), bidirectional long short-term memory (Bi-LSTM), bidirectional encoder representations from transformers (BERT and BERTweet). We extracted a dataset of 404,627 tweets from Twitter users using the platform's API and classified them based on whether they were written by individuals claiming to have ASD (ASD users) or by those without ASD (non-ASD users). From this dataset, we used a subset of 90,000 tweets (45,000 from each classification group) for the training and testing of these models. Results The application of our AI models yielded promising results, with the predictive model reaching an accuracy of almost 88% when classifying texts that potentially originated from individuals with ASD. Conclusion Our research demonstrated the potential of using AI, particularly DL models, in enhancing the accuracy of ASD detection and diagnosis. This innovative approach signifies the critical role AI can play in advancing early diagnostic techniques, enabling better patient outcomes and underlining the importance of early identification of ASD, especially in children.
Collapse
Affiliation(s)
- Sergio Rubio-Martín
- SALBIS Research Group, Dept. of Electric, Systems and Automatics Engineering, Universidad de León, Campus of Vegazana s/n, 24071 León, León Spain
| | - María Teresa García-Ordás
- SECOMUCI Research Group, Dept. of Electric, Systems and Automatics Engineering, Universidad de León, Campus of Vegazana s/n, 24071 León, León Spain
| | - Martín Bayón-Gutiérrez
- SECOMUCI Research Group, Dept. of Electric, Systems and Automatics Engineering, Universidad de León, Campus of Vegazana s/n, 24071 León, León Spain
| | - Natalia Prieto-Fernández
- SECOMUCI Research Group, Dept. of Electric, Systems and Automatics Engineering, Universidad de León, Campus of Vegazana s/n, 24071 León, León Spain
| | - José Alberto Benítez-Andrades
- SALBIS Research Group, Dept. of Electric, Systems and Automatics Engineering, Universidad de León, Campus of Vegazana s/n, 24071 León, León Spain
| |
Collapse
|
2
|
Huda S, Khan DM, Masroor K, Warda, Rashid A, Shabbir M. Advancements in automated diagnosis of autism spectrum disorder through deep learning and resting-state functional mri biomarkers: a systematic review. Cogn Neurodyn 2024; 18:3585-3601. [PMID: 39712105 PMCID: PMC11656001 DOI: 10.1007/s11571-024-10176-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/19/2024] [Accepted: 09/07/2024] [Indexed: 12/24/2024] Open
Abstract
Autism Spectrum Disorder(ASD) is a type of neurological disorder that is common among children. The diagnosis of this disorder at an early stage is the key to reducing its effects. The major symptoms include anxiety, lack of communication, and less social interaction. This paper presents a systematic review conducted based on PRISMA guidelines for automated diagnosis of ASD. With rapid development in the field of Data Science, numerous methods have been proposed that can diagnose the disease at an early stage which can minimize the effects of the disorder. Machine learning and deep learning have proven suitable techniques for the automated diagnosis of ASD. These models have been developed on various datasets such as ABIDE I and ABIDE II, a frequently used dataset based on rs-fMRI images. Approximately 26 articles have been reviewed after the screening process. The paper highlights a comparison between different algorithms used and their accuracy as well. It was observed that most researchers used DL algorithms to develop the ASD detection model. Different accuracies were recorded with a maximum accuracy close to 0.99. Recommendations for future work have also been discussed in a later section. This analysis derived a conclusion that AI-emerged DL and ML technologies can diagnose ASD through rs-fMRI images with maximum accuracy. The comparative analysis has been included to show the accuracy range.
Collapse
Affiliation(s)
- Shiza Huda
- Department of Telecommunications Engineering, NED University of Engineering and Technology, Karachi, Sindh 75270 Pakistan
| | - Danish Mahmood Khan
- Department of Computing and Information Systems, School of Engineering and Technology, Sunway University, 47500 Petaling Jaya, Selangor Malaysia
- Department of Electronic Engineering, NED University of Engineering and Technology, Karachi, Sindh 75270 Pakistan
| | - Komal Masroor
- Department of Telecommunications Engineering, NED University of Engineering and Technology, Karachi, Sindh 75270 Pakistan
| | - Warda
- Department of Telecommunications Engineering, NED University of Engineering and Technology, Karachi, Sindh 75270 Pakistan
| | - Ayesha Rashid
- Department of Telecommunications Engineering, NED University of Engineering and Technology, Karachi, Sindh 75270 Pakistan
| | - Mariam Shabbir
- Department of Telecommunications Engineering, NED University of Engineering and Technology, Karachi, Sindh 75270 Pakistan
| |
Collapse
|
3
|
Li W, Wang M, Liu M, Liu Q. Riemannian manifold-based disentangled representation learning for multi-site functional connectivity analysis. Neural Netw 2024; 183:106945. [PMID: 39642641 DOI: 10.1016/j.neunet.2024.106945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 09/06/2024] [Accepted: 11/17/2024] [Indexed: 12/09/2024]
Abstract
Functional connectivity (FC), derived from resting-state functional magnetic resonance imaging (rs-fMRI), has been widely used to characterize brain abnormalities in disorders. FC is usually defined as a correlation matrix that is a symmetric positive definite (SPD) matrix lying on the Riemannian manifold. Recently, a number of learning-based methods have been proposed for FC analysis, while the geometric properties of Riemannian manifold have not yet been fully explored in previous studies. Also, most existing methods are designed to target one imaging site of fMRI data, which may result in limited training data for learning reliable and robust models. In this paper, we propose a novel Riemannian Manifold-based Disentangled Representation Learning (RM-DRL) framework which is capable of learning invariant representations from fMRI data across multiple sites for brain disorder diagnosis. In RM-DRL, we first employ an SPD-based encoder module to learn a latent unified representation of FC from different sites, which can preserve the Riemannian geometry of the SPD matrices. In latent space, a disentangled representation module is then designed to split the learned features into domain-specific and domain-invariant parts, respectively. Finally, a decoder module is introduced to ensure that sufficient information can be preserved during disentanglement learning. These designs allow us to introduce four types of training objectives to improve the disentanglement learning. Our RM-DRL method is evaluated on the public multi-site ABIDE dataset, showing superior performance compared with several state-of-the-art methods.
Collapse
Affiliation(s)
- Wenyang Li
- School of Computer Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Mingliang Wang
- School of Computer Science, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Mingxia Liu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Qingshan Liu
- School of Computer Science, Nanjing University of Information Science and Technology, Nanjing 210044, China; School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| |
Collapse
|
4
|
Said A, Bayrak RG, Derr T, Shabbir M, Moyer D, Chang C, Koutsoukos X. NeuroGraph: Benchmarks for Graph Machine Learning in Brain Connectomics. ARXIV 2024:arXiv:2306.06202v4. [PMID: 38045477 PMCID: PMC10690301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Machine learning provides a valuable tool for analyzing high-dimensional functional neuroimaging data, and is proving effective in predicting various neurological conditions, psychiatric disorders, and cognitive patterns. In functional magnetic resonance imaging (MRI) research, interactions between brain regions are commonly modeled using graph-based representations. The potency of graph machine learning methods has been established across myriad domains, marking a transformative step in data interpretation and predictive modeling. Yet, despite their promise, the transposition of these techniques to the neuroimaging domain has been challenging due to the expansive number of potential preprocessing pipelines and the large parameter search space for graph-based dataset construction. In this paper, we introduce NeuroGraph, a collection of graph-based neuroimaging datasets, and demonstrated its utility for predicting multiple categories of behavioral and cognitive traits. We delve deeply into the dataset generation search space by crafting 35 datasets that encompass static and dynamic brain connectivity, running in excess of 15 baseline methods for benchmarking. Additionally, we provide generic frameworks for learning on both static and dynamic graphs. Our extensive experiments lead to several key observations. Notably, using correlation vectors as node features, incorporating larger number of regions of interest, and employing sparser graphs lead to improved performance. To foster further advancements in graph-based data driven neuroimaging analysis, we offer a comprehensive open-source Python package that includes the benchmark datasets, baseline implementations, model training, and standard evaluation.
Collapse
|
5
|
Jha RR, Muralie A, Daroch M, Bhavsar A, Nigam A. Enhancing Autism Spectrum Disorder identification in multi-site MRI imaging: A multi-head cross-attention and multi-context approach for addressing variability in un-harmonized data. Artif Intell Med 2024; 157:102998. [PMID: 39442245 DOI: 10.1016/j.artmed.2024.102998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Multi-site MRI imaging poses a significant challenge due to the potential variations in images across different scanners at different sites. This variability can introduce ambiguity in further image analysis. Consequently, the image analysis techniques become site-dependent and scanner-dependent, implying that adjustments in the analysis methodologies are necessary for each scanner configuration. Further, implementing real-time modifications becomes intricate, particularly when incorporating a new type of scanner, as it requires adapting the analysis methods accordingly. Taking into account the aforementioned challenge, we have considered its implications for an Autism spectrum disorder (ASD) application. Our objective is to minimize the impact of site and scanner variability in the analysis, aiming to develop a model that remains effective across different scanners and sites. This entails devising a methodology that allows the same model to function seamlessly across multiple scanner configurations and sites. ASD, a behavioral disorder affecting child development, requires early detection. Clinical observation is time-consuming, prompting the use of fMRI with machine/deep learning for expedited diagnosis. Previous methods leverage fMRI's functional connectivity but often rely on less generalized feature extractors and classifiers. Hence, there is significant room for improvement in the generalizability of detection methods across multi-site data, which is acquired from multiple scanners with different settings. In this study, we propose a Cross-Combination Multi-Scale Multi-Context Framework (CCMSMCF) capable of performing neuroimaging-based diagnostic classification of mental disorders for a multi-site dataset. Thus, this framework attains a degree of internal data harmonization, rendering it to some extent site and scanner-agnostic. Our proposed network, CCMSMCF, is constructed by integrating two sub-modules: the Multi-Head Attention Cross-Scale Module (MHACSM) and the Residual Multi-Context Module (RMCN). We also employ multiple loss functions in a novel manner for training the model, which includes Binary Cross Entropy, Dice loss, and Embedding Coupling loss. The model is validated on the Autism Brain Imaging Data Exchange I (ABIDE-I) dataset, which includes data from multiple scanners across different sites, and achieves promising results.
Collapse
Affiliation(s)
- Ranjeet Ranjan Jha
- Mathematics Department, Indian Institute of Technology (IIT) Patna, India.
| | - Arvind Muralie
- Department of Electronics Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
| | - Munish Daroch
- MANAS Lab, School of Computing and Electrical Engineering (SCEE), Indian Institute of Technology (IIT) Mandi, India
| | - Arnav Bhavsar
- MANAS Lab, School of Computing and Electrical Engineering (SCEE), Indian Institute of Technology (IIT) Mandi, India
| | - Aditya Nigam
- MANAS Lab, School of Computing and Electrical Engineering (SCEE), Indian Institute of Technology (IIT) Mandi, India
| |
Collapse
|
6
|
Liu X, Hasan MR, Gedeon T, Hossain MZ. MADE-for-ASD: A multi-atlas deep ensemble network for diagnosing Autism Spectrum Disorder. Comput Biol Med 2024; 182:109083. [PMID: 39232404 DOI: 10.1016/j.compbiomed.2024.109083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
In response to the global need for efficient early diagnosis of Autism Spectrum Disorder (ASD), this paper bridges the gap between traditional, time-consuming diagnostic methods and potential automated solutions. We propose a multi-atlas deep ensemble network, MADE-for-ASD, that integrates multiple atlases of the brain's functional magnetic resonance imaging (fMRI) data through a weighted deep ensemble network. Our approach integrates demographic information into the prediction workflow, which enhances ASD diagnosis performance and offers a more holistic perspective on patient profiling. We experiment with the well-known publicly available ABIDE (Autism Brain Imaging Data Exchange) I dataset, consisting of resting state fMRI data from 17 different laboratories around the globe. Our proposed system achieves 75.20% accuracy on the entire dataset and 96.40% on a specific subset - both surpassing reported ASD diagnosis accuracy in ABIDE I fMRI studies. Specifically, our model improves by 4.4 percentage points over prior works on the same amount of data. The model exhibits a sensitivity of 82.90% and a specificity of 69.70% on the entire dataset, and 91.00% and 99.50%, respectively, on the specific subset. We leverage the F-score to pinpoint the top 10 ROI in ASD diagnosis, such as precuneus and anterior cingulate/ventromedial. The proposed system can potentially pave the way for more cost-effective, efficient and scalable strategies in ASD diagnosis. Codes and evaluations are publicly available at https://github.com/hasan-rakibul/MADE-for-ASD.
Collapse
Affiliation(s)
- Xuehan Liu
- Australian National University, Canberra, ACT, 2601, Australia.
| | - Md Rakibul Hasan
- Curtin University, Bentley, WA, 6102, Australia; BRAC University, Dhaka, 1212, Bangladesh.
| | - Tom Gedeon
- Curtin University, Bentley, WA, 6102, Australia; Obuda University, Budapest, 1034, Hungary.
| | - Md Zakir Hossain
- Australian National University, Canberra, ACT, 2601, Australia; Curtin University, Bentley, WA, 6102, Australia.
| |
Collapse
|
7
|
Chen W, Yang J, Sun Z, Zhang X, Tao G, Ding Y, Gu J, Bu J, Wang H. DeepASD: a deep adversarial-regularized graph learning method for ASD diagnosis with multimodal data. Transl Psychiatry 2024; 14:375. [PMID: 39277595 PMCID: PMC11401938 DOI: 10.1038/s41398-024-02972-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 04/23/2024] [Accepted: 05/31/2024] [Indexed: 09/17/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is a prevalent neurological condition with multiple co-occurring comorbidities that seriously affect mental health. Precisely diagnosis of ASD is crucial to intervention and rehabilitation. A single modality may not fully reflect the complex mechanisms underlying ASD, and combining multiple modalities enables a more comprehensive understanding. Here, we propose, DeepASD, an end-to-end trainable regularized graph learning method for ASD prediction, which incorporates heterogeneous multimodal data and latent inter-patient relationships to better understand the pathogenesis of ASD. DeepASD first learns cross-modal feature representations through a multimodal adversarial-regularized encoder, and then constructs adaptive patient similarity networks by leveraging the representations of each modality. DeepASD exploits inter-patient relationships to boost the ASD diagnosis that is implemented by a classifier compositing of graph neural networks. We apply DeepASD to the benchmarking Autism Brain Imaging Data Exchange (ABIDE) data with four modalities. Experimental results show that the proposed DeepASD outperforms eight state-of-the-art baselines on the benchmarking ABIDE data, showing an improvement of 13.25% in accuracy, 7.69% in AUC-ROC, and 17.10% in specificity. DeepASD holds promise for a more comprehensive insight of the complex mechanisms of ASD, leading to improved diagnosis performance.
Collapse
Affiliation(s)
- Wanyi Chen
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Service Robot, College of Computer Science, Zhejiang University, Hangzhou, China
| | - Jianjun Yang
- Department of General Practice, Shandong Provincial Third Hospital, Shandong University, Jinan, Shandong, China
| | - Zhongquan Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiang Zhang
- Department of Computer Science, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Guangyu Tao
- Department of Radiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingjun Gu
- Zhejiang Provincial Key Laboratory of Service Robot, College of Computer Science, Zhejiang University, Hangzhou, China
- Pujian Technology, Hangzhou, Zhejiang, China
| | - Jiajun Bu
- Zhejiang Provincial Key Laboratory of Service Robot, College of Computer Science, Zhejiang University, Hangzhou, China
| | - Haishuai Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Service Robot, College of Computer Science, Zhejiang University, Hangzhou, China.
- Shanghai Artificial Intelligence Laboratory, Shanghai, China.
| |
Collapse
|
8
|
Jahani A, Jahani I, Khadem A, Braden BB, Delrobaei M, MacIntosh BJ. Twinned neuroimaging analysis contributes to improving the classification of young people with autism spectrum disorder. Sci Rep 2024; 14:20120. [PMID: 39209988 PMCID: PMC11362281 DOI: 10.1038/s41598-024-71174-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Autism spectrum disorder (ASD) is diagnosed using comprehensive behavioral information. Neuroimaging offers additional information but lacks clinical utility for diagnosis. This study investigates whether multi-forms of magnetic resonance imaging (MRI) contrast can be used individually and in combination to produce a categorical classification of young individuals with ASD. MRI data were accessed from the Autism Brain Imaging Data Exchange (ABIDE). Young participants (ages 2-30) were selected, and two group cohorts consisted of 702 participants: 351 ASD and 351 controls. Image-based classification was performed using one-channel and two-channel inputs to 3D-DenseNet deep learning networks. The models were trained and tested using tenfold cross-validation. Two-channel models were twinned with combinations of structural MRI (sMRI) maps and amplitude of low-frequency fluctuations (ALFF) or fractional ALFF (fALFF) maps from resting-state functional MRI (rs-fMRI). All models produced classification accuracy that exceeded 65.1%. The two-channel ALFF-sMRI model achieved the highest mean accuracy of 76.9% ± 2.34. The one-channel ALFF-based model alone had mean accuracy of 72% ± 3.1. This study leveraged the ABIDE dataset to produce ASD classification results that are comparable and/or exceed literature values. The deep learning approach was conducive to diverse neuroimaging inputs. Findings reveal that the ALFF-sMRI two-channel model outperformed all others.
Collapse
Affiliation(s)
- Ali Jahani
- Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Iman Jahani
- Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Ali Khadem
- Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
| | - B Blair Braden
- College of Health Solutions, Arizona State University, Phoenix, AZ, USA
| | - Mehdi Delrobaei
- Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran
- Department of Electrical and Computer Engineering, Western University, London, ON, Canada
| | - Bradley J MacIntosh
- Hurvitz Brain Sciences, Sandra Black Centre for Brain Resilience and Recovery, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, Canada
- Computational Radiology and Artificial Intelligence Unit, Departments of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
9
|
Dong Q, Cai H, Li Z, Liu J, Hu B. A Multiview Brain Network Transformer Fusing Individualized Information for Autism Spectrum Disorder Diagnosis. IEEE J Biomed Health Inform 2024; 28:4854-4865. [PMID: 38700974 DOI: 10.1109/jbhi.2024.3396457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Functional connectivity (FC) networks, built from analyses of resting-state magnetic resonance imaging (rs-fMRI), serve as efficacious biomarkers for identifying Autism Spectrum Disorders (ASD) patients. Given the neurobiological heterogeneity across individuals and the unique presentation of ASD symptoms, the fusion of individualized information into diagnosis becomes essential. However, this aspect is overlooked in most methods. Furthermore, the existing methods typically focus on studying direct pairwise connections between brain ROIs, while disregarding interactions between indirectly connected neighbors. To overcome above challenges, we build common FC and individualized FC by tangent pearson embedding (TP) and common orthogonal basis extraction (COBE) respectively, and present a novel multiview brain transformer (MBT) aimed at effectively fusing common and indivinformation of subjects. MBT is mainly constructed by transformer layers with diffusion kernel (DK), fusion quality-inspired weighting module (FQW), similarity loss and orthonormal clustering fusion readout module (OCFRead). DK transformer can incorporate higher-order random walk methods to capture wider interactions among indirectly connected brain regions. FQW promotes adaptive fusion of features between views, and similarity loss and OCFRead are placed on the last layer to accomplish the ultimate integration of information. In our method, TP, DK and FQW modules all help to model wider connectivity in the brain that make up for the shortcomings of traditional methods. We conducted experiments on the public ABIDE dataset based on AAL and CC200 respectively. Our framework has shown promising results, outperforming state-of-the-art methods on both templates. This suggests its potential as a valuable approach for clinical ASD diagnosis.
Collapse
|
10
|
Liu R, Huang ZA, Hu Y, Zhu Z, Wong KC, Tan KC. Spatial-Temporal Co-Attention Learning for Diagnosis of Mental Disorders From Resting-State fMRI Data. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:10591-10605. [PMID: 37027556 DOI: 10.1109/tnnls.2023.3243000] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Neuroimaging techniques have been widely adopted to detect the neurological brain structures and functions of the nervous system. As an effective noninvasive neuroimaging technique, functional magnetic resonance imaging (fMRI) has been extensively used in computer-aided diagnosis (CAD) of mental disorders, e.g., autism spectrum disorder (ASD) and attention deficit/hyperactivity disorder (ADHD). In this study, we propose a spatial-temporal co-attention learning (STCAL) model for diagnosing ASD and ADHD from fMRI data. In particular, a guided co-attention (GCA) module is developed to model the intermodal interactions of spatial and temporal signal patterns. A novel sliding cluster attention module is designed to address global feature dependency of self-attention mechanism in fMRI time series. Comprehensive experimental results demonstrate that our STCAL model can achieve competitive accuracies of 73.0 ± 4.5%, 72.0 ± 3.8%, and 72.5 ± 4.2% on the ABIDE I, ABIDE II, and ADHD-200 datasets, respectively. Moreover, the potential for feature pruning based on the co-attention scores is validated by the simulation experiment. The clinical interpretation analysis of STCAL can allow medical professionals to concentrate on the discriminative regions of interest and key time frames from fMRI data.
Collapse
|
11
|
Zhou Y, Jia G, Ren Y, Ren Y, Xiao Z, Wang Y. Advancing ASD identification with neuroimaging: a novel GARL methodology integrating Deep Q-Learning and generative adversarial networks. BMC Med Imaging 2024; 24:186. [PMID: 39054419 PMCID: PMC11270770 DOI: 10.1186/s12880-024-01360-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/08/2024] [Indexed: 07/27/2024] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that affects an individual's behavior, speech, and social interaction. Early and accurate diagnosis of ASD is pivotal for successful intervention. The limited availability of large datasets for neuroimaging investigations, however, poses a significant challenge to the timely and precise identification of ASD. To address this problem, we propose a breakthrough approach, GARL, for ASD diagnosis using neuroimaging data. GARL innovatively integrates the power of GANs and Deep Q-Learning to augment limited datasets and enhance diagnostic precision. We utilized the Autistic Brain Imaging Data Exchange (ABIDE) I and II datasets and employed a GAN to expand these datasets, creating a more robust and diversified dataset for analysis. This approach not only captures the underlying sample distribution within ABIDE I and II but also employs deep reinforcement learning for continuous self-improvement, significantly enhancing the capability of the model to generalize and adapt. Our experimental results confirmed that GAN-based data augmentation effectively improved the performance of all prediction models on both datasets, with the combination of InfoGAN and DQN's GARL yielding the most notable improvement.
Collapse
Affiliation(s)
- Yujing Zhou
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, 510370, Guangdong, China
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, 510260, Guangdong, China
| | - Guangbo Jia
- Shenzhen Mental Health Center & Shenzhen Kangning Hospital, Shenzhen, China
| | - Yingtong Ren
- Biomedical Engineering, Northeastern University, Shenyang, China
| | - Yingxin Ren
- Automation, Northeastern University, Shenyang, China
| | - Zhifeng Xiao
- China Nanhu Academy of Electronics And Information Technology, Jiaxing, China.
| | - Yinmei Wang
- Psychiatric Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen and Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China.
| |
Collapse
|
12
|
Ma C, Li W, Ke S, Lv J, Zhou T, Zou L. Identification of autism spectrum disorder using multiple functional connectivity-based graph convolutional network. Med Biol Eng Comput 2024; 62:2133-2144. [PMID: 38457067 DOI: 10.1007/s11517-024-03060-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Presently, the combination of graph convolutional networks (GCN) with resting-state functional magnetic resonance imaging (rs-fMRI) data is a promising approach for early diagnosis of autism spectrum disorder (ASD). However, the prevalent approach involves exclusively full-brain functional connectivity data for disease classification using GCN, while overlooking the prior information related to the functional connectivity of brain subnetworks associated with ASD. Therefore, in this study, the multiple functional connectivity-based graph convolutional network (MFC-GCN) framework is proposed, using not only full brain functional connectivity data but also the established functional connectivity data from networks of key brain subnetworks associated with ASD, and the GCN is adopted to acquire complementary feature information for the final classification task. Given the heterogeneity within the Autism Brain Imaging Data Exchange (ABIDE) dataset, a novel External Attention Network Readout (EANReadout) is introduced. This design enables the exploration of potential subject associations, effectively addressing the dataset's heterogeneity. Experiments were conducted on the ABIDE dataset using the proposed framework, involving 714 subjects, and the average accuracy of the framework was 70.31%. The experimental results show that the proposed EANReadout outperforms the best traditional readout layer and improves the average accuracy of the framework by 4.32%.
Collapse
Affiliation(s)
- Chaoran Ma
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Wenjie Li
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Sheng Ke
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Jidong Lv
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Tiantong Zhou
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China
| | - Ling Zou
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, 213164, Jiangsu, China.
- School of Microelectronics and Control Engineering, Changzhou University, Changzhou, 213164, Jiangsu, China.
| |
Collapse
|
13
|
Zhang J, Guo J, Lu D, Cao Y. ASD-SWNet: a novel shared-weight feature extraction and classification network for autism spectrum disorder diagnosis. Sci Rep 2024; 14:13696. [PMID: 38871844 DOI: 10.1038/s41598-024-64299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/06/2024] [Indexed: 06/15/2024] Open
Abstract
The traditional diagnostic process for autism spectrum disorder (ASD) is subjective, where early and accurate diagnosis significantly affects treatment outcomes and life quality. Thus, improving ASD diagnostic methods is critical. This paper proposes ASD-SWNet, a new shared-weight feature extraction and classification network. It resolves the issue found in previous studies of inefficiently integrating unsupervised and supervised learning, thereby enhancing diagnostic precision. The approach utilizes functional magnetic resonance imaging to improve diagnostic accuracy, featuring an autoencoder (AE) with Gaussian noise for robust feature extraction and a tailored convolutional neural network (CNN) for classification. The shared-weight mechanism utilizes features learned by the AE to initialize the convolutional layer weights of the CNN, thereby integrating AE and CNN for joint training. A novel data augmentation strategy for time-series medical data is also introduced, tackling the problem of small sample sizes. Tested on the ABIDE-I dataset through nested ten-fold cross-validation, the method achieved an accuracy of 76.52% and an AUC of 0.81. This approach surpasses existing methods, showing significant enhancements in diagnostic accuracy and robustness. The contribution of this paper lies not only in proposing new methods for ASD diagnosis but also in offering new approaches for other neurological brain diseases.
Collapse
Affiliation(s)
- Jian Zhang
- School of Internet of Things and Artificial Intelligence, Wuxi Vocational College of Science and Technology, Wuxi, 214028, China.
| | - Jifeng Guo
- College of Computer Science and Engineering, Guilin University of Aerospace Technology, Guilin, 540004, China
| | - Donglei Lu
- School of Internet of Things and Artificial Intelligence, Wuxi Vocational College of Science and Technology, Wuxi, 214028, China
| | - Yuanyuan Cao
- School of Internet of Things and Artificial Intelligence, Wuxi Vocational College of Science and Technology, Wuxi, 214028, China
| |
Collapse
|
14
|
Huang ZA, Liu R, Zhu Z, Tan KC. Multitask Learning for Joint Diagnosis of Multiple Mental Disorders in Resting-State fMRI. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:8161-8175. [PMID: 36459608 DOI: 10.1109/tnnls.2022.3225179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Facing the increasing worldwide prevalence of mental disorders, the symptom-based diagnostic criteria struggle to address the urgent public health concern due to the global shortfall in well-qualified professionals. Thanks to the recent advances in neuroimaging techniques, functional magnetic resonance imaging (fMRI) has surfaced as a new solution to characterize neuropathological biomarkers for detecting functional connectivity (FC) anomalies in mental disorders. However, the existing computer-aided diagnosis models for fMRI analysis suffer from unstable performance on large datasets. To address this issue, we propose an efficient multitask learning (MTL) framework for joint diagnosis of multiple mental disorders using resting-state fMRI data. A novel multiobjective evolutionary clustering algorithm is presented to group regions of interests (ROIs) into different clusters for FC pattern analysis. On the optimal clustering solution, the multicluster multigate mixture-of-expert model is used for the final classification by capturing the highly consistent feature patterns among related diagnostic tasks. Extensive simulation experiments demonstrate that the performance of the proposed framework is superior to that of the other state-of-the-art methods. Moreover, the potential for practical application of the framework is also validated in terms of limited computational resources, real-time analysis, and insufficient training data. The proposed model can identify the remarkable interpretative biomarkers associated with specific mental disorders for clinical interpretation analysis.
Collapse
|
15
|
Zhang X, Gao Y, Zhang Y, Li F, Li H, Lei F. Identification of Autism Spectrum Disorder Using Topological Data Analysis. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:1023-1037. [PMID: 38351222 PMCID: PMC11169318 DOI: 10.1007/s10278-024-01002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/30/2023] [Accepted: 11/21/2023] [Indexed: 06/13/2024]
Abstract
Autism spectrum disorder (ASD) is a pervasive brain development disease. Recently, the incidence rate of ASD has increased year by year and posed a great threat to the lives and families of individuals with ASD. Therefore, the study of ASD has become very important. A suitable feature representation that preserves the data intrinsic information and also reduces data complexity is very vital to the performance of established models. Topological data analysis (TDA) is an emerging and powerful mathematical tool for characterizing shapes and describing intrinsic information in complex data. In TDA, persistence barcodes or diagrams are usually regarded as visual representations of topological features of data. In this paper, the Regional Homogeneity (ReHo) data of subjects obtained from Autism Brain Imaging Data Exchange (ABIDE) database were used to extract features by using TDA. The average accuracy of cross validation on ABIDE I database was 95.6% that was higher than any other existing methods (the highest accuracy among existing methods was 93.59%). The average accuracy for sampling with the same resolutions with the ABIDE I on the ABIDE II database was 96.5% that was also higher than any other existing methods (the highest accuracy among existing methods was 75.17%).
Collapse
Affiliation(s)
- Xudong Zhang
- School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, China
| | - Yaru Gao
- School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, China
| | - Yunge Zhang
- School of Biomedical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Fengling Li
- School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, China.
| | - Huanjie Li
- School of Biomedical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Fengchun Lei
- School of Mathematical Sciences, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
16
|
Chen Y, Yan J, Jiang M, Zhang T, Zhao Z, Zhao W, Zheng J, Yao D, Zhang R, Kendrick KM, Jiang X. Adversarial Learning Based Node-Edge Graph Attention Networks for Autism Spectrum Disorder Identification. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:7275-7286. [PMID: 35286265 DOI: 10.1109/tnnls.2022.3154755] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Graph neural networks (GNNs) have received increasing interest in the medical imaging field given their powerful graph embedding ability to characterize the non-Euclidean structure of brain networks based on magnetic resonance imaging (MRI) data. However, previous studies are largely node-centralized and ignore edge features for graph classification tasks, resulting in moderate performance of graph classification accuracy. Moreover, the generalizability of GNN model is still far from satisfactory in brain disorder [e.g., autism spectrum disorder (ASD)] identification due to considerable individual differences in symptoms among patients as well as data heterogeneity among different sites. In order to address the above limitations, this study proposes a novel adversarial learning-based node-edge graph attention network (AL-NEGAT) for ASD identification based on multimodal MRI data. First, both node and edge features are modeled based on structural and functional MRI data to leverage complementary brain information and preserved in the constructed weighted adjacent matrix for individuals through the attention mechanism in the proposed NEGAT. Second, two AL methods are employed to improve the generalizability of NEGAT. Finally, a gradient-based saliency map strategy is utilized for model interpretation to identify important brain regions and connections contributing to the classification. Experimental results based on the public Autism Brain Imaging Data Exchange I (ABIDE I) data demonstrate that the proposed framework achieves a classification accuracy of 74.7% between ASD and typical developing (TD) groups based on 1007 subjects across 17 different sites and outperforms the state-of-the-art methods, indicating satisfying classification ability and generalizability of the proposed AL-NEGAT model. Our work provides a powerful tool for brain disorder identification.
Collapse
|
17
|
Xu Y, Yu Z, Li Y, Liu Y, Li Y, Wang Y. Autism spectrum disorder diagnosis with EEG signals using time series maps of brain functional connectivity and a combined CNN-LSTM model. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 250:108196. [PMID: 38678958 DOI: 10.1016/j.cmpb.2024.108196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/30/2024] [Accepted: 04/21/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND AND OBJECTIVE People with autism spectrum disorder (ASD) often have cognitive impairments. Effective connectivity between different areas of the brain is essential for normal cognition. Electroencephalography (EEG) has been widely used in the detection of neurological diseases. Previous studies on detecting ASD with EEG data have focused on frequency-related features. Most of these studies have augmented data by splitting the dataset into time slices or sliding windows. However, such approaches to data augmentation may cause the testing data to be contaminated by the training data. To solve this problem, this study developed a novel method for detecting ASD with EEG data. METHODS This study quantified the functional connectivity of the subject's brain from EEG signals and defined the individual to be the unit of analysis. Publicly available EEG data were gathered from 97 and 92 subjects with ASD and typical development (TD), respectively, while they were at rest or performing a task. Time-series maps of brain functional connectivity were constructed, and the data were augmented using a deep convolutional generative adversarial network. In addition, a combined network for ASD detection, based on convolutional neural network (CNN) and long short-term memory (LSTM), was designed and implemented. RESULTS Based on functional connectivity, the network achieved classification accuracies of 81.08% and 74.55% on resting state and task state data, respectively. In addition, we found that the functional connectivity of ASD differed from TD primarily in the short-distance functional connectivity of the parietal and occipital lobes and in the distant connections from the right temporoparietal junction region to the left posterior temporal lobe. CONCLUSIONS This paper provides a new perspective for better utilizing EEG to understand ASD. The method proposed in our study is expected to be a reliable tool to assist in the diagnosis of ASD.
Collapse
Affiliation(s)
- Yongjie Xu
- Research Center for Biomedical Information Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zengjie Yu
- Research Center for Biomedical Information Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yisheng Li
- Research Center for Biomedical Information Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuehan Liu
- Research Center for Biomedical Information Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ye Li
- Research Center for Biomedical Information Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yishan Wang
- Research Center for Biomedical Information Technology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
18
|
Qiu B, Wang Q, Li X, Li W, Shao W, Wang M. Adaptive spatial-temporal neural network for ADHD identification using functional fMRI. Front Neurosci 2024; 18:1394234. [PMID: 38872940 PMCID: PMC11169645 DOI: 10.3389/fnins.2024.1394234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/15/2024] [Indexed: 06/15/2024] Open
Abstract
Computer aided diagnosis methods play an important role in Attention Deficit Hyperactivity Disorder (ADHD) identification. Dynamic functional connectivity (dFC) analysis has been widely used for ADHD diagnosis based on resting-state functional magnetic resonance imaging (rs-fMRI), which can help capture abnormalities of brain activity. However, most existing dFC-based methods only focus on dependencies between two adjacent timestamps, ignoring global dynamic evolution patterns. Furthermore, the majority of these methods fail to adaptively learn dFCs. In this paper, we propose an adaptive spatial-temporal neural network (ASTNet) comprising three modules for ADHD identification based on rs-fMRI time series. Specifically, we first partition rs-fMRI time series into multiple segments using non-overlapping sliding windows. Then, adaptive functional connectivity generation (AFCG) is used to model spatial relationships among regions-of-interest (ROIs) with adaptive dFCs as input. Finally, we employ a temporal dependency mining (TDM) module which combines local and global branches to capture global temporal dependencies from the spatially-dependent pattern sequences. Experimental results on the ADHD-200 dataset demonstrate the superiority of the proposed ASTNet over competing approaches in automated ADHD classification.
Collapse
Affiliation(s)
- Bo Qiu
- School of Computer Science, Nanjing University of Information Science and Technology, Nanjing, China
| | - Qianqian Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Xizhi Li
- School of Computer Science, Nanjing University of Information Science and Technology, Nanjing, China
| | - Wenyang Li
- School of Computer Science, Nanjing University of Information Science and Technology, Nanjing, China
| | - Wei Shao
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Mingliang Wang
- School of Computer Science, Nanjing University of Information Science and Technology, Nanjing, China
- Nanjing Xinda Institute of Safety and Emergency Management, Nanjing, China
| |
Collapse
|
19
|
Yin Z, Ding X, Zhang X, Wu Z, Wang L, Xu X, Li G. Early autism diagnosis based on path signature and Siamese unsupervised feature compressor. Cereb Cortex 2024; 34:72-83. [PMID: 38696605 DOI: 10.1093/cercor/bhae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/07/2024] [Accepted: 02/07/2024] [Indexed: 05/04/2024] Open
Abstract
Autism spectrum disorder has been emerging as a growing public health threat. Early diagnosis of autism spectrum disorder is crucial for timely, effective intervention and treatment. However, conventional diagnosis methods based on communications and behavioral patterns are unreliable for children younger than 2 years of age. Given evidences of neurodevelopmental abnormalities in autism spectrum disorder infants, we resort to a novel deep learning-based method to extract key features from the inherently scarce, class-imbalanced, and heterogeneous structural MR images for early autism diagnosis. Specifically, we propose a Siamese verification framework to extend the scarce data, and an unsupervised compressor to alleviate data imbalance by extracting key features. We also proposed weight constraints to cope with sample heterogeneity by giving different samples different voting weights during validation, and used Path Signature to unravel meaningful developmental features from the two-time point data longitudinally. We further extracted machine learning focused brain regions for autism diagnosis. Extensive experiments have shown that our method performed well under practical scenarios, transcending existing machine learning methods and providing anatomical insights for autism early diagnosis.
Collapse
Affiliation(s)
- Zhuowen Yin
- School of Electronics and Information Engineering, South China University of Technology, 510641 Guangzhou, Guangdong Province, China
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Xinyao Ding
- School of Electronics and Information Engineering, South China University of Technology, 510641 Guangzhou, Guangdong Province, China
- The Affiliated Shenzhen School of Guangdong Experimental High School, 518100 Shenzhen, Guangdong Province, China
| | - Xin Zhang
- School of Electronics and Information Engineering, South China University of Technology, 510641 Guangzhou, Guangdong Province, China
- Pazhou Lab, 510330 Guangzhou, Guangdong Province, China
| | - Zhengwang Wu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Li Wang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Xiangmin Xu
- Pazhou Lab, 510330 Guangzhou, Guangdong Province, China
- School of Future Technology, South China University of Technology, 510641 Guangzhou, Guangdong Province, China
| | - Gang Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
20
|
Bandyopadhyay S, Peddi S, Sarma M, Samanta D. Decoding Autism: Uncovering patterns in brain connectivity through sparsity analysis with rs-fMRI data. J Neurosci Methods 2024; 405:110100. [PMID: 38431227 DOI: 10.1016/j.jneumeth.2024.110100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/11/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
BACKGROUND In the realm of neuro-disorders, precise diagnosis and treatment rely heavily on objective imaging-based biomarker identification. This study employs a sparsity approach on resting-state fMRI to discern relevant brain region connectivity for predicting Autism. NEW METHOD The proposed methodology involves four key steps: (1) Utilizing three probabilistic brain atlases to extract functionally homogeneous brain regions from fMRI data. (2) Employing a hybrid approach of Graphical Lasso and Akaike Information Criteria to optimize sparse inverse covariance matrices for representing the brain functional connectivity. (3) Employing statistical techniques to scrutinize functional brain structures in Autism and Control subjects. (4) Implementing both autoencoder-based feature extraction and entire feature-based approach coupled with AI-based learning classifiers to predict Autism. RESULTS The ensemble classifier with the extracted feature set achieves a classification accuracy of 84.7% ± 0.3% using the MSDL atlas. Meanwhile, the 1D-CNN model, employing all features, exhibits superior classification accuracy of 88.6% ± 1.7% with the Smith 2009 (rsn70) atlas. COMPARISON WITH EXISTING METHOD (S) The proposed methodology outperforms the conventional correlation-based functional connectivity approach with a notably high prediction accuracy of more than 88%, whereas considering all direct and noisy indirect region-based functional connectivity, the traditional methods bound the prediction accuracy within 70% to 79%. CONCLUSIONS This study underscores the potential of sparsity-based FC analysis using rs-fMRI data as a prognostic biomarker for detecting Autism.
Collapse
Affiliation(s)
- Soham Bandyopadhyay
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, India.
| | - Santhoshkumar Peddi
- Computer Science and Engineering, Indian Institute of Technology Kharagpur, India
| | - Monalisa Sarma
- Subir Chowdhury School of Quality and Reliability, Indian Institute of Technology Kharagpur, India
| | - Debasis Samanta
- Computer Science and Engineering, Indian Institute of Technology Kharagpur, India
| |
Collapse
|
21
|
Guan Z, Yu J, Shi Z, Liu X, Yu R, Lai T, Yang C, Dong H, Chen R, Wei L. Dynamic graph transformer network via dual-view connectivity for autism spectrum disorder identification. Comput Biol Med 2024; 174:108415. [PMID: 38599070 DOI: 10.1016/j.compbiomed.2024.108415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 03/17/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that requires objective and accurate identification methods for effective early intervention. Previous population-based methods via functional connectivity (FC) analysis ignore the differences between positive and negative FCs, which provide the potential information complementarity. And they also require additional information to construct a pre-defined graph. Meanwhile, two challenging demand attentions are the imbalance of performance caused by the class distribution and the inherent heterogeneity of multi-site data. In this paper, we propose a novel dynamic graph Transformer network based on dual-view connectivity for ASD Identification. It is based on the Autoencoders, which regard the input feature as individual feature and without any inductive bias. First, a dual-view feature extractor is designed to extract individual and complementary information from positive and negative connectivity. Then Graph Transformer network is innovated with a hot plugging K-Nearest Neighbor (KNN) algorithm module which constructs a dynamic population graph without any additional information. Additionally, we introduce the PolyLoss function and the Vrex method to address the class imbalance and improve the model's generalizability. The evaluation experiment on 1102 subjects from the ABIDE I dataset demonstrates our method can achieve superior performance over several state-of-the-art methods and satisfying generalizability for ASD identification.
Collapse
Affiliation(s)
- Zihao Guan
- College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Digital Fujian Research Institute of Big Data for Agriculture and Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jiaming Yu
- College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Digital Fujian Research Institute of Big Data for Agriculture and Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenshan Shi
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350002, China
| | - Xiumei Liu
- Developmental and Behavior Pediatrics Department, Fujian Children's Hospital - Fujian Branch of Shanghai Children's Medical Center, Fuzhou, 350002, China; College of Clinical Medicine for Obstetrics Gynecology and Pediatrics, Fujian Medical University, Fuzhou, 350012, China
| | - Renping Yu
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Taotao Lai
- College of Computer and Control Engineering, Minjiang University, Fuzhou, 350108, China
| | - Changcai Yang
- College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Digital Fujian Research Institute of Big Data for Agriculture and Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Heng Dong
- College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Digital Fujian Research Institute of Big Data for Agriculture and Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Riqing Chen
- College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Digital Fujian Research Institute of Big Data for Agriculture and Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lifang Wei
- College of Computer and Information Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; Digital Fujian Research Institute of Big Data for Agriculture and Forestry, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
22
|
Huynh N, Deshpande G. A review of the applications of generative adversarial networks to structural and functional MRI based diagnostic classification of brain disorders. Front Neurosci 2024; 18:1333712. [PMID: 38686334 PMCID: PMC11057233 DOI: 10.3389/fnins.2024.1333712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/19/2024] [Indexed: 05/02/2024] Open
Abstract
Structural and functional MRI (magnetic resonance imaging) based diagnostic classification using machine learning has long held promise, but there are many roadblocks to achieving their potential. While traditional machine learning models suffered from their inability to capture the complex non-linear mapping, deep learning models tend to overfit the model. This is because there is data scarcity and imbalanced classes in neuroimaging; it is expensive to acquire data from human subjects and even more so in clinical populations. Due to their ability to augment data by learning underlying distributions, generative adversarial networks (GAN) provide a potential solution to this problem. Here, we provide a methodological primer on GANs and review the applications of GANs to classification of mental health disorders from neuroimaging data such as functional MRI and showcase the progress made thus far. We also highlight gaps in methodology as well as interpretability that are yet to be addressed. This provides directions about how the field can move forward. We suggest that since there are a range of methodological choices available to users, it is critical for users to interact with method developers so that the latter can tailor their development according to the users' needs. The field can be enriched by such synthesis between method developers and users in neuroimaging.
Collapse
Affiliation(s)
- Nguyen Huynh
- Auburn University Neuroimaging Center, Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, United States
| | - Gopikrishna Deshpande
- Auburn University Neuroimaging Center, Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, United States
- Department of Psychological Sciences, Auburn University, Auburn, AL, United States
- Alabama Advanced Imaging Consortium, Birmingham, AL, United States
- Center for Neuroscience, Auburn University, Auburn, AL, United States
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
- Department of Heritage Science and Technology, Indian Institute of Technology, Hyderabad, India
| |
Collapse
|
23
|
Wang Y, Long H, Bo T, Zheng J. Residual graph transformer for autism spectrum disorder prediction. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 247:108065. [PMID: 38428249 DOI: 10.1016/j.cmpb.2024.108065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 01/28/2024] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Brain functional connectivity (FC) based on resting-state functional magnetic resonance imaging (rs-fMRI) has been in vogue to predict Autism Spectrum Disorder (ASD), which is a neuropsychiatric disease up the plight of locating latent biomarkers for clinical diagnosis. Albeit massive endeavors have been made, most studies are fed up with several chronic issues, such as the intractability of harnessing the interaction flourishing within brain regions, the astriction of representation due to vanishing gradient within deeper network architecture, and the poor interpretability leading to unpersuasive diagnosis. To ameliorate these issues, a FC-learned Residual Graph Transformer Network, namely RGTNet, is proposed. Specifically, we design a Graph Encoder to extract temporal-related features with long-range dependencies, from which interpretable FC matrices would be modeled. Besides, the residual trick is introduced to deepen the GCN architecture, thereby learning the higher-level information. Moreover, a novel Graph Sparse Fitting followed by weighted aggregation is proposed to ease dimensionality explosion. Empirically, the results on two types of ABIDE data sets demonstrate the meliority of RGTNet. Notably, the achieved ACC metric reaches 73.4%, overwhelming most competitors with merely 70.9% on the AAL atlas using a five-fold cross-validation policy. Moreover, the investigated biomarkers concord closely with the authoritative medical knowledge, paving a viable way for ASD-clinical diagnosis. Our code is available at https://github.com/CodeGoat24/RGTNet.
Collapse
Affiliation(s)
- Yibin Wang
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| | - Haixia Long
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Tao Bo
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Jianwei Zheng
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
24
|
Jung W, Jeon E, Kang E, Suk HI. EAG-RS: A Novel Explainability-Guided ROI-Selection Framework for ASD Diagnosis via Inter-Regional Relation Learning. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:1400-1411. [PMID: 38015693 DOI: 10.1109/tmi.2023.3337362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Deep learning models based on resting-state functional magnetic resonance imaging (rs-fMRI) have been widely used to diagnose brain diseases, particularly autism spectrum disorder (ASD). Existing studies have leveraged the functional connectivity (FC) of rs-fMRI, achieving notable classification performance. However, they have significant limitations, including the lack of adequate information while using linear low-order FC as inputs to the model, not considering individual characteristics (i.e., different symptoms or varying stages of severity) among patients with ASD, and the non-explainability of the decision process. To cover these limitations, we propose a novel explainability-guided region of interest (ROI) selection (EAG-RS) framework that identifies non-linear high-order functional associations among brain regions by leveraging an explainable artificial intelligence technique and selects class-discriminative regions for brain disease identification. The proposed framework includes three steps: (i) inter-regional relation learning to estimate non-linear relations through random seed-based network masking, (ii) explainable connection-wise relevance score estimation to explore high-order relations between functional connections, and (iii) non-linear high-order FC-based diagnosis-informative ROI selection and classifier learning to identify ASD. We validated the effectiveness of our proposed method by conducting experiments using the Autism Brain Imaging Database Exchange (ABIDE) dataset, demonstrating that the proposed method outperforms other comparative methods in terms of various evaluation metrics. Furthermore, we qualitatively analyzed the selected ROIs and identified ASD subtypes linked to previous neuroscientific studies.
Collapse
|
25
|
Dai P, Shi Y, Lu D, Zhou Y, Luo J, He Z, Chen Z, Zou B, Tang H, Huang Z, Liao S. Classification of recurrent major depressive disorder using a residual denoising autoencoder framework: Insights from large-scale multisite fMRI data. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 247:108114. [PMID: 38447315 DOI: 10.1016/j.cmpb.2024.108114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 02/14/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND AND OBJECTIVE Recurrent major depressive disorder (rMDD) has a high recurrence rate, and symptoms often worsen with each episode. Classifying rMDD using functional magnetic resonance imaging (fMRI) can enhance understanding of brain activity and aid diagnosis and treatment of this disorder. METHODS We developed a Residual Denoising Autoencoder (Res-DAE) framework for the classification of rMDD. The functional connectivity (FC) was extracted from fMRI data as features. The framework addresses site heterogeneity by employing the Combat method to harmonize feature distribution differences. A feature selection method based on Fisher scores was used to reduce redundant information in the features. A data augmentation strategy using a Synthetic Minority Over-sampling Technique algorithm based on Extended Frobenius Norm measure was incorporated to increase the sample size. Furthermore, a residual module was integrated into the autoencoder network to preserve important features and improve the classification accuracy. RESULTS We tested our framework on a large-scale, multisite fMRI dataset, which includes 189 rMDD patients and 427 healthy controls. The Res-DAE achieved an average accuracy of 75.1 % (sensitivity = 69 %, specificity = 77.8 %) in cross-validation, thereby outperforming comparison methods. In a larger dataset that also includes first-episode depression (comprising 832 MDD patients and 779 healthy controls), the accuracy reached 70 %. CONCLUSIONS We proposed a deep learning framework that can effectively classify rMDD and 33 identify the altered FC associated with rMDD. Our study may reveal changes in brain function 34 associated with rMDD and provide assistance for the diagnosis and treatment of rMDD.
Collapse
Affiliation(s)
- Peishan Dai
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China.
| | - Yun Shi
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Da Lu
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Ying Zhou
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Jialin Luo
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Zhuang He
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Zailiang Chen
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Beiji Zou
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Hui Tang
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410083, China
| | - Zhongchao Huang
- Department of Biomedical Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan 410083, China
| | - Shenghui Liao
- School of Computer Science and Engineering, Central South University, Changsha, Hunan 410083, China
| |
Collapse
|
26
|
Almahadeen L, Vijay R, Shabaz M, Soni M, Singh PP, Patel P, Byeon H. Clinical deep model to analyse medical multivariate time-series data for health diagnosis. CYBER-PHYSICAL SYSTEMS 2024:1-26. [DOI: 10.1080/23335777.2024.2329677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 03/08/2024] [Indexed: 12/09/2024]
Affiliation(s)
- Layth Almahadeen
- Department of Financial and Administrative Sciences, Al- Balqa’Applied University, Al-Salt, Jordan
| | - Richa Vijay
- Department of computer science, Amity University, Noida, UP, India
| | - Mohammad Shabaz
- Department of Computer Science Engineering, Model Institute of Engineering and Technology Jammu, Jammu and Kashmir, India
| | - Mukesh Soni
- Department of Computer Science Engineering, University Centre for Research & Development, Chandigarh University, Mohali, India
| | | | - Pavan Patel
- Department of Computer Science Engineering, Ahmedabad Institute of Technology, Ahmedabad, India
| | - Haewon Byeon
- Department of Digital Anti-Aging Healthcare, Inje University, Gimhae, Republic of Korea
| |
Collapse
|
27
|
Oh JH, Lee DJ, Ji CH, Shin DH, Han JW, Son YH, Kam TE. Graph-Based Conditional Generative Adversarial Networks for Major Depressive Disorder Diagnosis With Synthetic Functional Brain Network Generation. IEEE J Biomed Health Inform 2024; 28:1504-1515. [PMID: 38064332 DOI: 10.1109/jbhi.2023.3340325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Major Depressive Disorder (MDD) is a pervasive disorder affecting millions of individuals, presenting a significant global health concern. Functional connectivity (FC) derived from resting-state functional Magnetic Resonance Imaging (rs-fMRI) serves as a crucial tool in revealing functional connectivity patterns associated with MDD, playing an essential role in precise diagnosis. However, the limited data availability of FC poses challenges for robust MDD diagnosis. To tackle this, some studies have employed Deep Neural Networks (DNN) architectures to construct Generative Adversarial Networks (GAN) for synthetic FC generation, but this tends to overlook the inherent topology characteristics of FC. To overcome this challenge, we propose a novel Graph Convolutional Networks (GCN)-based Conditional GAN with Class-Aware Discriminator (GC-GAN). GC-GAN utilizes GCN in both the generator and discriminator to capture intricate FC patterns among brain regions, and the class-aware discriminator ensures the diversity and quality of the generated synthetic FC. Additionally, we introduce a topology refinement technique to enhance MDD diagnosis performance by optimizing the topology using the augmented FC dataset. Our framework was evaluated on publicly available rs-fMRI datasets, and the results demonstrate that GC-GAN outperforms existing methods. This indicates the superior potential of GCN in capturing intricate topology characteristics and generating high-fidelity synthetic FC, thus contributing to a more robust MDD diagnosis.
Collapse
|
28
|
Liu Y, Wang H, Ding Y. The Dynamical Biomarkers in Functional Connectivity of Autism Spectrum Disorder Based on Dynamic Graph Embedding. Interdiscip Sci 2024; 16:141-159. [PMID: 38060171 DOI: 10.1007/s12539-023-00592-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/02/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023]
Abstract
Autism spectrum disorder (ASD) is a neurological and developmental disorder and its early diagnosis is a challenging task. The dynamic brain network (DBN) offers a wealth of information for the diagnosis and treatment of ASD. Mining the spatio-temporal characteristics of DBN is critical for finding dynamic communication across brain regions and, ultimately, identifying the ASD diagnostic biomarker. We proposed the dgEmbed-KNN and the Aggregation-SVM diagnostic models, which use the spatio-temporal information from DBN and interactive information among brain regions represented by dynamic graph embedding. The classification accuracies show that dgEmbed-KNN model performs slightly better than traditional machine learning and deep learning methods, while the Aggregation-SVM model has a very good capacity to diagnose ASD using aggregation brain network connections as features. We discovered over- and under-connections in ASD at the level of dynamic connections, involving brain regions of the postcentral gyrus, the insula, the cerebellum, the caudate nucleus, and the temporal pole. We also found abnormal dynamic interactions associated with ASD within/between the functional subnetworks, including default mode network, visual network, auditory network and saliency network. These can provide potential DBN biomarkers for ASD identification.
Collapse
Affiliation(s)
- Yanting Liu
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Hao Wang
- School of Science, Jiangnan University, Wuxi, 214122, China
| | - Yanrui Ding
- School of Science, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
29
|
Koc E, Kalkan H, Bilgen S. Autism Spectrum Disorder Detection by Hybrid Convolutional Recurrent Neural Networks from Structural and Resting State Functional MRI Images. AUTISM RESEARCH AND TREATMENT 2023; 2023:4136087. [PMID: 38152612 PMCID: PMC10752691 DOI: 10.1155/2023/4136087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 10/19/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023]
Abstract
This study aims to increase the accuracy of autism spectrum disorder (ASD) diagnosis based on cognitive and behavioral phenotypes through multiple neuroimaging modalities. We apply machine learning (ML) algorithms to classify ASD patients and healthy control (HC) participants using structural magnetic resonance imaging (s-MRI) together with resting state functional MRI (rs-f-MRI and f-MRI) data from the large multisite data repository ABIDE (autism brain imaging data exchange) and identify important brain connectivity features. The 2D f-MRI images were converted into 3D s-MRI images, and datasets were preprocessed using the Montreal Neurological Institute (MNI) atlas. The data were then denoised to remove any confounding factors. We show, by using three fusion strategies such as early fusion, late fusion, and cross fusion, that, in this implementation, hybrid convolutional recurrent neural networks achieve better performance in comparison to either convolutional neural networks (CNNs) or recurrent neural networks (RNNs). The proposed model classifies subjects as autistic or not according to how functional and anatomical connectivity metrics provide an overall diagnosis based on the autism diagnostic observation schedule (ADOS) standard. Our hybrid network achieved an accuracy of 96% by fusing s-MRI and f-MRI together, which outperforms the methods used in previous studies.
Collapse
Affiliation(s)
- Emel Koc
- Istanbul Okan University, Istanbul, Türkiye
| | | | | |
Collapse
|
30
|
Wang M, Ma Z, Wang Y, Liu J, Guo J. A multi-view convolutional neural network method combining attention mechanism for diagnosing autism spectrum disorder. PLoS One 2023; 18:e0295621. [PMID: 38064474 PMCID: PMC10707567 DOI: 10.1371/journal.pone.0295621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition whose current psychiatric diagnostic process is subjective and behavior-based. In contrast, functional magnetic resonance imaging (fMRI) can objectively measure brain activity and is useful for identifying brain disorders. However, the ASD diagnostic models employed to date have not reached satisfactory levels of accuracy. This study proposes the use of MAACNN, a method that utilizes multi-view convolutional neural networks (CNNs) in conjunction with attention mechanisms for identifying ASD in multi-scale fMRI. The proposed algorithm effectively combines unsupervised and supervised learning. In the initial stage, we employ stacked denoising autoencoders, an unsupervised learning method for feature extraction, which provides different nodes to adapt to multi-scale data. In the subsequent stage, we perform supervised learning by employing multi-view CNNs for classification and obtain the final results. Finally, multi-scale data fusion is achieved by using the attention fusion mechanism. The ABIDE dataset is used to evaluate the model we proposed., and the experimental results show that MAACNN achieves superior performance with 75.12% accuracy and 0.79 AUC on ABIDE-I, and 72.88% accuracy and 0.76 AUC on ABIDE-II. The proposed method significantly contributes to the clinical diagnosis of ASD.
Collapse
Affiliation(s)
- Mingzhi Wang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, China
| | - Zhiqiang Ma
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, China
| | - Yongjie Wang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin, China
| | - Jing Liu
- College of Computer Science and Engineering, Guilin University of Aerospace Technology, Guilin, China
| | - Jifeng Guo
- College of Computer Science and Engineering, Guilin University of Aerospace Technology, Guilin, China
| |
Collapse
|
31
|
Zhu X, Kim Y, Ravid O, He X, Suarez-Jimenez B, Zilcha-Mano S, Lazarov A, Lee S, Abdallah CG, Angstadt M, Averill CL, Baird CL, Baugh LA, Blackford JU, Bomyea J, Bruce SE, Bryant RA, Cao Z, Choi K, Cisler J, Cotton AS, Daniels JK, Davenport ND, Davidson RJ, DeBellis MD, Dennis EL, Densmore M, deRoon-Cassini T, Disner SG, Hage WE, Etkin A, Fani N, Fercho KA, Fitzgerald J, Forster GL, Frijling JL, Geuze E, Gonenc A, Gordon EM, Gruber S, Grupe DW, Guenette JP, Haswell CC, Herringa RJ, Herzog J, Hofmann DB, Hosseini B, Hudson AR, Huggins AA, Ipser JC, Jahanshad N, Jia-Richards M, Jovanovic T, Kaufman ML, Kennis M, King A, Kinzel P, Koch SBJ, Koerte IK, Koopowitz SM, Korgaonkar MS, Krystal JH, Lanius R, Larson CL, Lebois LAM, Li G, Liberzon I, Lu GM, Luo Y, Magnotta VA, Manthey A, Maron-Katz A, May G, McLaughlin K, Mueller SC, Nawijn L, Nelson SM, Neufeld RWJ, Nitschke JB, O'Leary EM, Olatunji BO, Olff M, Peverill M, Phan KL, Qi R, Quidé Y, Rektor I, Ressler K, Riha P, Ross M, Rosso IM, Salminen LE, Sambrook K, Schmahl C, Shenton ME, Sheridan M, Shih C, Sicorello M, Sierk A, Simmons AN, Simons RM, Simons JS, Sponheim SR, Stein MB, Stein DJ, Stevens JS, Straube T, Sun D, Théberge J, Thompson PM, Thomopoulos SI, van der Wee NJA, van der Werff SJA, van Erp TGM, van Rooij SJH, van Zuiden M, Varkevisser T, Veltman DJ, Vermeiren RRJM, Walter H, Wang L, Wang X, Weis C, Winternitz S, Xie H, Zhu Y, Wall M, Neria Y, Morey RA. Neuroimaging-based classification of PTSD using data-driven computational approaches: A multisite big data study from the ENIGMA-PGC PTSD consortium. Neuroimage 2023; 283:120412. [PMID: 37858907 PMCID: PMC10842116 DOI: 10.1016/j.neuroimage.2023.120412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 09/10/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Recent advances in data-driven computational approaches have been helpful in devising tools to objectively diagnose psychiatric disorders. However, current machine learning studies limited to small homogeneous samples, different methodologies, and different imaging collection protocols, limit the ability to directly compare and generalize their results. Here we aimed to classify individuals with PTSD versus controls and assess the generalizability using a large heterogeneous brain datasets from the ENIGMA-PGC PTSD Working group. METHODS We analyzed brain MRI data from 3,477 structural-MRI; 2,495 resting state-fMRI; and 1,952 diffusion-MRI. First, we identified the brain features that best distinguish individuals with PTSD from controls using traditional machine learning methods. Second, we assessed the utility of the denoising variational autoencoder (DVAE) and evaluated its classification performance. Third, we assessed the generalizability and reproducibility of both models using leave-one-site-out cross-validation procedure for each modality. RESULTS We found lower performance in classifying PTSD vs. controls with data from over 20 sites (60 % test AUC for s-MRI, 59 % for rs-fMRI and 56 % for d-MRI), as compared to other studies run on single-site data. The performance increased when classifying PTSD from HC without trauma history in each modality (75 % AUC). The classification performance remained intact when applying the DVAE framework, which reduced the number of features. Finally, we found that the DVAE framework achieved better generalization to unseen datasets compared with the traditional machine learning frameworks, albeit performance was slightly above chance. CONCLUSION These results have the potential to provide a baseline classification performance for PTSD when using large scale neuroimaging datasets. Our findings show that the control group used can heavily affect classification performance. The DVAE framework provided better generalizability for the multi-site data. This may be more significant in clinical practice since the neuroimaging-based diagnostic DVAE classification models are much less site-specific, rendering them more generalizable.
Collapse
Affiliation(s)
- Xi Zhu
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA
| | - Yoojean Kim
- New York State Psychiatric Institute, New York, NY, USA
| | - Orren Ravid
- New York State Psychiatric Institute, New York, NY, USA
| | - Xiaofu He
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | | | | | | | - Seonjoo Lee
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA
| | - Chadi G Abdallah
- Baylor College of Medicine, Houston, TX, USA; Yale University School of Medicine, New Haven, CT, USA
| | | | - Christopher L Averill
- Baylor College of Medicine, Houston, TX, USA; Yale University School of Medicine, New Haven, CT, USA
| | | | - Lee A Baugh
- Sanford School of Medicine, University of South Dakota, Vermillion, SD, USA
| | | | | | - Steven E Bruce
- Center for Trauma Recovery, Department of Psychological Sciences, University of Missouri-St. Louis, St. Louis, MO, USA
| | - Richard A Bryant
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Zhihong Cao
- Department of Radiology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, China
| | - Kyle Choi
- University of California San Diego, La Jolla, CA, USA
| | - Josh Cisler
- Department of Psychiatry, University of Texas at Austin, Austin, TX, USA
| | | | | | | | | | | | - Emily L Dennis
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Maria Densmore
- Departments of Psychology and Psychiatry, Neuroscience Program, Western University, London, ON, Canada; Department of Psychology, University of British Columbia, Okanagan, Kelowna, British Columbia, Canada
| | | | - Seth G Disner
- Minneapolis VA Health Care System, Minneapolis, MN, USA
| | - Wissam El Hage
- UMR 1253, CIC 1415, University of Tours, CHRU de Tours, INSERM, France
| | | | - Negar Fani
- Emory University Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Kelene A Fercho
- Civil Aerospace Medical Institute, US Federal Aviation Administration, Oklahoma City, OK, USA
| | | | - Gina L Forster
- Brain Health Research Centre, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Jessie L Frijling
- Department of Psychiatry, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Elbert Geuze
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, The Netherlands
| | - Atilla Gonenc
- Cognitive and Clinical Neuroimaging Core, McLean Hospital, Belmont, MA, USA
| | - Evan M Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Staci Gruber
- Cognitive and Clinical Neuroimaging Core, McLean Hospital, Belmont, MA, USA
| | | | - Jeffrey P Guenette
- Division of Neuroradiology, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Ryan J Herringa
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | | | | | | | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA, USA
| | | | | | - Milissa L Kaufman
- Division of Women's Mental Health, McLean Hospital, Belmont, MA, USA
| | - Mitzy Kennis
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, The Netherlands
| | | | - Philipp Kinzel
- Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig Maximilian University of Munich, Munich, Germany; Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| | - Saskia B J Koch
- Donders Institute for Brain, Cognition and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Inga K Koerte
- Department of Child and Adolescent Psychiatry, Psychosomatic and Psychotherapy, Ludwig Maximilian University of Munich, Munich, Germany; Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | - Ruth Lanius
- Department of Neuroscience, Western University, London, ON, Canada
| | | | - Lauren A M Lebois
- McLean Hospital, Belmont, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Gen Li
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Israel Liberzon
- Psychiatry and Behavioral Science, Texas A&M University Health Science Center, College Station, TX, USA
| | - Guang Ming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yifeng Luo
- Department of Radiology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, Jiangsu, China
| | | | - Antje Manthey
- Charité Universitätsmedizin Berlin Campus Charite Mitte: Charite Universitatsmedizin Berlin, Berlin, Germany
| | | | - Geoffery May
- VISN 17 Center of Excellence for Research on Returning War Veterans, Waco, TX, USA
| | | | | | - Laura Nawijn
- Department of Psychiatry, Amsterdam University Medical Centers, VU University Medical Center, VU University, Amsterdam, The Netherlands
| | - Steven M Nelson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Richard W J Neufeld
- Departments of Psychology and Psychiatry, Neuroscience Program, Western University, London, ON, Canada; Department of Psychology, University of British Columbia, Okanagan, Kelowna, British Columbia, Canada
| | | | | | - Bunmi O Olatunji
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - Miranda Olff
- Department of Psychiatry, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | - K Luan Phan
- Department of Psychiatry and Behavioral Health, Ohio State University, Columbus, OH, USA
| | - Rongfeng Qi
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Yann Quidé
- School of Psychology, University of New South Wales, Sydney, NSW, Australia; Neuroscience Research Australia, Randwick, NSW, Australia
| | | | - Kerry Ressler
- McLean Hospital, Belmont, MA, USA; Harvard Medical School, Boston, MA, USA
| | | | - Marisa Ross
- Northwestern Neighborhood and Networks Initiative, Northwestern University Institute for Policy Research, Evanston, IL, USA
| | - Isabelle M Rosso
- McLean Hospital, Belmont, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Lauren E Salminen
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA, USA
| | | | | | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | | | - Anika Sierk
- Charité Universitätsmedizin Berlin Campus Charite Mitte: Charite Universitatsmedizin Berlin, Berlin, Germany
| | - Alan N Simmons
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, USA
| | | | | | - Scott R Sponheim
- Minneapolis VA Health Care System, Minneapolis, MN, USA; University of Minnesota, Minneapolis, MN, USA
| | | | - Dan J Stein
- University of Cape Town, Cape Town, South Africa
| | - Jennifer S Stevens
- Emory University Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | | | | | - Jean Théberge
- Departments of Psychology and Psychiatry, Neuroscience Program, Western University, London, ON, Canada; Department of Psychology, University of British Columbia, Okanagan, Kelowna, British Columbia, Canada
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA, USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, CA, USA
| | | | | | | | - Sanne J H van Rooij
- Emory University Department of Psychiatry and Behavioral Sciences, Atlanta, GA, USA
| | - Mirjam van Zuiden
- Department of Psychiatry, Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Tim Varkevisser
- Brain Research and Innovation Centre, Ministry of Defence, Utrecht, The Netherlands
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam University Medical Centers, VU University Medical Center, VU University, Amsterdam, The Netherlands
| | | | - Henrik Walter
- Charité Universitätsmedizin Berlin Campus Charite Mitte: Charite Universitatsmedizin Berlin, Berlin, Germany
| | - Li Wang
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xin Wang
- University of Toledo, Toledo, OH, USA
| | - Carissa Weis
- Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sherry Winternitz
- Division of Women's Mental Health, McLean Hospital, Belmont, MA, USA
| | - Hong Xie
- University of Toledo, Toledo, OH, USA
| | - Ye Zhu
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Melanie Wall
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA; New York State Psychiatric Institute, New York, NY, USA
| | - Yuval Neria
- Department of Psychiatry, Columbia University Medical Center, New York, NY, USA
| | | |
Collapse
|
32
|
Zhang S, Chen X, Shen X, Ren B, Yu Z, Yang H, Jiang X, Shen D, Zhou Y, Zhang XY. A-GCL: Adversarial graph contrastive learning for fMRI analysis to diagnose neurodevelopmental disorders. Med Image Anal 2023; 90:102932. [PMID: 37657365 DOI: 10.1016/j.media.2023.102932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/06/2023] [Accepted: 08/08/2023] [Indexed: 09/03/2023]
Abstract
Accurate diagnosis of neurodevelopmental disorders is a challenging task due to the time-consuming cognitive tests and potential human bias in clinics. To address this challenge, we propose a novel adversarial self-supervised graph neural network (GNN) based on graph contrastive learning, named A-GCL, for diagnosing neurodevelopmental disorders using functional magnetic resonance imaging (fMRI) data. Taking advantage of the success of GNNs in psychiatric disease diagnosis using fMRI, our proposed A-GCL model is expected to improve the performance of diagnosis and provide more robust results. A-GCL takes graphs constructed from the fMRI images as input and uses contrastive learning to extract features for classification. The graphs are constructed with 3 bands of the amplitude of low-frequency fluctuation (ALFF) as node features and Pearson's correlation coefficients (PCC) of the average fMRI time series in different brain regions as edge weights. The contrastive learning creates an edge-dropped graph from a trainable Bernoulli mask to extract features that are invariant to small variations of the graph. Experiment results on three datasets - Autism Brain Imaging Data Exchange (ABIDE) I, ABIDE II, and attention deficit hyperactivity disorder (ADHD) - with 3 atlases - AAL1, AAL3, Shen268 - demonstrate the superiority and generalizability of A-GCL compared to the other GNN-based models. Extensive ablation studies verify the robustness of the proposed approach to atlas selection and model variation. Explanatory results reveal key functional connections and brain regions associated with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Shengjie Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China; MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China
| | - Xiang Chen
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China; MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China
| | - Xin Shen
- Department of Mathematics, Beijing Normal University, Beijing, 100032, China
| | - Bohan Ren
- Department of School of Cyber Science and Technology, Beihang University, Beijing, 100191, China
| | - Ziqi Yu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China; MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China
| | - Haibo Yang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China; MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China
| | - Xi Jiang
- Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Dinggang Shen
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, 201210, China; Shanghai United Imaging Intelligence Co., Ltd., Shanghai, 200030, China; Shanghai Clinical Research and Trial Center, Shanghai, 201210, China
| | - Yuan Zhou
- School of Data Science, Fudan University, Shanghai, 200433, China.
| | - Xiao-Yong Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China; MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
33
|
Nisar S, Haris M. Neuroimaging genetics approaches to identify new biomarkers for the early diagnosis of autism spectrum disorder. Mol Psychiatry 2023; 28:4995-5008. [PMID: 37069342 DOI: 10.1038/s41380-023-02060-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/19/2023]
Abstract
Autism-spectrum disorders (ASDs) are developmental disabilities that manifest in early childhood and are characterized by qualitative abnormalities in social behaviors, communication skills, and restrictive or repetitive behaviors. To explore the neurobiological mechanisms in ASD, extensive research has been done to identify potential diagnostic biomarkers through a neuroimaging genetics approach. Neuroimaging genetics helps to identify ASD-risk genes that contribute to structural and functional variations in brain circuitry and validate biological changes by elucidating the mechanisms and pathways that confer genetic risk. Integrating artificial intelligence models with neuroimaging data lays the groundwork for accurate diagnosis and facilitates the identification of early diagnostic biomarkers for ASD. This review discusses the significance of neuroimaging genetics approaches to gaining a better understanding of the perturbed neurochemical system and molecular pathways in ASD and how these approaches can detect structural, functional, and metabolic changes and lead to the discovery of novel biomarkers for the early diagnosis of ASD.
Collapse
Affiliation(s)
- Sabah Nisar
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar
- Department of Diagnostic Imaging, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Mohammad Haris
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, Doha, Qatar.
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
34
|
Almuqhim F, Saeed F. ASD-GResTM: Deep Learning Framework for ASD classification using Gramian Angular Field. PROCEEDINGS. IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE 2023; 2023:2837-2843. [PMID: 39021439 PMCID: PMC11254319 DOI: 10.1109/bibm58861.2023.10385743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Autism Spectrum Disorder (ASD) is a heterogeneous disorder in children, and the current clinical diagnosis is accomplished using behavioral, cognitive, developmental, and language metrics. These clinical metrics can be imperfect measures as they are subject to high test-retest variability, and are influenced by assessment factors such as environment, social structure, or comorbid disorders. Advances in neuroimaging coupled with machine-learning provides an opportunity to develop methods that are more quantifiable, and reliable than existing clinical techniques. In this paper, we design and develop a deep-learning model that operates on functional magnetic resonance imaging (fMRI) data, and can classify between ASD and neurotypical brains. We introduce a novel strategy to transform time-series data extracted from fMRI signals into Gramian Angular Field (GAF) while locking in the temporal and spatial patterns in the data. Our motivation is to design and develop a novel framework that could encode the time-series, acquired from fMRI data, into images that can be used by deep-learning architectures that have been successful in computer vision. In our proposed framework called ASD-GResTM, we used a Convolutional Neural Network (CNN) to extract useful features from GAF images. We then used a Long Short-Term Memory (LSTM) layer to learn the activities between the regions. Finally, the output representations of the last LSTM layer are applied to a single-layer perceptron (SPL) to get the final classification. Our extensive experimentation demonstrates high accuracy across 4 centers, and outperforms state-of-the-art models on two centers with an increase in the accuracy of 17.58% and 6.7%, respectively as compared to the state of the art. Our model achieved the maximum accuracy of 81.78% with high degree of sensitivity and specificity. All training, validation, and testing was accomplished using openly available ABIDE-I benchmarking dataset.
Collapse
Affiliation(s)
- Fahad Almuqhim
- Knight Foundation School of Computing and Information Sciences (KFSCIS), Florida International University (FIU), Miami, FL, USA
| | - Fahad Saeed
- Knight Foundation School of Computing and Information Sciences (KFSCIS), Florida International University (FIU), Miami, FL, USA
| |
Collapse
|
35
|
Shoeibi A, Ghassemi N, Khodatars M, Moridian P, Khosravi A, Zare A, Gorriz JM, Chale-Chale AH, Khadem A, Rajendra Acharya U. Automatic diagnosis of schizophrenia and attention deficit hyperactivity disorder in rs-fMRI modality using convolutional autoencoder model and interval type-2 fuzzy regression. Cogn Neurodyn 2023; 17:1501-1523. [PMID: 37974583 PMCID: PMC10640504 DOI: 10.1007/s11571-022-09897-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/23/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Nowadays, many people worldwide suffer from brain disorders, and their health is in danger. So far, numerous methods have been proposed for the diagnosis of Schizophrenia (SZ) and attention deficit hyperactivity disorder (ADHD), among which functional magnetic resonance imaging (fMRI) modalities are known as a popular method among physicians. This paper presents an SZ and ADHD intelligent detection method of resting-state fMRI (rs-fMRI) modality using a new deep learning method. The University of California Los Angeles dataset, which contains the rs-fMRI modalities of SZ and ADHD patients, has been used for experiments. The FMRIB software library toolbox first performed preprocessing on rs-fMRI data. Then, a convolutional Autoencoder model with the proposed number of layers is used to extract features from rs-fMRI data. In the classification step, a new fuzzy method called interval type-2 fuzzy regression (IT2FR) is introduced and then optimized by genetic algorithm, particle swarm optimization, and gray wolf optimization (GWO) techniques. Also, the results of IT2FR methods are compared with multilayer perceptron, k-nearest neighbors, support vector machine, random forest, and decision tree, and adaptive neuro-fuzzy inference system methods. The experiment results show that the IT2FR method with the GWO optimization algorithm has achieved satisfactory results compared to other classifier methods. Finally, the proposed classification technique was able to provide 72.71% accuracy.
Collapse
Affiliation(s)
- Afshin Shoeibi
- FPGA Lab, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Navid Ghassemi
- Computer Engineering Department, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Marjane Khodatars
- Department of Medical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Parisa Moridian
- Faculty of Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Abbas Khosravi
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Geelong, Australia
| | - Assef Zare
- Faculty of Electrical Engineering, Gonabad Branch, Islamic Azad University, Gonabad, Iran
| | - Juan M Gorriz
- Department of Signal Theory, Networking and Communications, Universidad de Granada, Granada, Spain
| | | | - Ali Khadem
- Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - U Rajendra Acharya
- Ngee Ann Polytechnic, Singapore, 599489 Singapore
- Department of Biomedical Informatics and Medical Engineering, Asia University, Taichung, Taiwan
- Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore, Singapore
| |
Collapse
|
36
|
曾 安, 罗 百, 潘 丹, 容 华, 曹 剑, 张 小, 林 靖, 杨 洋, 刘 军. [Alzheimer's disease classification based on nonlinear high-order features and hypergraph convolutional neural network]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2023; 40:852-858. [PMID: 37879913 PMCID: PMC10600413 DOI: 10.7507/1001-5515.202305060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/14/2023] [Indexed: 10/27/2023]
Abstract
Alzheimer's disease (AD) is an irreversible neurodegenerative disorder that damages patients' memory and cognitive abilities. Therefore, the diagnosis of AD holds significant importance. The interactions between regions of interest (ROIs) in the brain often involve multiple areas collaborating in a nonlinear manner. Leveraging these nonlinear higher-order interaction features to their fullest potential contributes to enhancing the accuracy of AD diagnosis. To address this, a framework combining nonlinear higher-order feature extraction and three-dimensional (3D) hypergraph neural networks is proposed for computer-assisted diagnosis of AD. First, a support vector machine regression model based on the radial basis function kernel was trained on ROI data to obtain a base estimator. Then, a recursive feature elimination algorithm based on the base estimator was applied to extract nonlinear higher-order features from functional magnetic resonance imaging (fMRI) data. These features were subsequently constructed into a hypergraph, leveraging the complex interactions captured in the data. Finally, a four-dimensional (4D) spatiotemporal hypergraph convolutional neural network model was constructed based on the fMRI data for classification. Experimental results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database demonstrated that the proposed framework outperformed the Hyper Graph Convolutional Network (HyperGCN) framework by 8% and traditional two-dimensional (2D) linear feature extraction methods by 12% in the AD/normal control (NC) classification task. In conclusion, this framework demonstrates an improvement in AD classification compared to mainstream deep learning methods, providing valuable evidence for computer-assisted diagnosis of AD.
Collapse
Affiliation(s)
- 安 曾
- 广东工业大学 计算机学院(广州 510006)School of Computers, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - 百荣 罗
- 广东工业大学 计算机学院(广州 510006)School of Computers, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - 丹 潘
- 广东工业大学 计算机学院(广州 510006)School of Computers, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - 华斌 容
- 广东工业大学 计算机学院(广州 510006)School of Computers, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - 剑锋 曹
- 广东工业大学 计算机学院(广州 510006)School of Computers, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - 小波 张
- 广东工业大学 计算机学院(广州 510006)School of Computers, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - 靖 林
- 广东工业大学 计算机学院(广州 510006)School of Computers, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - 洋 杨
- 广东工业大学 计算机学院(广州 510006)School of Computers, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - 军 刘
- 广东工业大学 计算机学院(广州 510006)School of Computers, Guangdong University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
37
|
Artiles O, Al Masry Z, Saeed F. Confounding Effects on the Performance of Machine Learning Analysis of Static Functional Connectivity Computed from rs-fMRI Multi-site Data. Neuroinformatics 2023; 21:651-668. [PMID: 37581850 DOI: 10.1007/s12021-023-09639-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2023] [Indexed: 08/16/2023]
Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI) is a non-invasive imaging technique widely used in neuroscience to understand the functional connectivity of the human brain. While rs-fMRI multi-site data can help to understand the inner working of the brain, the data acquisition and processing of this data has many challenges. One of the challenges is the variability of the data associated with different acquisitions sites, and different MRI machines vendors. Other factors such as population heterogeneity among different sites, with variables such as age and gender of the subjects, must also be considered. Given that most of the machine-learning models are developed using these rs-fMRI multi-site data sets, the intrinsic confounding effects can adversely affect the generalizability and reliability of these computational methods, as well as the imposition of upper limits on the classification scores. This work aims to identify the phenotypic and imaging variables producing the confounding effects, as well as to control these effects. Our goal is to maximize the classification scores obtained from the machine learning analysis of the Autism Brain Imaging Data Exchange (ABIDE) rs-fMRI multi-site data. To achieve this goal, we propose novel methods of stratification to produce homogeneous sub-samples of the 17 ABIDE sites, as well as the generation of new features from the static functional connectivity values, using multiple linear regression models, ComBat harmonization models, and normalization methods. The main results obtained with our statistical models and methods are an accuracy of 76.4%, sensitivity of 82.9%, and specificity of 77.0%, which are 8.8%, 20.5%, and 7.5% above the baseline classification scores obtained from the machine learning analysis of the static functional connectivity computed from the ABIDE rs-fMRI multi-site data.
Collapse
Affiliation(s)
- Oswaldo Artiles
- Knight Foundation School of Computing and Information Sciences, Florida International University, 11200 SW 8th Street CASE 354, Miami, Florida, 33199, USA
| | - Zeina Al Masry
- SUPMICROTECH, CNRS, institut FEMTO-ST, 24 rue Alain Savary, Besançon, F-25000, France
| | - Fahad Saeed
- Knight Foundation School of Computing and Information Sciences, Florida International University, 11200 SW 8th Street CASE 354, Miami, Florida, 33199, USA.
| |
Collapse
|
38
|
Shao L, Fu C, Chen X. A heterogeneous graph convolutional attention network method for classification of autism spectrum disorder. BMC Bioinformatics 2023; 24:363. [PMID: 37759189 PMCID: PMC10536734 DOI: 10.1186/s12859-023-05495-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/21/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a serious developmental disorder of the brain. Recently, various deep learning methods based on functional magnetic resonance imaging (fMRI) data have been developed for the classification of ASD. Among them, graph neural networks, which generalize deep neural network models to graph structured data, have shown great advantages. However, in graph neural methods, because the graphs constructed are homogeneous, the phenotype information of the subjects cannot be fully utilized. This affects the improvement of the classification performance. METHODS To fully utilize the phenotype information, this paper proposes a heterogeneous graph convolutional attention network (HCAN) model to classify ASD. By combining an attention mechanism and a heterogeneous graph convolutional network, important aggregated features can be extracted in the HCAN. The model consists of a multilayer HCAN feature extractor and a multilayer perceptron (MLP) classifier. First, a heterogeneous population graph was constructed based on the fMRI and phenotypic data. Then, a multilayer HCAN is used to mine graph-based features from the heterogeneous graph. Finally, the extracted features are fed into an MLP for the final classification. RESULTS The proposed method is assessed on the autism brain imaging data exchange (ABIDE) repository. In total, 871 subjects in the ABIDE I dataset are used for the classification task. The best classification accuracy of 82.9% is achieved. Compared to the other methods using exactly the same subjects in the literature, the proposed method achieves superior performance to the best reported result. CONCLUSIONS The proposed method can effectively integrate heterogeneous graph convolutional networks with a semantic attention mechanism so that the phenotype features of the subjects can be fully utilized. Moreover, it shows great potential in the diagnosis of brain functional disorders with fMRI data.
Collapse
Affiliation(s)
- Lizhen Shao
- Beijing Engineering Research Center of Industrial Spectrum Imaging, School of Automation and Electrical Engineering, Beijing, 100083, China.
- Lancaster University, Lancaster, LA1 4YX, UK.
| | - Cong Fu
- Beijing Engineering Research Center of Industrial Spectrum Imaging, School of Automation and Electrical Engineering, Beijing, 100083, China
- Shunde Graduate School, University of Science and Technology Beijing, Foshan, 528399, China
| | - Xunying Chen
- Beijing Engineering Research Center of Industrial Spectrum Imaging, School of Automation and Electrical Engineering, Beijing, 100083, China
- Shunde Graduate School, University of Science and Technology Beijing, Foshan, 528399, China
| |
Collapse
|
39
|
Wang M, Guo J, Wang Y, Yu M, Guo J. Multimodal Autism Spectrum Disorder Diagnosis Method Based on DeepGCN. IEEE Trans Neural Syst Rehabil Eng 2023; 31:3664-3674. [PMID: 37698959 DOI: 10.1109/tnsre.2023.3314516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Multimodal data play an important role in the diagnosis of brain diseases. This study constructs a whole-brain functional connectivity network based on functional MRI data, uses non-imaging data with demographic information to complement the classification task for diagnosing subjects, and proposes a multimodal and across-site WL-DeepGCN-based method for classification to diagnose autism spectrum disorder (ASD). This method is used to resolve the existing problem that deep learning ASD identification cannot efficiently utilize multimodal data. In the WL-DeepGCN, a weight-learning network is used to represent the similarity of non-imaging data in the latent space, introducing a new approach for constructing population graph edge weights, and we find that it is beneficial and robust to define pairwise associations in the latent space rather than the input space. We propose a graph convolutional neural network residual connectivity approach to reduce the information loss due to convolution operations by introducing residual units to avoid gradient disappearance and gradient explosion. Furthermore, an EdgeDrop strategy makes the node connections sparser by randomly dropping edges in the raw graph, and its introduction can alleviate the overfitting and oversmoothing problems in the DeepGCN training process. We compare the WL-DeepGCN model with competitive models based on the same topics and nested 10-fold cross-validation show that our method achieves 77.27% accuracy and 0.83 AUC for ASD identification, bringing substantial performance gains.
Collapse
|
40
|
Wang Y, Long H, Zhou Q, Bo T, Zheng J. PLSNet: Position-aware GCN-based autism spectrum disorder diagnosis via FC learning and ROIs sifting. Comput Biol Med 2023; 163:107184. [PMID: 37356292 DOI: 10.1016/j.compbiomed.2023.107184] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/25/2023] [Accepted: 06/13/2023] [Indexed: 06/27/2023]
Abstract
Brain function connectivity, derived from functional magnetic resonance imaging (fMRI), has enjoyed high popularity in the studies of Autism Spectrum Disorder (ASD) diagnosis. Albeit rapid progress has been made, most studies still suffer from several knotty issues: (1) the hardship of modeling the sophisticated brain neuronal connectivity; (2) the mismatch of identically graph node setup to the variations of different brain regions; (3) the dimensionality explosion resulted from excessive voxels in each fMRI sample; (4) the poor interpretability giving rise to unpersuasive diagnosis. To ameliorate these issues, we propose a position-aware graph-convolution-network-based model, namely PLSNet, with superior accuracy and compelling built-in interpretability for ASD diagnosis. Specifically, a time-series encoder is designed for context-rich feature extraction, followed by a function connectivity generator to model the correlation with long range dependencies. In addition, to discriminate the brain nodes with different locations, the position embedding technique is adopted, giving a unique identity to each graph region. We then embed a rarefying method to sift the salient nodes during message diffusion, which would also benefit the reduction of the dimensionality complexity. Extensive experiments conducted on Autism Brain Imaging Data Exchange demonstrate that our PLSNet achieves state-of-the-art performance. Notably, on CC200 atlas, PLSNet reaches an accuracy of 76.4% and a specificity of 78.6%, overwhelming the previous state-of-the-art with 2.5% and 6.5% under five-fold cross-validation policy. Moreover, the most salient brain regions predicted by PLSNet are closely consistent with the theoretical knowledge in the medical domain, providing potential biomarkers for ASD clinical diagnosis. Our code is available at https://github.com/CodeGoat24/PLSNet.
Collapse
Affiliation(s)
- Yibin Wang
- College of Computer Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Haixia Long
- College of Computer Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Qianwei Zhou
- College of Computer Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Tao Bo
- Scientific Center, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Jianwei Zheng
- College of Computer Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China.
| |
Collapse
|
41
|
Ji J, Zhang Y. Deep Hashing Mutual Learning for Brain Network Classification. IEEE J Biomed Health Inform 2023; 27:4489-4499. [PMID: 37318974 DOI: 10.1109/jbhi.2023.3286421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recently, clinical phenotypic semantic information has begun to play an important role in some brain network classification methods based on deep learning. However, most current methods only consider the phenotypic semantic information of individual brain networks but ignore the potential phenotypic characteristics among group brain networks. To address this problem, we present a deep hashing mutual learning (DHML)-based brain network classification method. Specifically, we first design a separable CNN-based deep hashing learning to extract individual topological features of brain networks and map them into hash codes. Secondly, we construct a group brain network relationship graph based on the similarity of phenotypic semantic information, in which each node is a brain network, and the properties of the nodes are the individual features extracted in the previous step. Then, we adopt a GCN-based deep hashing learning to extract the group topological features of the brain network and map them to hash codes. Finally, the two deep hashing learning models perform mutual learning by measuring the distribution differences between the hash codes to achieve the interaction of individual and group features. The experimental results on the three commonly used brain atlases (AAL Atlas, Dosenbach160 Atlas, and CC200 Atlas) of the ABIDE I dataset show that our proposed DHML method achieves optimal classification performance compared with some state-of-the-art methods.
Collapse
|
42
|
Li Y, Huang WC, Song PH. A face image classification method of autistic children based on the two-phase transfer learning. Front Psychol 2023; 14:1226470. [PMID: 37720633 PMCID: PMC10501480 DOI: 10.3389/fpsyg.2023.1226470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/17/2023] [Indexed: 09/19/2023] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder, which seriously affects children's normal life. Screening potential autistic children before professional diagnose is helpful to early detection and early intervention. Autistic children have some different facial features from non-autistic children, so the potential autistic children can be screened by taking children's facial images and analyzing them with a mobile phone. The area under curve (AUC) is a more robust metrics than accuracy in evaluating the performance of a model used to carry out the two-category classification, and the AUC of the deep learning model suitable for the mobile terminal in the existing research can be further improved. Moreover, the size of an input image is large, which is not fit for a mobile phone. A deep transfer learning method is proposed in this research, which can use images with smaller size and improve the AUC of existing studies. The proposed transfer method uses the two-phase transfer learning mode and the multi-classifier integration mode. For MobileNetV2 and MobileNetV3-Large that are suitable for a mobile phone, the two-phase transfer learning mode is used to improve their classification performance, and then the multi-classifier integration mode is used to integrate them to further improve the classification performance. A multi-classifier integrating calculation method is also proposed to calculate the final classification results according to the classifying results of the participating models. The experimental results show that compared with the one-phase transfer learning, the two-phase transfer learning can significantly improve the classification performance of MobileNetV2 and MobileNetV3-Large, and the classification performance of the integrated classifier is better than that of any participating classifiers. The accuracy of the integrated classifier in this research is 90.5%, and the AUC is 96.32%, which is 3.51% greater than the AUC (92.81%) of the previous studies.
Collapse
Affiliation(s)
- Ying Li
- Guangxi Key Laboratory of Human-machine Interaction and Intelligent Decision, School of Logistics Management and Engineering, Nanning Normal University, Nanning, China
| | - Wen-Cong Huang
- Department of Sports and Health, Guangxi College for Preschool Education, Nanning, China
| | - Pei-Hua Song
- Guangxi Key Laboratory of Human-machine Interaction and Intelligent Decision, School of Logistics Management and Engineering, Nanning Normal University, Nanning, China
| |
Collapse
|
43
|
Qiang N, Gao J, Dong Q, Li J, Zhang S, Liang H, Sun Y, Ge B, Liu Z, Wu Z, Liu T, Yue H, Zhao S. A deep learning method for autism spectrum disorder identification based on interactions of hierarchical brain networks. Behav Brain Res 2023; 452:114603. [PMID: 37516208 DOI: 10.1016/j.bbr.2023.114603] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
BACKGROUND It has been recently shown that deep learning models exhibited remarkable performance of representing functional Magnetic Resonance Imaging (fMRI) data for the understanding of brain functional activities. With hierarchical structure, deep learning models can infer hierarchical functional brain networks (FBN) from fMRI. However, the applications of the hierarchical FBNs have been rarely studied. METHODS In this work, we proposed a hierarchical recurrent variational auto-encoder (HRVAE) to unsupervisedly model the fMRI data. The trained HRVAE encoder can predict hierarchical temporal features from its three hidden layers, and thus can be regarded as a hierarchical feature extractor. Then LASSO (least absolute shrinkage and selection operator) regression was applied to estimate the corresponding hierarchical FBNs. Based on the hierarchical FBNs from each subject, we constructed a novel classification framework for brain disorder identification and test it on the Autism Brain Imaging Data Exchange (ABIDE) dataset, a world-wide multi-site database of autism spectrum disorder (ASD). We analyzed the hierarchy organization of FBNs, and finally used the overlaps of hierarchical FBNs as features to differentiate ASD from typically developing controls (TDC). RESULTS The experimental results on 871 subjects from ABIDE dataset showed that the HRVAE model can effectively derive hierarchical FBNs including many well-known resting state networks (RSN). Moreover, the classification result improved the state-of-the-art by achieving a very high accuracy of 82.1 %. CONCLUSIONS This work presents a novel data-driven deep learning method using fMRI data for ASD identification, which could provide valuable reference for clinical diagnosis. The classification results suggest that the interactions of hierarchical FBNs have association with brain disorder, which promotes the understanding of FBN hierarchy and could be applied to other brain disorder analysis.
Collapse
Affiliation(s)
- Ning Qiang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China; Center for Brain and Brain-Inspired Computing Research, Department of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Jie Gao
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Qinglin Dong
- Advanced Medical Computing and Analysis, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jin Li
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Shu Zhang
- Center for Brain and Brain-Inspired Computing Research, Department of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Hongtao Liang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Yifei Sun
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China
| | - Bao Ge
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China; Center for Brain and Brain-Inspired Computing Research, Department of Computer Science, Northwestern Polytechnical University, Xi'an, China
| | - Zhengliang Liu
- Cortical Architecture Imaging and Discovery Lab, School of Computing, The University of Georgia, Athens, GA, USA
| | - Zihao Wu
- Cortical Architecture Imaging and Discovery Lab, School of Computing, The University of Georgia, Athens, GA, USA
| | - Tianming Liu
- Cortical Architecture Imaging and Discovery Lab, School of Computing, The University of Georgia, Athens, GA, USA
| | - Huiji Yue
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, China.
| | - Shijie Zhao
- School of Automation, Northwestern Polytechnical University, Xi'an, China.
| |
Collapse
|
44
|
Tang Y, Tong G, Xiong X, Zhang C, Zhang H, Yang Y. Multi-site diagnostic classification of Autism spectrum disorder using adversarial deep learning on resting-state fMRI. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2023.104892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
45
|
Wen G, Cao P, Liu L, Yang J, Zhang X, Wang F, Zaiane OR. Graph Self-Supervised Learning With Application to Brain Networks Analysis. IEEE J Biomed Health Inform 2023; 27:4154-4165. [PMID: 37159311 DOI: 10.1109/jbhi.2023.3274531] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The less training data and insufficient supervision limit the performance of the deep supervised models for brain disease diagnosis. It is significant to construct a learning framework that can capture more information in limited data and insufficient supervision. To address these issues, we focus on self-supervised learning and aim to generalize the self-supervised learning to the brain networks, which are non-Euclidean graph data. More specifically, we propose an ensemble masked graph self-supervised framework named BrainGSLs, which incorporates 1) a local topological-aware encoder that takes the partially visible nodes as input and learns these latent representations, 2) a node-edge bi-decoder that reconstructs the masked edges by the representations of both the masked and visible nodes, 3) a signal representation learning module for capturing temporal representations from BOLD signals and 4) a classifier used for the classification. We evaluate our model on three real medical clinical applications: diagnosis of Autism Spectrum Disorder (ASD), diagnosis of Bipolar Disorder (BD) and diagnosis of Major Depressive Disorder (MDD). The results suggest that the proposed self-supervised training has led to remarkable improvement and outperforms state-of-the-art methods. Moreover, our method is able to identify the biomarkers associated with the diseases, which is consistent with the previous studies. We also explore the correlation of these three diseases and find the strong association between ASD and BD. To the best of our knowledge, our work is the first attempt of applying the idea of self-supervised learning with masked autoencoder on the brain network analysis.
Collapse
|
46
|
Tilwani D, Bradshaw J, Sheth A, O’Reilly C. ECG Recordings as Predictors of Very Early Autism Likelihood: A Machine Learning Approach. Bioengineering (Basel) 2023; 10:827. [PMID: 37508854 PMCID: PMC10376813 DOI: 10.3390/bioengineering10070827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/22/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, there has been a rise in the prevalence of autism spectrum disorder (ASD). The diagnosis of ASD requires behavioral observation and standardized testing completed by highly trained experts. Early intervention for ASD can begin as early as 1-2 years of age, but ASD diagnoses are not typically made until ages 2-5 years, thus delaying the start of intervention. There is an urgent need for non-invasive biomarkers to detect ASD in infancy. While previous research using physiological recordings has focused on brain-based biomarkers of ASD, this study investigated the potential of electrocardiogram (ECG) recordings as an ASD biomarker in 3-6-month-old infants. We recorded the heart activity of infants at typical and elevated familial likelihood for ASD during naturalistic interactions with objects and caregivers. After obtaining the ECG signals, features such as heart rate variability (HRV) and sympathetic and parasympathetic activities were extracted. Then we evaluated the effectiveness of multiple machine learning classifiers for classifying ASD likelihood. Our findings support our hypothesis that infant ECG signals contain important information about ASD familial likelihood. Amongthe various machine learning algorithms tested, KNN performed best according to sensitivity (0.70 ± 0.117), F1-score (0.689 ± 0.124), precision (0.717 ± 0.128), accuracy (0.70 ± 0.117, p-value = 0.02), and ROC (0.686 ± 0.122, p-value = 0.06). These results suggest that ECG signals contain relevant information about the likelihood of an infant developing ASD. Future studies should consider the potential of information contained in ECG, and other indices of autonomic control, for the development of biomarkers of ASD in infancy.
Collapse
Affiliation(s)
- Deepa Tilwani
- Artificial Intelligence Institute, University of South Carolina, Columbia, SC 29208, USA; (A.S.); (C.O.)
- Department of Computer Science and Engineering, University of South Carolina, Columbia, SC 29208, USA
- Carolina Autism and Neurodevelopment Research Center, University of South Carolina, Columbia, SC 29208, USA;
- Institute for Mind and Brain, University of South Carolina, Columbia, SC 29208, USA
| | - Jessica Bradshaw
- Carolina Autism and Neurodevelopment Research Center, University of South Carolina, Columbia, SC 29208, USA;
- Institute for Mind and Brain, University of South Carolina, Columbia, SC 29208, USA
- Department of Psychology, University of South Carolina, Columbia, SC 29208, USA
| | - Amit Sheth
- Artificial Intelligence Institute, University of South Carolina, Columbia, SC 29208, USA; (A.S.); (C.O.)
- Department of Computer Science and Engineering, University of South Carolina, Columbia, SC 29208, USA
| | - Christian O’Reilly
- Artificial Intelligence Institute, University of South Carolina, Columbia, SC 29208, USA; (A.S.); (C.O.)
- Department of Computer Science and Engineering, University of South Carolina, Columbia, SC 29208, USA
- Carolina Autism and Neurodevelopment Research Center, University of South Carolina, Columbia, SC 29208, USA;
- Institute for Mind and Brain, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
47
|
Zhang C, Ma Y, Qiao L, Zhang L, Liu M. Learning to Fuse Multiple Brain Functional Networks for Automated Autism Identification. BIOLOGY 2023; 12:971. [PMID: 37508401 PMCID: PMC10376072 DOI: 10.3390/biology12070971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/03/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
Functional connectivity network (FCN) has become a popular tool to identify potential biomarkers for brain dysfunction, such as autism spectrum disorder (ASD). Due to its importance, researchers have proposed many methods to estimate FCNs from resting-state functional MRI (rs-fMRI) data. However, the existing FCN estimation methods usually only capture a single relationship between brain regions of interest (ROIs), e.g., linear correlation, nonlinear correlation, or higher-order correlation, thus failing to model the complex interaction among ROIs in the brain. Additionally, such traditional methods estimate FCNs in an unsupervised way, and the estimation process is independent of the downstream tasks, which makes it difficult to guarantee the optimal performance for ASD identification. To address these issues, in this paper, we propose a multi-FCN fusion framework for rs-fMRI-based ASD classification. Specifically, for each subject, we first estimate multiple FCNs using different methods to encode rich interactions among ROIs from different perspectives. Then, we use the label information (ASD vs. healthy control (HC)) to learn a set of fusion weights for measuring the importance/discrimination of those estimated FCNs. Finally, we apply the adaptively weighted fused FCN on the ABIDE dataset to identify subjects with ASD from HCs. The proposed FCN fusion framework is straightforward to implement and can significantly improve diagnostic accuracy compared to traditional and state-of-the-art methods.
Collapse
Affiliation(s)
- Chaojun Zhang
- The School of Computer Science and Technology, Shandong Jianzhu University, Jinan 250101, China
- The School of Mathematics Science, Liaocheng University, Liaocheng 252000, China
| | - Yunling Ma
- The School of Mathematics Science, Liaocheng University, Liaocheng 252000, China
| | - Lishan Qiao
- The School of Mathematics Science, Liaocheng University, Liaocheng 252000, China
| | - Limei Zhang
- The School of Computer Science and Technology, Shandong Jianzhu University, Jinan 250101, China
| | - Mingxia Liu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
48
|
Chen Z, Hu B, Liu X, Becker B, Eickhoff SB, Miao K, Gu X, Tang Y, Dai X, Li C, Leonov A, Xiao Z, Feng Z, Chen J, Chuan-Peng H. Sampling inequalities affect generalization of neuroimaging-based diagnostic classifiers in psychiatry. BMC Med 2023; 21:241. [PMID: 37400814 DOI: 10.1186/s12916-023-02941-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/13/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND The development of machine learning models for aiding in the diagnosis of mental disorder is recognized as a significant breakthrough in the field of psychiatry. However, clinical practice of such models remains a challenge, with poor generalizability being a major limitation. METHODS Here, we conducted a pre-registered meta-research assessment on neuroimaging-based models in the psychiatric literature, quantitatively examining global and regional sampling issues over recent decades, from a view that has been relatively underexplored. A total of 476 studies (n = 118,137) were included in the current assessment. Based on these findings, we built a comprehensive 5-star rating system to quantitatively evaluate the quality of existing machine learning models for psychiatric diagnoses. RESULTS A global sampling inequality in these models was revealed quantitatively (sampling Gini coefficient (G) = 0.81, p < .01), varying across different countries (regions) (e.g., China, G = 0.47; the USA, G = 0.58; Germany, G = 0.78; the UK, G = 0.87). Furthermore, the severity of this sampling inequality was significantly predicted by national economic levels (β = - 2.75, p < .001, R2adj = 0.40; r = - .84, 95% CI: - .41 to - .97), and was plausibly predictable for model performance, with higher sampling inequality for reporting higher classification accuracy. Further analyses showed that lack of independent testing (84.24% of models, 95% CI: 81.0-87.5%), improper cross-validation (51.68% of models, 95% CI: 47.2-56.2%), and poor technical transparency (87.8% of models, 95% CI: 84.9-90.8%)/availability (80.88% of models, 95% CI: 77.3-84.4%) are prevailing in current diagnostic classifiers despite improvements over time. Relating to these observations, model performances were found decreased in studies with independent cross-country sampling validations (all p < .001, BF10 > 15). In light of this, we proposed a purpose-built quantitative assessment checklist, which demonstrated that the overall ratings of these models increased by publication year but were negatively associated with model performance. CONCLUSIONS Together, improving sampling economic equality and hence the quality of machine learning models may be a crucial facet to plausibly translating neuroimaging-based diagnostic classifiers into clinical practice.
Collapse
Affiliation(s)
- Zhiyi Chen
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China.
- Faculty of Psychology, Southwest University, Chongqing, China.
| | - Bowen Hu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Xuerong Liu
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, Chengdu, China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Simon B Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kuan Miao
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Xingmei Gu
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Yancheng Tang
- School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Xin Dai
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Chao Li
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangdong, China
| | - Artemiy Leonov
- School of Psychology, Clark University, Worcester, MA, USA
| | - Zhibing Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Zhengzhi Feng
- Experimental Research Center for Medical and Psychological Science (ERC-MPS), School of Psychology, Third Military Medical University, Chongqing, China
| | - Ji Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China.
- Department of Psychiatry, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| | - Hu Chuan-Peng
- School of Psychology, Nanjing Normal University, Nanjing, China
| |
Collapse
|
49
|
Samanta A, Sarma M, Samanta D. ALERT: Atlas-Based Low Estimation Rank Tensor Approach to Detect Autism Spectrum Disorder . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083014 DOI: 10.1109/embc40787.2023.10340610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
In response to a stimulus, distinct areas of the human brain are activated. Also, it is known that the regions interact with one another. This functional connectivity is helpful to diagnose any neurological abnormality, such as autism spectrum disorder (ASD). This work proposes an approach to construct a functional connectivity network from fMRI image data. For obtaining a functional connectivity network, the time series component of fMRI data is used and from it correlation matrix is calculated showing the degree of interaction among the brain regions. To map the different regions of a brain, the brain atlas is considered. This essentially yields a low-rank tensor approximation of the functional connectivity matrix. A 2D convolutional deep neural network model is built to categorize topological similarity in the functional connectivity matrices related to ASD and typically developing control. The proposed approach has been tested with ABIDE dataset of fMRI data for autism spectrum disorder. Several brain atlases have been considered in the experiment. With a majority voting concept on the results from the atlases, the proposed technique reveals an ASD detection accuracy of 84.79%, which is significantly comparable to the state of the art techniques.Clinical Relevance- ASD is one of the least understood neurological disorders that has been recently recognized to have major sociological consequences on an affected individual's life. A symptom-based diagnosis is in practice. However, this requires prolonged behavioural examinations under the supervision of a highly skilled multidisciplinary team. An early and cost-effective detection using an fMRI image is considered an appropriate, comprehensive, and advanced treatment plan.
Collapse
|
50
|
Helmy E, Elnakib A, ElNakieb Y, Khudri M, Abdelrahim M, Yousaf J, Ghazal M, Contractor S, Barnes GN, El-Baz A. Role of Artificial Intelligence for Autism Diagnosis Using DTI and fMRI: A Survey. Biomedicines 2023; 11:1858. [PMID: 37509498 PMCID: PMC10376963 DOI: 10.3390/biomedicines11071858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/22/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Autism spectrum disorder (ASD) is a wide range of diseases characterized by difficulties with social skills, repetitive activities, speech, and nonverbal communication. The Centers for Disease Control (CDC) estimates that 1 in 44 American children currently suffer from ASD. The current gold standard for ASD diagnosis is based on behavior observational tests by clinicians, which suffer from being subjective and time-consuming and afford only late detection (a child must have a mental age of at least two to apply for an observation report). Alternatively, brain imaging-more specifically, magnetic resonance imaging (MRI)-has proven its ability to assist in fast, objective, and early ASD diagnosis and detection. With the recent advances in artificial intelligence (AI) and machine learning (ML) techniques, sufficient tools have been developed for both automated ASD diagnosis and early detection. More recently, the development of deep learning (DL), a young subfield of AI based on artificial neural networks (ANNs), has successfully enabled the processing of brain MRI data with improved ASD diagnostic abilities. This survey focuses on the role of AI in autism diagnostics and detection based on two basic MRI modalities: diffusion tensor imaging (DTI) and functional MRI (fMRI). In addition, the survey outlines the basic findings of DTI and fMRI in autism. Furthermore, recent techniques for ASD detection using DTI and fMRI are summarized and discussed. Finally, emerging tendencies are described. The results of this study show how useful AI is for early, subjective ASD detection and diagnosis. More AI solutions that have the potential to be used in healthcare settings will be introduced in the future.
Collapse
Affiliation(s)
- Eman Helmy
- Department of Diagnostic Radiology, Faculty of Medicine, Mansoura University, Elgomheryia Street, Mansoura 3512, Egypt;
| | - Ahmed Elnakib
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA; (A.E.); (Y.E.); (M.K.); (M.A.)
| | - Yaser ElNakieb
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA; (A.E.); (Y.E.); (M.K.); (M.A.)
| | - Mohamed Khudri
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA; (A.E.); (Y.E.); (M.K.); (M.A.)
| | - Mostafa Abdelrahim
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA; (A.E.); (Y.E.); (M.K.); (M.A.)
| | - Jawad Yousaf
- Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates; (J.Y.); (M.G.)
| | - Mohammed Ghazal
- Electrical, Computer, and Biomedical Engineering Department, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates; (J.Y.); (M.G.)
| | - Sohail Contractor
- Department of Radiology, University of Louisville, Louisville, KY 40202, USA;
| | - Gregory Neal Barnes
- Department of Neurology, Pediatric Research Institute, University of Louisville, Louisville, KY 40202, USA;
| | - Ayman El-Baz
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA; (A.E.); (Y.E.); (M.K.); (M.A.)
| |
Collapse
|