1
|
Gelens F, Äijälä J, Roberts L, Komatsu M, Uran C, Jensen MA, Miller KJ, Ince RAA, Garagnani M, Vinck M, Canales-Johnson A. Distributed representations of prediction error signals across the cortical hierarchy are synergistic. Nat Commun 2024; 15:3941. [PMID: 38729937 PMCID: PMC11087548 DOI: 10.1038/s41467-024-48329-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
A relevant question concerning inter-areal communication in the cortex is whether these interactions are synergistic. Synergy refers to the complementary effect of multiple brain signals conveying more information than the sum of each isolated signal. Redundancy, on the other hand, refers to the common information shared between brain signals. Here, we dissociated cortical interactions encoding complementary information (synergy) from those sharing common information (redundancy) during prediction error (PE) processing. We analyzed auditory and frontal electrocorticography (ECoG) signals in five common awake marmosets performing two distinct auditory oddball tasks and investigated to what extent event-related potentials (ERP) and broadband (BB) dynamics encoded synergistic and redundant information about PE processing. The information conveyed by ERPs and BB signals was synergistic even at lower stages of the hierarchy in the auditory cortex and between auditory and frontal regions. Using a brain-constrained neural network, we simulated the synergy and redundancy observed in the experimental results and demonstrated that the emergence of synergy between auditory and frontal regions requires the presence of strong, long-distance, feedback, and feedforward connections. These results indicate that distributed representations of PE signals across the cortical hierarchy can be highly synergistic.
Collapse
Affiliation(s)
- Frank Gelens
- Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 129-B, 1018 WT, Amsterdam, The Netherlands
- Department of Psychology, University of Cambridge, CB2 3EB, Cambridge, UK
| | - Juho Äijälä
- Department of Psychology, University of Cambridge, CB2 3EB, Cambridge, UK
| | - Louis Roberts
- Department of Psychology, University of Cambridge, CB2 3EB, Cambridge, UK
- Department of Computing, Goldsmiths, University of London, SE14 6NW, London, UK
| | - Misako Komatsu
- Laboratory for Haptic Perception and Cognitive Physiology, RIKEN Brain Science Institute, Saitama, 351-0198, Japan
| | - Cem Uran
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528, Frankfurt am Main, Germany
- Donders Centre for Neuroscience, Department of Neuroinformatics, Radboud University Nijmegen, 6525, Nijmegen, The Netherlands
| | - Michael A Jensen
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kai J Miller
- Department of Neurosurgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Robin A A Ince
- School of Psychology and Neuroscience, University of Glasgow, Glasgow, G12 8QB, Scotland, UK
| | - Max Garagnani
- Department of Computing, Goldsmiths, University of London, SE14 6NW, London, UK
- Brain Language Lab, Freie Universität Berlin, 14195, Berlin, Germany
| | - Martin Vinck
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528, Frankfurt am Main, Germany.
- Donders Centre for Neuroscience, Department of Neuroinformatics, Radboud University Nijmegen, 6525, Nijmegen, The Netherlands.
| | - Andres Canales-Johnson
- Department of Psychology, University of Cambridge, CB2 3EB, Cambridge, UK.
- Neuropsychology and Cognitive Neurosciences Research Center, Faculty of Health Sciences, Universidad Católica del Maule, 3460000, Talca, Chile.
| |
Collapse
|
2
|
Zanini A, Dureux A, Selvanayagam J, Everling S. Ultra-high field fMRI identifies an action-observation network in the common marmoset. Commun Biol 2023; 6:553. [PMID: 37217698 DOI: 10.1038/s42003-023-04942-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/15/2023] [Indexed: 05/24/2023] Open
Abstract
The observation of others' actions activates a network of temporal, parietal and premotor/prefrontal areas in macaque monkeys and humans. This action-observation network (AON) has been shown to play important roles in social action monitoring, learning by imitation, and social cognition in both species. It is unclear whether a similar network exists in New-World primates, which separated from Old-Word primates ~35 million years ago. Here we used ultra-high field fMRI at 9.4 T in awake common marmosets (Callithrix jacchus) while they watched videos depicting goal-directed (grasping food) or non-goal-directed actions. The observation of goal-directed actions activates a temporo-parieto-frontal network, including areas 6 and 45 in premotor/prefrontal cortices, areas PGa-IPa, FST and TE in occipito-temporal region and areas V6A, MIP, LIP and PG in the occipito-parietal cortex. These results show overlap with the humans and macaques' AON, demonstrating the existence of an evolutionarily conserved network that likely predates the separation of Old and New-World primates.
Collapse
Affiliation(s)
- Alessandro Zanini
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada.
| | - Audrey Dureux
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Janahan Selvanayagam
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
3
|
Miss F, Adriaense J, Burkart J. Towards integrating joint action research: Developmental and evolutionary perspectives on co-representation. Neurosci Biobehav Rev 2022; 143:104924. [DOI: 10.1016/j.neubiorev.2022.104924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 11/23/2022]
|
4
|
Mimura K, Nagai Y, Inoue KI, Matsumoto J, Hori Y, Sato C, Kimura K, Okauchi T, Hirabayashi T, Nishijo H, Yahata N, Takada M, Suhara T, Higuchi M, Minamimoto T. Chemogenetic activation of nigrostriatal dopamine neurons in freely moving common marmosets. iScience 2021; 24:103066. [PMID: 34568790 PMCID: PMC8449082 DOI: 10.1016/j.isci.2021.103066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 07/19/2021] [Accepted: 08/26/2021] [Indexed: 11/10/2022] Open
Abstract
To interrogate particular neuronal pathways in nonhuman primates under natural and stress-free conditions, we applied designer receptors exclusively activated by designer drugs (DREADDs) technology to common marmosets. We injected adeno-associated virus vectors expressing the excitatory DREADD hM3Dq into the unilateral substantia nigra (SN) in four marmosets. Using multi-tracer positron emission tomography imaging, we detected DREADD expression in vivo, which was confirmed in nigrostriatal dopamine neurons by immunohistochemistry, as well as by assessed activation of the SN following agonist administration. The marmosets rotated in a contralateral direction relative to the activated side 30-90 min after consuming food containing the highly potent DREADD agonist deschloroclozapine (DCZ) but not on the following days without DCZ. These results indicate that non-invasive and reversible DREADD manipulation will extend the utility of marmosets as a primate model for linking neuronal activity and natural behavior in various contexts.
Collapse
Affiliation(s)
- Koki Mimura
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555 Japan
| | - Yuji Nagai
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555 Japan
| | - Ken-ichi Inoue
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Jumpei Matsumoto
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-8555, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama 930-8555, Japan
| | - Yukiko Hori
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555 Japan
| | - Chika Sato
- Quantum Life Informatics Group, Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555 Japan
- Applied MRI Research, Department of Molecular Imaging and Theranostics, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555 Japan
| | - Kei Kimura
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Takashi Okauchi
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555 Japan
| | - Toshiyuki Hirabayashi
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555 Japan
| | - Hisao Nishijo
- Department of System Emotional Science, Faculty of Medicine, University of Toyama, Toyama 930-8555, Japan
- Research Center for Idling Brain Science, University of Toyama, Toyama 930-8555, Japan
| | - Noriaki Yahata
- Quantum Life Informatics Group, Institute for Quantum Life Science, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555 Japan
- Applied MRI Research, Department of Molecular Imaging and Theranostics, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555 Japan
| | - Masahiko Takada
- Systems Neuroscience Section, Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
| | - Tetsuya Suhara
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555 Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555 Japan
| | - Takafumi Minamimoto
- Department of Functional Brain Imaging, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555 Japan
| |
Collapse
|
5
|
Cléry JC, Hori Y, Schaeffer DJ, Menon RS, Everling S. Neural network of social interaction observation in marmosets. eLife 2021; 10:e65012. [PMID: 33787492 PMCID: PMC8024015 DOI: 10.7554/elife.65012] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
A crucial component of social cognition is to observe and understand the social interactions of other individuals. A promising nonhuman primate model for investigating the neural basis of social interaction observation is the common marmoset (Callithrix jacchus), a small New World primate that shares a rich social repertoire with humans. Here, we used functional magnetic resonance imaging acquired at 9.4 T to map the brain areas activated by social interaction observation in awake marmosets. We discovered a network of subcortical and cortical areas, predominately in the anterior lateral frontal and medial frontal cortex, that was specifically activated by social interaction observation. This network resembled that recently identified in Old World macaque monkeys. Our findings suggest that this network is largely conserved between New and Old World primates and support the use of marmosets for studying the neural basis of social cognition.
Collapse
Affiliation(s)
- Justine C Cléry
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western OntarioLondonCanada
| | - Yuki Hori
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western OntarioLondonCanada
| | - David J Schaeffer
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western OntarioLondonCanada
- University of Pittsburgh, Department of NeurobiologyPittsburghUnited States
| | - Ravi S Menon
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western OntarioLondonCanada
- Department of Physiology and Pharmacology, The University of Western OntarioLondonCanada
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western OntarioLondonCanada
- Department of Physiology and Pharmacology, The University of Western OntarioLondonCanada
| |
Collapse
|
6
|
Putnam PT, Chang SWC. Social processing by the primate medial frontal cortex. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 158:213-248. [PMID: 33785146 DOI: 10.1016/bs.irn.2020.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The primate medial frontal cortex is comprised of several brain regions that are consistently implicated in regulating complex social behaviors. The medial frontal cortex is also critically involved in many non-social behaviors, such as those involved in reward, affective, and decision-making processes, broadly implicating the fundamental role of the medial frontal cortex in internally guided cognition. An essential question therefore is what unique contributions, if any, does the medial frontal cortex make to social behaviors? In this chapter, we outline several neural algorithms necessary for mediating adaptive social interactions and discuss selected evidence from behavioral neurophysiology experiments supporting the role of the medial frontal cortex in implementing these algorithms. By doing so, we primarily focus on research in nonhuman primates and examine several key attributes of the medial frontal cortex. Specifically, we review neuronal substrates in the medial frontal cortex uniquely suitable for enabling social monitoring, observational and vicarious learning, as well as predicting the behaviors of social partners. Moreover, by utilizing the three levels of organization in information processing systems proposed by Marr (1982) and recently adapted by Lockwood, Apps, and Chang (2020) for social information processing, we survey selected social functions of the medial frontal cortex through the lens of socially relevant algorithms and implementations. Overall, this chapter provides a broad overview of the behavioral neurophysiology literature endorsing the importance of socially relevant neural algorithms implemented by the primate medial frontal cortex for regulating social interactions.
Collapse
Affiliation(s)
- Philip T Putnam
- Department of Psychology, Yale University, New Haven, CT, United States.
| | - Steve W C Chang
- Department of Psychology, Yale University, New Haven, CT, United States; Department of Neuroscience, Yale University School of Medicine, New Haven, CT, United States; Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
7
|
Common marmoset as a model primate for study of the motor control system. Curr Opin Neurobiol 2020; 64:103-110. [DOI: 10.1016/j.conb.2020.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 02/08/2023]
|
8
|
Arafune-Mishima A, Abe H, Tani T, Mashiko H, Watanabe S, Sakai K, Suzuki W, Mizukami H, Watakabe A, Yamamori T, Ichinohe N. Axonal Projections from Middle Temporal Area to the Pulvinar in the Common Marmoset. Neuroscience 2020; 446:145-156. [PMID: 32866602 DOI: 10.1016/j.neuroscience.2020.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 10/23/2022]
Abstract
The pulvinar, the largest thalamic nucleus in the primate brain, has connections with a variety of cortical areas and is involved in many aspects of higher brain functions. Among cortico-pulvino-cortical systems, the connection between the middle temporal area (MT) and the pulvinar has been thought to contribute significantly to complex motion recognition. Recently, the common marmoset (Callithrix jacchus), has become a valuable model for a variety of neuroscience studies, including visual neuroscience and translational research of neurological and psychiatric disorders. However, information on projections from MT to the pulvinar in the marmoset brain is scant. We addressed this deficiency by injecting sensitive anterograde viral tracers into MT to examine the distribution of labeled terminations in the pulvinar. The injection sites were placed retinotopically according to visual field coordinates mapped by optical intrinsic imaging. All injections produced anterograde terminal labeling, which was densest in the medial nucleus of the inferior pulvinar (PIm), sparser in the central nucleus of the inferior pulvinar, and weakest in the lateral pulvinar. Within each subnucleus, terminations formed separate retinotopic fields. Most labeled terminals were small but these comingled with a few large terminals, distributed mainly in the dorsomedial part of the PIm. Our results further delineate the organization of projections from MT to the pulvinar in the marmoset as forming parallel complex networks, which may differentially contribute to motion processing. It is interesting that the densest projections from MT target the PIm, the subnucleus recently reported to preferentially receive direct retinal projections.
Collapse
Affiliation(s)
- Akira Arafune-Mishima
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan; Department of NCNP Brain Physiology and Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Hiroshi Abe
- Laboratory for Molecular Analysis of Higher Brain Function, Center for Brain Science, RIKEN, Saitama, Japan
| | - Toshiki Tani
- Laboratory for Molecular Analysis of Higher Brain Function, Center for Brain Science, RIKEN, Saitama, Japan
| | - Hiromi Mashiko
- Laboratory for Molecular Analysis of Higher Brain Function, Center for Brain Science, RIKEN, Saitama, Japan
| | - Satoshi Watanabe
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kazuhisa Sakai
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Wataru Suzuki
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Akiya Watakabe
- Laboratory for Molecular Analysis of Higher Brain Function, Center for Brain Science, RIKEN, Saitama, Japan
| | - Tetsuo Yamamori
- Laboratory for Molecular Analysis of Higher Brain Function, Center for Brain Science, RIKEN, Saitama, Japan
| | - Noritaka Ichinohe
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan; Ichinohe Group, Laboratory for Molecular Analysis of Higher Brain Function, Center for Brain Science, RIKEN, Saitama, Japan.
| |
Collapse
|
9
|
Abstract
The posterior parietal cortex (PPC) and frontal motor areas comprise a cortical network supporting goal-directed behaviour, with functions including sensorimotor transformations and decision making. In primates, this network links performed and observed actions via mirror neurons, which fire both when individuals perform an action and when they observe the same action performed by a conspecific. Mirror neurons are believed to be important for social learning, but it is not known whether mirror-like neurons occur in similar networks in other social species, such as rodents, or if they can be measured in such models using paradigms where observers passively view a demonstrator. Therefore, we imaged Ca2+ responses in PPC and secondary motor cortex (M2) while mice performed and observed pellet-reaching and wheel-running tasks, and found that cell populations in both areas robustly encoded several naturalistic behaviours. However, neural responses to the same set of observed actions were absent, although we verified that observer mice were attentive to performers and that PPC neurons responded reliably to visual cues. Statistical modelling also indicated that executed actions outperformed observed actions in predicting neural responses. These results raise the possibility that sensorimotor action recognition in rodents could take place outside of the parieto-frontal circuit, and underscore that detecting socially-driven neural coding depends critically on the species and behavioural paradigm used.
Collapse
|
10
|
Risser L, Sadoun A, Mescam M, Strelnikov K, Lebreton S, Boucher S, Girard P, Vayssière N, Rosa MGP, Fonta C. In vivo localization of cortical areas using a 3D computerized atlas of the marmoset brain. Brain Struct Funct 2019; 224:1957-1969. [DOI: 10.1007/s00429-019-01869-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/25/2019] [Indexed: 01/03/2023]
|
11
|
Keysers C, Paracampo R, Gazzola V. What neuromodulation and lesion studies tell us about the function of the mirror neuron system and embodied cognition. Curr Opin Psychol 2018; 24:35-40. [PMID: 29734039 PMCID: PMC6173305 DOI: 10.1016/j.copsyc.2018.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/28/2018] [Accepted: 04/04/2018] [Indexed: 12/20/2022]
Abstract
We review neuromodulation and lesion studies that address how activations in the mirror neuron system contribute to our perception of observed actions. Past reviews showed disruptions of this parieto-premotor network impair imitation and goal and kinematic processing. Recent studies bring five new themes. First, focal perturbations of a node of that circuit lead to changes across all nodes. Second, primary somatosensory cortex is an integral part of this network suggesting embodied representations are somatosensory-motor. Third, disturbing this network impairs the ability to predict the actions of others in the close (∼300ms) future. Fourth, disruptions impair our ability to coordinate our actions with others. Fifth, disrupting this network, the insula or cingulate also impairs emotion recognition.
Collapse
Affiliation(s)
- Christian Keysers
- Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Art and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; Faculty of Social and Behavioural Sciences, University of Amsterdam (UvA), 1001 NK Amsterdam, The Netherlands.
| | - Riccardo Paracampo
- Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Art and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Valeria Gazzola
- Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Art and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; Faculty of Social and Behavioural Sciences, University of Amsterdam (UvA), 1001 NK Amsterdam, The Netherlands
| |
Collapse
|
12
|
Abe H, Tani T, Mashiko H, Kitamura N, Hayami T, Watanabe S, Sakai K, Suzuki W, Mizukami H, Watakabe A, Yamamori T, Ichinohe N. Axonal Projections From the Middle Temporal Area in the Common Marmoset. Front Neuroanat 2018; 12:89. [PMID: 30425625 PMCID: PMC6218423 DOI: 10.3389/fnana.2018.00089] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/10/2018] [Indexed: 11/22/2022] Open
Abstract
Neural activity in the middle temporal (MT) area is modulated by the direction and speed of motion of visual stimuli. The area is buried in a sulcus in the macaque, but exposed to the cortical surface in the marmoset, making the marmoset an ideal animal model for studying MT function. To better understand the details of the roles of this area in cognition, underlying anatomical connections need to be clarified. Because most anatomical tracing studies in marmosets have used retrograde tracers, the axonal projections remain uncharacterized. In order to examine axonal projections from MT, we utilized adeno-associated viral (AAV) tracers, which work as anterograde tracers by expressing either green or red fluorescent protein in infected neurons. AAV tracers were injected into three sites in MT based on retinotopy maps obtained via in vivo optical intrinsic signal imaging. Brains were sectioned and divided into three series, one for fluorescent image scanning and two for myelin and Nissl substance staining to identify specific brain areas. Overall projection patterns were similar across the injections. MT projected to occipital visual areas V1, V2, V3 (VLP) and V4 (VLA) and surrounding areas in the temporal cortex including MTC (V4T), MST, FST, FSTv (PGa/IPa) and TE3. There were also projections to the dorsal visual pathway, V3A (DA), V6 (DM) and V6A, the intraparietal areas AIP, LIP, MIP, frontal A4ab and the prefrontal cortex, A8aV and A8C. There was a visuotopic relationship with occipital visual areas. In a marmoset in which two tracer injections were made, the projection targets did not overlap in A8aV and AIP, suggesting topographic projections from different parts of MT. Most of these areas are known to send projections back to MT, suggesting that they are reciprocally connected with it.
Collapse
Affiliation(s)
- Hiroshi Abe
- Ichinohe Group, Laboratory for Molecular Analysis of Higher Brain Function, Center for Brain Science, RIKEN, Saitama, Japan
| | - Toshiki Tani
- Ichinohe Group, Laboratory for Molecular Analysis of Higher Brain Function, Center for Brain Science, RIKEN, Saitama, Japan
| | - Hiromi Mashiko
- Ichinohe Group, Laboratory for Molecular Analysis of Higher Brain Function, Center for Brain Science, RIKEN, Saitama, Japan
| | - Naohito Kitamura
- Ichinohe Group, Laboratory for Molecular Analysis of Higher Brain Function, Center for Brain Science, RIKEN, Saitama, Japan
| | - Taku Hayami
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Satoshi Watanabe
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kazuhisa Sakai
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Wataru Suzuki
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hiroaki Mizukami
- Division of Genetic Therapeutics, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Akiya Watakabe
- Laboratory for Molecular Analysis of Higher Brain Function, Center for Brain Science, RIKEN, Saitama, Japan
| | - Tetsuo Yamamori
- Laboratory for Molecular Analysis of Higher Brain Function, Center for Brain Science, RIKEN, Saitama, Japan
| | - Noritaka Ichinohe
- Ichinohe Group, Laboratory for Molecular Analysis of Higher Brain Function, Center for Brain Science, RIKEN, Saitama, Japan.,Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
13
|
Sound Frequency Representation in the Auditory Cortex of the Common Marmoset Visualized Using Optical Intrinsic Signal Imaging. eNeuro 2018; 5:eN-NWR-0078-18. [PMID: 29736410 PMCID: PMC5937112 DOI: 10.1523/eneuro.0078-18.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/27/2018] [Accepted: 03/29/2018] [Indexed: 11/21/2022] Open
Abstract
Natural sound is composed of various frequencies. Although the core region of the primate auditory cortex has functionally defined sound frequency preference maps, how the map is organized in the auditory areas of the belt and parabelt regions is not well known. In this study, we investigated the functional organizations of the core, belt, and parabelt regions encompassed by the lateral sulcus and the superior temporal sulcus in the common marmoset (Callithrix jacchus). Using optical intrinsic signal imaging, we obtained evoked responses to band-pass noise stimuli in a range of sound frequencies (0.5-16 kHz) in anesthetized adult animals and visualized the preferred sound frequency map on the cortical surface. We characterized the functionally defined organization using histologically defined brain areas in the same animals. We found tonotopic representation of a set of sound frequencies (low to high) within the primary (A1), rostral (R), and rostrotemporal (RT) areas of the core region. In the belt region, the tonotopic representation existed only in the mediolateral (ML) area. This representation was symmetric with that found in A1 along the border between areas A1 and ML. The functional structure was not very clear in the anterolateral (AL) area. Low frequencies were mainly preferred in the rostrotemplatal (RTL) area, while high frequencies were preferred in the caudolateral (CL) area. There was a portion of the parabelt region that strongly responded to higher sound frequencies (>5.8 kHz) along the border between the rostral parabelt (RPB) and caudal parabelt (CPB) regions.
Collapse
|
14
|
Perception as a Route for Motor Skill Learning: Perspectives from Neuroscience. Neuroscience 2018; 382:144-153. [PMID: 29694916 DOI: 10.1016/j.neuroscience.2018.04.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/05/2018] [Accepted: 04/12/2018] [Indexed: 12/11/2022]
Abstract
Learning a motor skill requires physical practice that engages neural networks involved in movement. These networks have also been found to be engaged during perception of sensory signals associated with actions. Nonetheless, despite extensive evidence for the existence of such sensory-evoked neural activity in motor pathways, much less is known about their contribution to learning and actual changes in behavior. Primate studies usually involve an overlearned task while studies in humans have largely focused on characterizing activity of the action observation network (AON) in the context of action understanding, theory of mind, and social interactions. Relatively few studies examined neural plasticity induced by perception and its role in transfer of motor knowledge. Here, we review this body of literature and point to future directions for the development of alternative, physiologically grounded ways in which sensory signals could be harnessed to improve motor skills.
Collapse
|
15
|
Suzuki W, Ichinohe N, Tani T, Hayami T, Miyakawa N, Watanabe S, Takeichi H. Novel method of extracting motion from natural movies. J Neurosci Methods 2017; 291:51-60. [PMID: 28802702 DOI: 10.1016/j.jneumeth.2017.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/26/2017] [Accepted: 08/03/2017] [Indexed: 11/28/2022]
Abstract
BACKGROUND The visual system in primates can be segregated into motion and shape pathways. Interaction occurs at multiple stages along these pathways. Processing of shape-from-motion and biological motion is considered to be a higher-order integration process involving motion and shape information. However, relatively limited types of stimuli have been used in previous studies on these integration processes. NEW METHOD We propose a new algorithm to extract object motion information from natural movies and to move random dots in accordance with the information. The object motion information is extracted by estimating the dynamics of local normal vectors of the image intensity projected onto the x-y plane of the movie. RESULTS An electrophysiological experiment on two adult common marmoset monkeys (Callithrix jacchus) showed that the natural and random dot movies generated with this new algorithm yielded comparable neural responses in the middle temporal visual area. COMPARISON WITH EXISTING METHODS In principle, this algorithm provided random dot motion stimuli containing shape information for arbitrary natural movies. This new method is expected to expand the neurophysiological and psychophysical experimental protocols to elucidate the integration processing of motion and shape information in biological systems. CONCLUSIONS The novel algorithm proposed here was effective in extracting object motion information from natural movies and provided new motion stimuli to investigate higher-order motion information processing.
Collapse
Affiliation(s)
- Wataru Suzuki
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Ichinohe Neural System Group, Laboratory for Molecular Analysis of Higher Brain Functions, RIKEN Brain Science Institute, RIKEN, Wako, Saitama, Japan.
| | - Noritaka Ichinohe
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Ichinohe Neural System Group, Laboratory for Molecular Analysis of Higher Brain Functions, RIKEN Brain Science Institute, RIKEN, Wako, Saitama, Japan
| | - Toshiki Tani
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Ichinohe Neural System Group, Laboratory for Molecular Analysis of Higher Brain Functions, RIKEN Brain Science Institute, RIKEN, Wako, Saitama, Japan
| | - Taku Hayami
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Naohisa Miyakawa
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan; Ichinohe Neural System Group, Laboratory for Molecular Analysis of Higher Brain Functions, RIKEN Brain Science Institute, RIKEN, Wako, Saitama, Japan
| | - Satoshi Watanabe
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo, Japan
| | - Hiroshige Takeichi
- Computational Engineering Applications Unit, Advanced Center for Computing and Communication (ACCC), RIKEN, Wako, Saitama, Japan
| |
Collapse
|
16
|
3D reconstruction of brain section images for creating axonal projection maps in marmosets. J Neurosci Methods 2017; 286:102-113. [DOI: 10.1016/j.jneumeth.2017.04.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/21/2017] [Accepted: 04/28/2017] [Indexed: 01/27/2023]
|
17
|
Miyakawa N, Banno T, Abe H, Tani T, Suzuki W, Ichinohe N. Representation of Glossy Material Surface in Ventral Superior Temporal Sulcal Area of Common Marmosets. Front Neural Circuits 2017; 11:17. [PMID: 28367117 PMCID: PMC5355424 DOI: 10.3389/fncir.2017.00017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 02/28/2017] [Indexed: 01/25/2023] Open
Abstract
The common marmoset (Callithrix jacchus) is one of the smallest species of primates, with high visual recognition abilities that allow them to judge the identity and quality of food and objects in their environment. To address the cortical processing of visual information related to material surface features in marmosets, we presented a set of stimuli that have identical three-dimensional shapes (bone, torus or amorphous) but different material appearances (ceramic, glass, fur, leather, metal, stone, wood, or matte) to anesthetized marmoset, and recorded multiunit activities from an area ventral to the superior temporal sulcus (STS) using multi-shanked, and depth resolved multi-electrode array. Out of 143 visually responsive multiunits recorded from four animals, 29% had significant main effect only of the material, 3% only of the shape and 43% of both the material and the shape. Furthermore, we found neuronal cluster(s), in which most cells: (1) showed a significant main effect in material appearance; (2) the best stimulus was a glossy material (glass or metal); and (3) had reduced response to the pixel-shuffled version of the glossy material images. The location of the gloss-selective area was in agreement with previous macaque studies, showing activation in the ventral bank of STS. Our results suggest that perception of gloss is an important ability preserved across wide range of primate species.
Collapse
Affiliation(s)
- Naohisa Miyakawa
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and PsychiatryKodaira, Japan; Ichinohe Neural System Group, Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Brain Science InstituteWako, Japan
| | - Taku Banno
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry Kodaira, Japan
| | - Hiroshi Abe
- Ichinohe Neural System Group, Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Brain Science Institute Wako, Japan
| | - Toshiki Tani
- Ichinohe Neural System Group, Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Brain Science Institute Wako, Japan
| | - Wataru Suzuki
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and PsychiatryKodaira, Japan; Ichinohe Neural System Group, Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Brain Science InstituteWako, Japan
| | - Noritaka Ichinohe
- Department of Ultrastructural Research, National Institute of Neuroscience, National Center of Neurology and PsychiatryKodaira, Japan; Ichinohe Neural System Group, Laboratory for Molecular Analysis of Higher Brain Function, RIKEN Brain Science InstituteWako, Japan
| |
Collapse
|