1
|
Rogers KE, Nag OK, Stewart MH, Susumu K, Oh E, Delehanty JB. Multivalent Display of Erythropoietin on Quantum Dots Enhances Aquaporin-4 Expression and Water Transport in Human Astrocytes In Vitro. Bioconjug Chem 2023; 34:2205-2214. [PMID: 38032892 DOI: 10.1021/acs.bioconjchem.3c00358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
In mammalian cells, growth factor-induced intracellular signaling and protein synthesis play a critical role in cellular physiology and homeostasis. In the brain's glymphatic system (GS), the water-conducting activity of aquaporin-4 (AQPN-4) membrane channels (expressed in polarized fashion on astrocyte end-feet) mediates the clearance of wastes through the convective transport of fluid and solutes through the perivascular space. The glycoprotein erythropoietin (EPO) has been shown to induce the astrocyte expression of AQPN-4 via signaling through the EPO receptor and the JAK/STAT signaling pathway. Here, we self-assemble EPO in a multivalent fashion onto the surface of semiconductor quantum dots (QDs) (driven by polyhistidine-based self-assembly) to drive the interaction of the bioconjugates with EPOR on human astrocytes (HA). This results in a 2-fold augmentation of JAK/STAT signaling activity and a 1.8-fold enhancement in the expression of AQPN-4 in cultured primary HA compared to free EPO. This translates into a 2-fold increase in the water transport rate in HA cells as measured by the calcein AM water transport assay. Importantly, EPO-QD-induced augmented AQPN-4 expression does not elicit any deleterious effect on the astrocyte viability. We discuss our results in the context of the implications of EPO-nanoparticle (NP) bioconjugates for use as research tools to understand the GS and their potential as therapeutics for the modulation of GS function. More generally, our results illustrate the utility of NP bioconjugates for the controlled modulation of growth factor-induced intracellular signaling.
Collapse
Affiliation(s)
- Katherine E Rogers
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Okhil K Nag
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, United States
| | - Michael H Stewart
- Optical Sciences Division, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, United States
| | - Kimihiro Susumu
- Optical Sciences Division, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, United States
| | - Eunkeu Oh
- Optical Sciences Division, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, United States
| | - James B Delehanty
- Center for Bio/Molecular Science and Engineering, U.S. Naval Research Laboratory, Washington, District of Columbia 20375, United States
| |
Collapse
|
2
|
Conklin B, Conley BM, Hou Y, Chen M, Lee KB. Advanced theragnostics for the central nervous system (CNS) and neurological disorders using functional inorganic nanomaterials. Adv Drug Deliv Rev 2023; 192:114636. [PMID: 36481291 DOI: 10.1016/j.addr.2022.114636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/13/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022]
Abstract
Various types of inorganic nanomaterials are capable of diagnostic biomarker detection and the therapeutic delivery of a disease or inflammatory modulating agent. Those multi-functional nanomaterials have been utilized to treat neurodegenerative diseases and central nervous system (CNS) injuries in an effective and personalized manner. Even though many nanomaterials can deliver a payload and detect a biomarker of interest, only a few studies have yet to fully utilize this combined strategy to its full potential. Combining a nanomaterial's ability to facilitate targeted delivery, promote cellular proliferation and differentiation, and carry a large amount of material with various sensing approaches makes it possible to diagnose a patient selectively and sensitively while offering preventative measures or early disease-modifying strategies. By tuning the properties of an inorganic nanomaterial, the dimensionality, hydrophilicity, size, charge, shape, surface chemistry, and many other chemical and physical parameters, different types of cells in the central nervous system can be monitored, modulated, or further studies to elucidate underlying disease mechanisms. Scientists and clinicians have better understood the underlying processes of pathologies for many neurologically related diseases and injuries by implementing multi-dimensional 0D, 1D, and 2D theragnostic nanomaterials. The incorporation of nanomaterials has allowed scientists to better understand how to detect and treat these conditions at an early stage. To this end, having the multi-modal ability to both sense and treat ailments of the central nervous system can lead to favorable outcomes for patients suffering from such injuries and diseases.
Collapse
Affiliation(s)
- Brandon Conklin
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123, Bevier Road, Piscataway, NJ 08854, USA
| | - Brian M Conley
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123, Bevier Road, Piscataway, NJ 08854, USA
| | - Yannan Hou
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123, Bevier Road, Piscataway, NJ 08854, USA
| | - Meizi Chen
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123, Bevier Road, Piscataway, NJ 08854, USA
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers-the State University of New Jersey, 123, Bevier Road, Piscataway, NJ 08854, USA.
| |
Collapse
|
3
|
Iwasaki H, Ichinose S, Tajika Y, Murakami T. Recent technological advances in correlative light and electron microscopy for the comprehensive analysis of neural circuits. Front Neuroanat 2022; 16:1061078. [PMID: 36530521 PMCID: PMC9748091 DOI: 10.3389/fnana.2022.1061078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/16/2022] [Indexed: 11/04/2023] Open
Abstract
Light microscopy (LM) covers a relatively wide area and is suitable for observing the entire neuronal network. However, resolution of LM is insufficient to identify synapses and determine whether neighboring neurons are connected via synapses. In contrast, the resolution of electron microscopy (EM) is sufficiently high to detect synapses and is useful for identifying neuronal connectivity; however, serial images cannot easily show the entire morphology of neurons, as EM covers a relatively narrow region. Thus, covering a large area requires a large dataset. Furthermore, the three-dimensional (3D) reconstruction of neurons by EM requires considerable time and effort, and the segmentation of neurons is laborious. Correlative light and electron microscopy (CLEM) is an approach for correlating images obtained via LM and EM. Because LM and EM are complementary in terms of compensating for their shortcomings, CLEM is a powerful technique for the comprehensive analysis of neural circuits. This review provides an overview of recent advances in CLEM tools and methods, particularly the fluorescent probes available for CLEM and near-infrared branding technique to match LM and EM images. We also discuss the challenges and limitations associated with contemporary CLEM technologies.
Collapse
Affiliation(s)
- Hirohide Iwasaki
- Department of Anatomy, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | | | | |
Collapse
|
4
|
Zhao J, Wang C, Sun W, Li C. Tailoring Materials for Epilepsy Imaging: From Biomarkers to Imaging Probes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203667. [PMID: 35735191 DOI: 10.1002/adma.202203667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Excising epileptic foci (EF) is the most efficient approach for treating drug-resistant epilepsy (DRE). However, owing to the vast heterogeneity of epilepsies, EF in one-third of patients cannot be accurately located, even after exhausting all current diagnostic strategies. Therefore, identifying biomarkers that truly represent the status of epilepsy and fabricating probes with high targeting specificity are prerequisites for identifying the "concealed" EF. However, no systematic summary of this topic has been published. Herein, the potential biomarkers of EF are first summarized and classified into three categories: functional, molecular, and structural aberrances during epileptogenesis, a procedure of nonepileptic brain biasing toward epileptic tissue. The materials used to fabricate these imaging probes and their performance in defining the EF in preclinical and clinical studies are highlighted. Finally, perspectives for developing the next generation of probes and their challenges in clinical translation are discussed. In general, this review can be helpful in guiding the development of imaging probes defining EF with improved accuracy and holds promise for increasing the number of DRE patients who are eligible for surgical intervention.
Collapse
Affiliation(s)
- Jing Zhao
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Zhangheng Road 826, Shanghai, 201203, China
| | - Cong Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Zhangheng Road 826, Shanghai, 201203, China
- Academy for Engineering and Technology, Fudan University, 20 Handan Road, Yangpu District, Shanghai, 200433, China
- Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai, 200031, China
| | - Wanbing Sun
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital and Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Cong Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Zhangheng Road 826, Shanghai, 201203, China
- State Key Laboratory of Medical Neurobiology, School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
5
|
Xu R, Abune L, Davis B, Ouyang L, Zhang G, Wang Y, Zhe J. Ultrasensitive detection of small biomolecules using aptamer-based molecular recognition and nanoparticle counting. Biosens Bioelectron 2022; 203:114023. [DOI: 10.1016/j.bios.2022.114023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/11/2022] [Accepted: 01/17/2022] [Indexed: 01/12/2023]
|
6
|
Peng F, Jeong S, Ho A, Evans CL. Recent progress in plasmonic nanoparticle-based biomarker detection and cytometry for the study of central nervous system disorders. Cytometry A 2021; 99:1067-1078. [PMID: 34328262 DOI: 10.1002/cyto.a.24489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/28/2021] [Accepted: 07/19/2021] [Indexed: 11/07/2022]
Abstract
Neurological disorders affect hundreds of millions of people around the world, are often life-threatening, untreatable, and can result in debilitating symptoms. The high prevalence of these disorders, which feature biochemical or structural abnormalities in neuronal systems, has spurned innovations in both rapid and early detection to assist in the selection of appropriate treatment strategies to improve the patients' quality of life. Plasmonic nanoparticles (PNPs), a versatile and promising class of nanomaterials, are widely utilized in numerous imaging techniques, drug delivery systems, and biomarker detection methods. Recently, PNP-based nanoprobes have attracted considerable attention for the early diagnosis of neurological disorders. Gold nanoparticles (AuNPs), with high local surface plasmon resonance (LSPR) signals, have been particularly well exploited as probes for dynamic biomarker detection, with quantification sensitivity demonstrated down to the single-molecule level. In this review, we will discuss the possibilities of PNPs in the methodological development for rapid neurological disease identification. In addition, we will also describe a new digital cytometry method that combines dark-field imaging and machine learning for precise biomarker enumeration on single cells. The aim of this review is to attract researchers working on the future development of new plasmonic nanoprobe-based strategies for the diagnosis of neurological disorders.
Collapse
Affiliation(s)
- Fei Peng
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Sinyoung Jeong
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Alexander Ho
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Conor L Evans
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| |
Collapse
|
7
|
Li R, Li Y, Mu M, Yang B, Chen X, Lee WYW, Ke Y, Yung WH, Tang BZ, Bian L. Multifunctional Nanoprobe for the Delivery of Therapeutic siRNA and Real-Time Molecular Imaging of Parkinson's Disease Biomarkers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11609-11620. [PMID: 33683858 DOI: 10.1021/acsami.0c22112] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Parkinson's disease (PD) has been recently associated with the excessive expression of matrix metalloproteinase 3 (MMP3). One of the major challenges in treating PD is to effectively detect and inhibit the early MMP3 activities to relieve the neural stress and inflammation responses. Previously, numerous upconversion nanoparticle (UCNP)-based nanoprobes have been designed for the detection of biomarkers in neurodegenerative diseases. To further improve the performance of the conventional nanoprobes, we introduced novel reporting units and integrated the therapeutic reagents to fabricate a theragnostic platform for PD and other neurodegenerative diseases. Here, we designed a multifunctional UCNP/aggregation-induced emission luminogen (AIEgen)-based nanoprobe to effectively detect the time-lapse MMP3 activities in the inflammatory catecholaminergic SH-SY5Y cells and simultaneously deliver the MMP3-siRNA into the stressed catecholaminergic SH-SY5Y cells, inhibiting the MMP3-induced inflammatory neural responses. The unique features of our UCNP/AIEgen-based nanoprobe platform shed light on the development of a novel theragnostic probe for the early diagnosis and cure of neurodegenerative diseases.
Collapse
Affiliation(s)
- Rui Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, 999077 Hong Kong, P. R. China
| | - Yi Li
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, 999077 Hong Kong, P. R. China
| | - Mingdao Mu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, 999077 Hong Kong, P. R. China
| | - Boguang Yang
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, 999077 Hong Kong, P. R. China
| | - Xiaoyu Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, 999077 Hong Kong, P. R. China
| | - Wayne Yuk Wai Lee
- Department of Orthopedic and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, 999077 Hong Kong, P. R. China
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, 999077 Hong Kong, P. R. China
| | - Wing Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, 999077 Hong Kong, P. R. China
| | - Ben Zhong Tang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077 Hong Kong, P. R. China
| | - Liming Bian
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, 999077 Hong Kong, P. R. China
- The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen 518000, China
| |
Collapse
|
8
|
Isoda K, Tanaka A, Fuzimori C, Echigoya M, Taira Y, Taira I, Shimizu Y, Akimoto Y, Kawakami H, Ishida I. Toxicity of Gold Nanoparticles in Mice due to Nanoparticle/Drug Interaction Induces Acute Kidney Damage. NANOSCALE RESEARCH LETTERS 2020; 15:141. [PMID: 32617798 PMCID: PMC7332653 DOI: 10.1186/s11671-020-03371-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Nanomaterials are innovative materials with many useful properties, but there is concern regarding their many unknown effects on living organisms. Gold nanoparticles are widely used as industrial materials because of their excellent properties. The potential biological hazards of gold nanoparticles are unknown, and thus, here we examined the in vivo effects of gold nanoparticles 10, 50, and 100 nm in diameter (GnP10, GnP50, and GnP100, respectively) and their interactions with drugs in mice to clarify their safety in mammals. Cisplatin, paraquat, and 5-aminosalicylic acid cause side-effect damage to the liver and kidney in mice. No hepatotoxicity or nephrotoxicity was observed when any of the gold nanoparticles alone were administered via the tail vein. In contrast, co-administration of GnP-10 with cisplatin, paraquat, or 5-aminosalicylic acid caused side-effect damage to the kidney. This suggests that gold nanoparticles with a particle size of 10 nm are potentially nephrotoxic due to their interaction with drugs.
Collapse
Affiliation(s)
- Katsuhiro Isoda
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano-ku, Tokyo, 164-8530, Japan.
| | - Anju Tanaka
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano-ku, Tokyo, 164-8530, Japan
| | - Chisaki Fuzimori
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano-ku, Tokyo, 164-8530, Japan
| | - Miyuki Echigoya
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano-ku, Tokyo, 164-8530, Japan
| | - Yuichiro Taira
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano-ku, Tokyo, 164-8530, Japan
| | - Ikuko Taira
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano-ku, Tokyo, 164-8530, Japan
| | - Yoshimi Shimizu
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano-ku, Tokyo, 164-8530, Japan
| | - Yoshihiro Akimoto
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo, 181-8611, Japan
| | - Hayato Kawakami
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo, 181-8611, Japan
| | - Isao Ishida
- Faculty of Pharmaceutical Sciences, Teikyo Heisei University, 4-21-2 Nakano-ku, Tokyo, 164-8530, Japan
| |
Collapse
|
9
|
Kumar A, Chaudhary RK, Singh R, Singh SP, Wang SY, Hoe ZY, Pan CT, Shiue YL, Wei DQ, Kaushik AC, Dai X. Nanotheranostic Applications for Detection and Targeting Neurodegenerative Diseases. Front Neurosci 2020; 14:305. [PMID: 32425743 PMCID: PMC7203731 DOI: 10.3389/fnins.2020.00305] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 03/16/2020] [Indexed: 12/13/2022] Open
Abstract
Nanotechnology utilizes engineered materials and devices which function with biological systems at the molecular level and could transform the management of neurodegenerative diseases (NDs) by provoking, reacting to, and intermingling with target sites to stimulate physiological responses while minimizing side effects. Blood-brain barrier (BBB) protects the brain from harmful agents, and transporting drugs across the BBB is a major challenge for diagnosis, targeting, and treatment of NDs. The BBB provides severe limitations for diagnosis and treatment of Alzheimer's disease (AD), Parkinson's disease (PD), and various other neurological diseases. Conventional drug delivery systems generally fail to cross the BBB, thus are inefficient in treatment. Although gradual development through research is ensuring the progress of nanotheranostic approaches from animal to human modeling, aspects of translational applicability and safety are a key concern. This demands a deep understanding of the interaction of body systems with nanomaterials. There are various plant-based nanobioactive compounds which are reported to have applicability in the diagnosis and treatment of these NDs. This review article provides an overview of applications of nanotheranostics in AD and PD. The review also discusses nano-enabled drug delivery systems and their current and potential applications for the treatment of various NDs.
Collapse
Affiliation(s)
- Ajay Kumar
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ravi Kumar Chaudhary
- Department of Biotechnology, Institute of Applied Medicines & Research, Ghaziabad, India
| | - Rachita Singh
- Department of Electrical and Electronics Engineering, IIMT Engineering College, Uttar Pradesh Technical University, Meerut, India
| | - Satya P. Singh
- School of Computer Science & Engineering, Nanyang Technological University, Singapore, Singapore
| | - Shao-Yu Wang
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Zheng-Yu Hoe
- Department of Physical Medicine and Rehabilitation, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Cheng-Tang Pan
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Dong-Qing Wei
- Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Aman Chandra Kaushik
- Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xiaofeng Dai
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
10
|
Kwak J, Lee SS. Highly sensitive piezoelectric immunosensors employing signal amplification with gold nanoparticles. NANOTECHNOLOGY 2019; 30:445502. [PMID: 31362281 DOI: 10.1088/1361-6528/ab36c9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We present a quartz crystal microbalance (QCM) immunosensor for highly sensitive detection of prostate-specific antigen (PSA) in a human serum immunoassay. In particular, in this study, we employed signal amplification using and enlarging gold nanoparticles. Because QCM measures the change of resonance frequency according to the mass change occurring on the sensor surface, we could quantitatively analyze PSA based on a tremendous increase in mass by sandwich immunoassay using AuNP-conjugated anti-PSA-detecting antibody enhanced with subsequent gold staining. The limit of detection of the PSA immunoassay in human serum without gold staining enhancement was 687 pg ml-1 but was 48 pg ml-1 with the gold staining-mediated signal amplification. That is, amplifying the signal resulted in increased sensitivity and reproducibility of immunoassay in a human serum.
Collapse
Affiliation(s)
- Jiwon Kwak
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan, Republic of Korea
| | | |
Collapse
|
11
|
Revisiting fluorescent carbon nanodots for environmental, biomedical applications and puzzle about fluorophore impurities. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.nanoso.2019.100391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Theoretical Analysis for Wireless Magnetothermal Deep Brain Stimulation Using Commercial Nanoparticles. Int J Mol Sci 2019; 20:ijms20122873. [PMID: 31212841 PMCID: PMC6627245 DOI: 10.3390/ijms20122873] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 12/22/2022] Open
Abstract
A wireless magnetothermal stimulation (WMS) is suggested as a fast, tetherless, and implanted device-free stimulation method using low-radio frequency (100 kHz to 1 MHz) alternating magnetic fields (AMF). As magnetic nanoparticles (MNPs) can transduce alternating magnetic fields into heat, they are targeted to a region of the brain expressing the temperature-sensitive ion channel (TRPV1). The local temperature of the targeted area is increased up to 44 °C to open the TRPV1 channels and cause an influx of Ca2+ sensitive promoter, which can activate individual neurons inside the brain. The WMS has initially succeeded in showing the potential of thermomagnetics for the remote control of neural cell activity with MNPs that are internally targeted to the brain. In this paper, by using the steady-state temperature rise defined by Fourier’s law, the bio-heat equation, and COMSOL Multiphysics software, we investigate most of the basic parameters such as the specific loss power (SLP) of MNPs, the injection volume of magnetic fluid, stimulation and cooling times, and cytotoxic effects at high temperatures (43–44 °C) to provide a realizable design guideline for WMS.
Collapse
|
13
|
Ji J, Moquin A, Bertorelle F, KY Chang P, Antoine R, Luo J, McKinney RA, Maysinger D. Organotypic and primary neural cultures as models to assess effects of different gold nanostructures on glia and neurons. Nanotoxicology 2019; 13:285-304. [DOI: 10.1080/17435390.2018.1543468] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jeff Ji
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Canada
| | - Alexandre Moquin
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Canada
| | - Franck Bertorelle
- CNRS, Institut Lumière Matière, Université Lyon Université Claude Bernard Lyon 1, Lyon, France
| | - Philip KY Chang
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Canada
| | - Rodolphe Antoine
- CNRS, Institut Lumière Matière, Université Lyon Université Claude Bernard Lyon 1, Lyon, France
| | - Julia Luo
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Canada
| | - R. Anne McKinney
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Canada
| | - Dusica Maysinger
- Department of Pharmacology & Therapeutics, McGill University, Montreal, Canada
| |
Collapse
|
14
|
Ramírez-García G, d'Orlyé F, Nyokong T, Bedioui F, Varenne A. Physicochemical Characterization of Phthalocyanine-Functionalized Quantum Dots by Capillary Electrophoresis Coupled to a LED Fluorescence Detector. Methods Mol Biol 2019; 2000:373-385. [PMID: 31148026 DOI: 10.1007/978-1-4939-9516-5_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Capillary zone electrophoresis (CZE) complemented with Taylor Dispersion Analysis-CE (TDA-CE) was developed to physicochemically characterize phthalocyanine-capped core/shell/shell quantum dots (QDs) at various pH and ionic strengths. An LED-induced fluorescence detector was used to specifically detect the QDs. The electropherograms and taylorgrams allowed calculating the phthalocyanine-QDs (Pc-QDs) ζ-potential and size, respectively, and determining the experimental conditions for colloidal stability. This methodology allowed evidencing either a colloidal stability or an aggregation state according to the background electrolytes nature. The calculated ζ-potential values of Pc-QDs decreased when ionic strength increased, being well correlated with the aggregation of the nanoconjugates at elevated salt concentrations. For the same reason, the hydrodynamic diameter of Pc-QDs increased with increasing background electrolyte ionic strength. The use of electrokinetic methodologies has provided insights into the colloidal stability of the photosensitizer-functionalized QDs in physiologically relevant solutions and, thereby, its usefulness for improving their design and applications for photodynamic therapy.
Collapse
Affiliation(s)
- Gonzalo Ramírez-García
- Chimie ParisTech, PSL Research University, Unité de Technologies Chimiques et Biologiques pour la Santé UTCBS, Paris, France.,INSERM, UTCBS U 1022, Paris, France.,CNRS, UTCBS UMR 8258, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UTCBS, Paris, France.,Department of Chemistry, Rhodes University, Grahamstown, South Africa
| | - Fanny d'Orlyé
- Chimie ParisTech, PSL Research University, Unité de Technologies Chimiques et Biologiques pour la Santé UTCBS, Paris, France.,INSERM, UTCBS U 1022, Paris, France.,CNRS, UTCBS UMR 8258, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UTCBS, Paris, France
| | - Tebello Nyokong
- Department of Chemistry, Rhodes University, Grahamstown, South Africa
| | - Fethi Bedioui
- Chimie ParisTech, PSL Research University, Unité de Technologies Chimiques et Biologiques pour la Santé UTCBS, Paris, France.,INSERM, UTCBS U 1022, Paris, France.,CNRS, UTCBS UMR 8258, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, UTCBS, Paris, France
| | - Anne Varenne
- Chimie ParisTech, PSL Research University, Unité de Technologies Chimiques et Biologiques pour la Santé UTCBS, Paris, France. .,INSERM, UTCBS U 1022, Paris, France. .,CNRS, UTCBS UMR 8258, Paris, France. .,Université Paris Descartes, Sorbonne Paris Cité, UTCBS, Paris, France.
| |
Collapse
|
15
|
Chauhan AS, Sahoo GC, Dikhit MR, Das P. Acid-Sensing Ion Channels Structural Aspects, Pathophysiological Importance and Experimental Mutational Data Available Across Various Species to Target Human ASIC1. Curr Drug Targets 2018; 20:111-121. [DOI: 10.2174/1389450119666180820103316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 08/01/2018] [Accepted: 08/15/2018] [Indexed: 01/16/2023]
Abstract
The H+-gated (proton) currents are widely present in brain sensory neuronal system and
various studies identified the structural units and deciphered the physiological and pathological function
of ion channels. The normal neuron requires an optimal pH to carry out its functions. In acidosis,
the ASICs (Acid-sensing Ion Channels) are activated in both the CNS (central nervous system) and
PNS (peripheral nervous system). ASICs are related to degenerin channels (DEGs), epithelial sodium
cation channels (ENaCs), and FMRF-amide (Phe-Met-Arg-Phe-NH2)-gated channels (FaNaC). Its activation
leads physiologically to pain perception, synaptic plasticity, learning and memory, fear,
ischemic neuronal injury, seizure termination, neuronal degeneration, and mechanosensation. It detects
the level of acid fluctuation in the extracellular environment and responds to acidic pH by increasing
the rate of membrane depolarization. It conducts cations like Na+ (Sodium) and Ca2+ (Calcium)
ions across the membrane upon protonation. The ASICs subtypes are characterized by differing
biophysical properties and pH sensitivities. The subtype ASIC1 is involved in various CNS diseases
and therefore focusing on its specific functional properties will guide in drug design methods. The review
highlights the cASIC1 (Chicken ASIC1) crystal structures, involvement in physiological environment
and limitations of currently available inhibitors. In addition, it details the mutational data
available to design an inhibitor against hASIC1 (Human ASIC1).
Collapse
Affiliation(s)
- Anurag Singh Chauhan
- Biomedical Informatics, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research), Agamkuan, Patna- 800 007, Bihar, India
| | - Ganesh Chandra Sahoo
- Biomedical Informatics, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research), Agamkuan, Patna- 800 007, Bihar, India
| | - Manas Ranjan Dikhit
- Biomedical Informatics, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research), Agamkuan, Patna- 800 007, Bihar, India
| | - Pradeep Das
- Department of Molecular Parasitology, Rajendra Memorial Research Institute of Medical Sciences (Indian Council of Medical Research), Agamkuan, Patna- 800 007, Bihar, India
| |
Collapse
|
16
|
Metal enhanced fluorescence (MEF) for biosensors: General approaches and a review of recent developments. Biosens Bioelectron 2018; 111:102-116. [DOI: 10.1016/j.bios.2018.04.007] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/27/2018] [Accepted: 04/06/2018] [Indexed: 12/11/2022]
|
17
|
Rougon G, Brasselet S, Debarbieux F. Advances in Intravital Non-Linear Optical Imaging of the Central Nervous System in Rodents. Brain Plast 2016; 2:31-48. [PMID: 29765847 PMCID: PMC5928564 DOI: 10.3233/bpl-160028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose of review: Highly coordinated cellular interactions occur in the healthy or pathologic adult rodent central nervous system (CNS). Until recently, technical challenges have restricted the analysis of these events to largely static modes of study such as immuno-fluorescence and electron microscopy on fixed tissues. The development of intravital imaging with subcellular resolution is required to probe the dynamics of these events in their natural context, the living brain. Recent findings: This review focuses on the recently developed live non-linear optical imaging modalities, the core principles involved, the identified technical challenges that limit their use and the scope of their applications. We highlight some practical applications for these modalities with a specific attention given to Experimental Autoimmune Encephalomyelitis (EAE), a rodent model of a chronic inflammatory disease of the CNS characterized by the formation of disseminated demyelinating lesions accompanied by axonal degeneration. Summary: We conclude that label-free nonlinear optical imaging combined to two photon imaging will continue to contribute richly to comprehend brain function and pathogenesis and to develop effective therapeutic strategies.
Collapse
Affiliation(s)
- Geneviève Rougon
- Aix-Marseille Université, CNRS, Institut des Neurosciences de la Timone, UMR 7289, Marseille, France
| | - Sophie Brasselet
- Aix-Marseille Université, CNRS, Centrale Marseille, Institut Fresnel, UMR 7249, Marseille, France
| | - Franck Debarbieux
- Aix-Marseille Université, CNRS, Institut des Neurosciences de la Timone, UMR 7289, Marseille, France
| |
Collapse
|
18
|
Characterization of phthalocyanine functionalized quantum dots by dynamic light scattering, laser Doppler, and capillary electrophoresis. Anal Bioanal Chem 2016; 409:1707-1715. [DOI: 10.1007/s00216-016-0120-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/20/2016] [Accepted: 11/25/2016] [Indexed: 12/25/2022]
|
19
|
Maysinger D, Zhang I. Nutritional and Nanotechnological Modulators of Microglia. Front Immunol 2016; 7:270. [PMID: 27471505 PMCID: PMC4945637 DOI: 10.3389/fimmu.2016.00270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/27/2016] [Indexed: 12/11/2022] Open
Abstract
Microglia are the essential responders to alimentary, pharmacological, and nanotechnological immunomodulators. These neural cells play multiple roles as surveyors, sculptors, and guardians of essential parts of complex neural circuitries. Microglia can play dual roles in the central nervous system; they can be deleterious and/or protective. The immunomodulatory effects of alimentary components, gut microbiota, and nanotechnological products have been investigated in microglia at the single-cell level and in vivo using intravital imaging approaches, and different biochemical assays. This review highlights some of the emerging questions and topics from studies involving alimentation, microbiota, nanotechnological products, and associated problems in this area of research. Some of the advantages and limitations of in vitro and in vivo models used to study the neuromodulatory effects of these factors, as well as the merits and pitfalls of intravital imaging modalities employed are presented.
Collapse
Affiliation(s)
- Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University , Montreal, QC , Canada
| | - Issan Zhang
- Department of Pharmacology and Therapeutics, McGill University , Montreal, QC , Canada
| |
Collapse
|
20
|
Moura AL, Carreño SJM, Pincheira PIR, Fabris ZV, Maia LJQ, Gomes ASL, de Araújo CB. Tunable ultraviolet and blue light generation from Nd:YAB random laser bolstered by second-order nonlinear processes. Sci Rep 2016; 6:27107. [PMID: 27250647 PMCID: PMC4890483 DOI: 10.1038/srep27107] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/11/2016] [Indexed: 11/11/2022] Open
Abstract
Ultraviolet and blue light were obtained by nonlinear frequency conversion in a random laser (RL) based on Nd0.10Y0.90Al3(BO3)4 nanocrystalline powder. RL operation at 1062 nm, due to the (4)F3/2 → (4)I11/2 transition of neodymium ions (Nd(3+)), was achieved by exciting the Nd(3+) with a tunable beam from 680 to 920 nm covering the ground state absorption transitions to the (4)F9/2, ((4)F7/2,(4)S3/2), ((4)F5/2,(2)H9/2), and (4)F3/2 states. Light from 340 to 460 nm was obtained via the second-harmonic generation of the excitation beam while tunable blue light, from 417 to 486 nm, was generated by self-sum-frequency mixing between the excitation beam and the RL emission.
Collapse
Affiliation(s)
- André L. Moura
- Grupo de Física da Matéria Condensada, Núcleo de Ciências Exatas – NCEx, Campus Arapiraca, Universidade Federal de Alagoas, 57309-005, Arapiraca-AL, Brazil
| | - Sandra J. M. Carreño
- Departamento de Física, Universidade Federal de Pernambuco, 50670-901, Recife-PE, Brazil
| | - Pablo I. R. Pincheira
- Departamento de Física, Universidade Federal de Pernambuco, 50670-901, Recife-PE, Brazil
| | - Zanine V. Fabris
- Grupo Física de Materiais, Instituto de Física, Universidade Federal de Goiás, 74001-970, Goiânia-GO, Brazil
| | - Lauro J. Q. Maia
- Grupo Física de Materiais, Instituto de Física, Universidade Federal de Goiás, 74001-970, Goiânia-GO, Brazil
| | - Anderson S. L. Gomes
- Departamento de Física, Universidade Federal de Pernambuco, 50670-901, Recife-PE, Brazil
| | - Cid B. de Araújo
- Departamento de Física, Universidade Federal de Pernambuco, 50670-901, Recife-PE, Brazil
| |
Collapse
|
21
|
|