1
|
Xu W, Tang J, Qi H. Using the Cocktail Party Effect to Add the Coding Dimension of Auditory Event Related Potential Brain-Computer Interface. IEEE J Biomed Health Inform 2024; 28:5953-5961. [PMID: 38896526 DOI: 10.1109/jbhi.2024.3416488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
OBJECTIVE The auditory event-related potential based brain-computer interface (aERP-BCI) is a classical paradigm of brain-computer communication. To improve the coding efficiency of aERP-BCI, this study proposes a method using two parallel voice channels to add the coding dimension based on the cocktail party effect. METHODS The novel paradigm used male and female voices to establish two parallel oddball sound stimulus sequences. In comparison, the baseline paradigm only presented male or female stimulus sequences. Both the double voice condition (DVC) and the single voice condition (SVC) paradigms carried out offline experiments and the DVC also carried out online experiment. Subsequently, the EEG signal and BCI operation results were compared and analyzed. CONCLUSION The cocktail party effect caused a significant difference in the EEG responses of non-target stimulus between the focused vocal channel and the ignored vocal channel under the DVC paradigm, and the focused and ignored channels achieved a recognition accuracy of 97.2%. The target recognition rate of DVC was 82.3%, with no significant difference compared with 85% of SVC while the information transfer rate (ITR) of DVC reaching 15.3 bits/min was significantly higher than that of SVC. SIGNIFICANCE The cocktail party effect improves the coding efficiency by adding parallel channels without reducing the target/non-target stimulus recognition in the focused vocal channel. This provides a novel direction for the performance improvement of aERP-BCI.
Collapse
|
2
|
Kimura R, Nambu I, Fujitsuka R, Maruyama Y, Yano S, Wada Y. An auditory brain-computer interface to detect changes in sound pressure level for automatic volume control. Heliyon 2024; 10:e23948. [PMID: 38223727 PMCID: PMC10784304 DOI: 10.1016/j.heliyon.2023.e23948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 11/05/2023] [Accepted: 12/16/2023] [Indexed: 01/16/2024] Open
Abstract
Volume control is necessary to adjust sound levels for a comfortable audio or video listening experience. This study aims to develop an automatic volume control system based on a brain-computer interface (BCI). We thus focused on a BCI using an auditory oddball paradigm, and conducted two types of experiments. In the first experiment, the participant was asked to pay attention to a target sound where the sound level was high (70 dB) compared with the other sounds (60 dB). The brain activity measured by electroencephalogram showed large positive activity (P300) for the target sound, and classification of the target and nontarget sounds achieved an accuracy of 0.90. The second experiment adopted a two-target paradigm where a low sound level (50 dB) was introduced as the second target sound. P300 was also observed in the second experiment, and a value of 0.76 was obtained for the binary classification of the target and nontarget sounds. Further, we found that better accuracy was observed in large sound levels compared to small ones. These results suggest the possibility of using BCI for automatic volume control; however, it is necessary to improve its accuracy for application in daily life.
Collapse
Affiliation(s)
- Riki Kimura
- Graduate School of Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Isao Nambu
- Graduate School of Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Rui Fujitsuka
- Graduate School of Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Yoshiko Maruyama
- Department of Production Systems Engineering, National Institute of Technology, Hakodate College, 14-1 Tokura, Hakodate, Hokkaido, 042-8501, Japan
| | - Shohei Yano
- Department of Electrical and Electronic Systems Engineering, National Institute of Technology, Nagaoka College, 888 Nishikatakai, Nagaoka, Niigata, 940-8532, Japan
| | - Yasuhiro Wada
- Graduate School of Engineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| |
Collapse
|
3
|
Kurmanavičiūtė D, Kataja H, Jas M, Välilä A, Parkkonen L. Target of selective auditory attention can be robustly followed with MEG. Sci Rep 2023; 13:10959. [PMID: 37414861 PMCID: PMC10325959 DOI: 10.1038/s41598-023-37959-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023] Open
Abstract
Selective auditory attention enables filtering of relevant acoustic information from irrelevant. Specific auditory responses, measurable by magneto- and electroencephalography (MEG/EEG), are known to be modulated by attention to the evoking stimuli. However, such attention effects have typically been studied in unnatural conditions (e.g. during dichotic listening of pure tones) and have been demonstrated mostly in averaged auditory evoked responses. To test how reliably we can detect the attention target from unaveraged brain responses, we recorded MEG data from 15 healthy subjects that were presented with two human speakers uttering continuously the words "Yes" and "No" in an interleaved manner. The subjects were asked to attend to one speaker. To investigate which temporal and spatial aspects of the responses carry the most information about the target of auditory attention, we performed spatially and temporally resolved classification of the unaveraged MEG responses using a support vector machine. Sensor-level decoding of the responses to attended vs. unattended words resulted in a mean accuracy of [Formula: see text] (N = 14) for both stimulus words. The discriminating information was mostly available 200-400 ms after the stimulus onset. Spatially-resolved source-level decoding indicated that the most informative sources were in the auditory cortices, in both the left and right hemisphere. Our result corroborates attention modulation of auditory evoked responses and shows that such modulations are detectable in unaveraged MEG responses at high accuracy, which could be exploited e.g. in an intuitive brain-computer interface.
Collapse
Affiliation(s)
- Dovilė Kurmanavičiūtė
- Department of Neuroscience and Biomedical Engineering, Aalto University, P.O. Box 12200, 00076, Aalto, Finland.
| | - Hanna Kataja
- Department of Neuroscience and Biomedical Engineering, Aalto University, P.O. Box 12200, 00076, Aalto, Finland
| | - Mainak Jas
- Department of Neuroscience and Biomedical Engineering, Aalto University, P.O. Box 12200, 00076, Aalto, Finland
- Athinoula A. Martinos Center for Biomedical Imaging, 149 Thirteenth Street, Charlestown, MA, 02129, USA
| | - Anne Välilä
- Department of Neuroscience and Biomedical Engineering, Aalto University, P.O. Box 12200, 00076, Aalto, Finland
| | - Lauri Parkkonen
- Department of Neuroscience and Biomedical Engineering, Aalto University, P.O. Box 12200, 00076, Aalto, Finland
- Aalto NeuroImaging, Aalto University, 00076, Aalto, Finland
| |
Collapse
|
4
|
Borirakarawin M, Punsawad Y. Event-Related Potential-Based Brain-Computer Interface Using the Thai Vowels' and Numerals' Auditory Stimulus Pattern. SENSORS (BASEL, SWITZERLAND) 2022; 22:5864. [PMID: 35957419 PMCID: PMC9371073 DOI: 10.3390/s22155864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Herein, we developed an auditory stimulus pattern for an event-related potential (ERP)-based brain-computer interface (BCI) system to improve control and communication in quadriplegia with visual impairment. Auditory stimulus paradigms for multicommand electroencephalogram (EEG)-based BCIs and audio stimulus patterns were examined. With the proposed auditory stimulation, using the selected Thai vowel, similar to the English vowel, and Thai numeral sounds, as simple target recognition, we explored the ERPs' response and classification efficiency from the suggested EEG channels. We also investigated the use of single and multi-loudspeakers for auditory stimuli. Four commands were created using the proposed paradigm. The experimental paradigm was designed to observe ERP responses and verify the proposed auditory stimulus pattern. The conventional classification method produced four commands using the proposed auditory stimulus pattern. The results established that the proposed auditory stimulation with 20 to 30 trials of stream stimuli could produce a prominent ERP response from Pz channels. The vowel stimuli could achieve higher accuracy than the proposed numeral stimuli for two auditory stimuli intervals (100 and 250 ms). Additionally, multi-loudspeaker patterns through vowel and numeral sound stimulation provided an accuracy greater than 85% of the average accuracy. Thus, the proposed auditory stimulation patterns can be implemented as a real-time BCI system to aid in the daily activities of quadratic patients with visual and tactile impairments. In future, practical use of the auditory ERP-based BCI system will be demonstrated and verified in an actual scenario.
Collapse
Affiliation(s)
| | - Yunyong Punsawad
- School of Informatics, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Informatics Innovative Center of Excellence, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
5
|
Xu W, Gao P, He F, Qi H. Improving the performance of a gaze independent P300-BCI by using the expectancy wave. J Neural Eng 2022; 19. [PMID: 35325878 DOI: 10.1088/1741-2552/ac60c8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/24/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE A P300-BCI conveys a subject's intention through recognition of their ERPs. However, in the case of visual stimuli, its performance depends strongly on eye gaze. When eye movement is impaired, it becomes difficult to focus attention on a target stimulus, and the quality of the ERP declines greatly, thereby affecting recognition efficiency. APPROACH In this paper, the expectancy wave (E-wave) is proposed to improve signal quality and thereby improve identification of visual targets under the covert attention. The stimuli of the P300-BCI described here are presented in a fixed sequence, so the subjects can predict the next target stimulus and establish a stable expectancy effect of the target stimulus through training. Features from the E-wave that occurred 0~300ms before a stimulus were added to the post-stimulus ERP components for intention recognition. MAIN RESULTS Comparisons of 10 healthy subjects before and after training demonstrated that the expectancy wave generated before target stimulus could be used with the P300 component to improve character recognition accuracy (CRA) from 85% to 92.4%. In addition, CRA using only the expectancy component can reach 68.2%, which is significantly greater than random probability (16.7%). The results of this study indicate that the expectancy wave can be used to improve recognition efficiency for a gaze-independent P300-BCI, and that training contributes to induction and recognition of the potential. SIGNIFICANCE This study proposes an effective approach to an efficient gaze-independent P300-BCI system.
Collapse
Affiliation(s)
- Wei Xu
- Tianjin University, 92 Weijin Road,Nankai District,Tianjin,China, Tianjin, 300072, CHINA
| | - Pin Gao
- Tianjin University, 92 Weijin Road, Nankai District,Tianjin,China, Tianjin, Tianjin, 300072, CHINA
| | - Feng He
- Tianjin University, 92 Weijin Road, Nankai District,Tianjin,China, Tianjin, Tianjin, 300072, CHINA
| | - Hongzhi Qi
- Tianjin University, 92 Weijin Road,Nankai District,Tianjin,China, Tianjin, Tianjin, 300072, CHINA
| |
Collapse
|
6
|
Zhang X, Jin J, Li S, Wang X, Cichocki A. Evaluation of color modulation in visual P300-speller using new stimulus patterns. Cogn Neurodyn 2021; 15:873-886. [PMID: 34603548 DOI: 10.1007/s11571-021-09669-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/04/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
Objective The stimulus color of P300-BCI systems has been successfully modified. However, the effects of different color combinations have not been widely investigated. In this study, we designed new stimulus patterns to evaluate the influence of color modulation on the BCI performance and waveforms of the evoked related potential (ERP).Methods Comparison was performed for three new stimulus patterns consisting of red face and colored block-shape, namely, red face with a white rectangle (RFW), red face with a blue rectangle (RFB), and red face with a red rectangle (RFR). Bayesian linear discriminant analysis (BLDA) was used to construct the individual classifier model. Repeated-measures ANOVA and Bonferroni correction were applied for statistical analysis. Results The RFW pattern obtained the highest average online accuracy with 96.94%, and those of RFR and RFB patterns were 93.61% and of 92.22% respectively. Significant differences in online accuracy and information transfer rate (ITR) were found between RFW and RFR patterns (p < 0.05). Conclusion Compared with RFR and RFB patterns, RFW yielded the best performance in P300-BCI. These new stimulus patterns with different color combinations have considerable importance to BCI applications and user-friendliness.
Collapse
Affiliation(s)
- Xinru Zhang
- Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Jing Jin
- Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Shurui Li
- Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Xingyu Wang
- Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Andrzej Cichocki
- Skolkovo Institute of Science and Technology (Skoltech), 121205 Moscow, Russia.,Nicolaus Copernicus University (UMK), 87-100 Torun, Poland
| |
Collapse
|
7
|
Ziebell P, Stümpfig J, Eidel M, Kleih SC, Kübler A, Latoschik ME, Halder S. Stimulus modality influences session-to-session transfer of training effects in auditory and tactile streaming-based P300 brain-computer interfaces. Sci Rep 2020; 10:11873. [PMID: 32681134 PMCID: PMC7368044 DOI: 10.1038/s41598-020-67887-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 05/22/2020] [Indexed: 12/02/2022] Open
Abstract
Despite recent successes, patients suffering from locked-in syndrome (LIS) still struggle to communicate using vision-independent brain–computer interfaces (BCIs). In this study, we compared auditory and tactile BCIs, regarding training effects and cross-stimulus-modality transfer effects, when switching between stimulus modalities. We utilized a streaming-based P300 BCI, which was developed as a low workload approach to prevent potential BCI-inefficiency. We randomly assigned 20 healthy participants to two groups. The participants received three sessions of training either using an auditory BCI or using a tactile BCI. In an additional fourth session, BCI versions were switched to explore possible cross-stimulus-modality transfer effects. Both BCI versions could be operated successfully in the first session by the majority of the participants, with the tactile BCI being experienced as more intuitive. Significant training effects were found mostly in the auditory BCI group and strong evidence for a cross-stimulus-modality transfer occurred for the auditory training group that switched to the tactile version but not vice versa. All participants were able to control at least one BCI version, suggesting that the investigated paradigms are generally feasible and merit further research into their applicability with LIS end-users. Individual preferences regarding stimulus modality should be considered.
Collapse
Affiliation(s)
- P Ziebell
- Institute of Psychology, University of Würzburg, Würzburg, Germany.
| | - J Stümpfig
- Institute of Psychology, University of Würzburg, Würzburg, Germany
| | - M Eidel
- Institute of Psychology, University of Würzburg, Würzburg, Germany
| | - S C Kleih
- Institute of Psychology, University of Würzburg, Würzburg, Germany
| | - A Kübler
- Institute of Psychology, University of Würzburg, Würzburg, Germany
| | - M E Latoschik
- Institute of Computer Science, University of Würzburg, Würzburg, Germany
| | - S Halder
- School of Computer Science and Electronic Engineering (CSEE), University of Essex, Colchester, UK
| |
Collapse
|
8
|
A Tactile-based Brain Computer Interface P300 Paradigm Using Vibration Frequency and Spatial Location. J Med Biol Eng 2020. [DOI: 10.1007/s40846-020-00535-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Li S, Jin J, Daly I, Zuo C, Wang X, Cichocki A. Comparison of the ERP-Based BCI Performance Among Chromatic (RGB) Semitransparent Face Patterns. Front Neurosci 2020; 14:54. [PMID: 32082118 PMCID: PMC7006297 DOI: 10.3389/fnins.2020.00054] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/14/2020] [Indexed: 11/18/2022] Open
Abstract
Objective Previous studies have shown that combing with color properties may be used as part of the display presented to BCI users in order to improve performance. Build on this, we explored the effects of combinations of face stimuli with three primary colors (RGB) on BCI performance which is assessed by classification accuracy and information transfer rate (ITR). Furthermore, we analyzed the waveforms of three patterns. Methods We compared three patterns in which semitransparent face is overlaid three primary colors as stimuli: red semitransparent face (RSF), green semitransparent face (GSF), and blue semitransparent face (BSF). Bayesian linear discriminant analysis (BLDA) was used to construct the individual classifier model. In addition, a Repeated-measures ANOVA (RM-ANOVA) and Bonferroni correction were chosen for statistical analysis. Results The results indicated that the RSF pattern achieved the highest online averaged accuracy with 93.89%, followed by the GSF pattern with 87.78%, while the lowest performance was caused by the BSF pattern with an accuracy of 81.39%. Furthermore, significant differences in classification accuracy and ITR were found between RSF and GSF (p < 0.05) and between RSF and BSF patterns (p < 0.05). Conclusion The semitransparent faces colored red (RSF) pattern yielded the best performance of the three patterns. The proposed patterns based on ERP-BCI system have a clinically significant impact by increasing communication speed and accuracy of the P300-speller for patients with severe motor impairment.
Collapse
Affiliation(s)
- Shurui Li
- Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Jing Jin
- Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Ian Daly
- Brain-Computer Interfacing and Neural Engineering Laboratory, School of Computer Science and Electronic Engineering, University of Essex, Colchester, United Kingdom
| | - Cili Zuo
- Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Xingyu Wang
- Key Laboratory of Advanced Control and Optimization for Chemical Processes, Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Andrzej Cichocki
- Skolkowo Institute of Science and Technology, Moscow, Russia.,Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland.,Department of Informatics, Nicolaus Copernicus University, Toruń, Poland
| |
Collapse
|
10
|
Halder S, Leinfelder T, Schulz SM, Kübler A. Neural mechanisms of training an auditory event-related potential task in a brain-computer interface context. Hum Brain Mapp 2019; 40:2399-2412. [PMID: 30693612 DOI: 10.1002/hbm.24531] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/18/2018] [Accepted: 01/11/2019] [Indexed: 11/12/2022] Open
Abstract
Effective use of brain-computer interfaces (BCIs) typically requires training. Improved understanding of the neural mechanisms underlying BCI training will facilitate optimisation of BCIs. The current study examined the neural mechanisms related to training for electroencephalography (EEG)-based communication with an auditory event-related potential (ERP) BCI. Neural mechanisms of training in 10 healthy volunteers were assessed with functional magnetic resonance imaging (fMRI) during an auditory ERP-based BCI task before (t1) and after (t5) three ERP-BCI training sessions outside the fMRI scanner (t2, t3, and t4). Attended stimuli were contrasted with ignored stimuli in the first-level fMRI data analysis (t1 and t5); the training effect was verified using the EEG data (t2-t4); and brain activation was contrasted before and after training in the second-level fMRI data analysis (t1 vs. t5). Training increased the communication speed from 2.9 bits/min (t2) to 4 bits/min (t4). Strong activation was found in the putamen, supplementary motor area (SMA), and superior temporal gyrus (STG) associated with attention to the stimuli. Training led to decreased activation in the superior frontal gyrus and stronger haemodynamic rebound in the STG and supramarginal gyrus. The neural mechanisms of ERP-BCI training indicate improved stimulus perception and reduced mental workload. The ERP task used in the current study showed overlapping activations with a motor imagery based BCI task from a previous study on the neural mechanisms of BCI training in the SMA and putamen. This suggests commonalities between the neural mechanisms of training for both BCI paradigms.
Collapse
Affiliation(s)
- Sebastian Halder
- School of Computer Science and Electronic Engineering, University of Essex, Colchester, United Kingdom.,Institute of Psychology, University of Würzburg, Würzburg, Germany.,Human-Computer Interaction, University of Würzburg, Würzburg, Germany.,Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | | | - Stefan M Schulz
- Institute of Psychology, University of Würzburg, Würzburg, Germany.,Clinical Psychology, Psychotherapy, and Experimental Psychopathology, Johannes Gutenberg University, Mainz, Germany
| | - Andrea Kübler
- Institute of Psychology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
11
|
Halder S, Takano K, Kansaku K. Comparison of Four Control Methods for a Five-Choice Assistive Technology. Front Hum Neurosci 2018; 12:228. [PMID: 29928196 PMCID: PMC5997833 DOI: 10.3389/fnhum.2018.00228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/16/2018] [Indexed: 12/13/2022] Open
Abstract
Severe motor impairments can affect the ability to communicate. The ability to see has a decisive influence on the augmentative and alternative communication (AAC) systems available to the user. To better understand the initial impressions users have of AAC systems we asked naïve healthy participants to compare two visual (a visual P300 brain-computer interface (BCI) and an eye-tracker) and two non-visual systems (an auditory and a tactile P300 BCI). Eleven healthy participants performed 20 selections in a five choice task with each system. The visual P300 BCI used face stimuli, the auditory P300 BCI used Japanese Hiragana syllables and the tactile P300 BCI used a stimulator on the small left finger, middle left finger, right thumb, middle right finger and small right finger. The eye-tracker required a dwell time of 3 s on the target for selection. We calculated accuracies and information-transfer rates (ITRs) for each control method using the selection time that yielded the highest ITR and an accuracy above 70% for each system. Accuracies of 88% were achieved with the visual P300 BCI (4.8 s selection time, 20.9 bits/min), of 70% with the auditory BCI (19.9 s, 3.3 bits/min), of 71% with the tactile BCI (18 s, 3.4 bits/min) and of 100% with the eye-tracker (5.1 s, 28.2 bits/min). Performance between eye-tracker and visual BCI correlated strongly, correlation between tactile and auditory BCI performance was lower. Our data showed no advantage for either non-visual system in terms of ITR but a lower correlation of performance which suggests that choosing the system which suits a particular user is of higher importance for non-visual systems than visual systems.
Collapse
Affiliation(s)
- Sebastian Halder
- Systems Neuroscience Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama, Japan
- Department of Molecular Medicine, University of Oslo, Oslo, Norway
| | - Kouji Takano
- Systems Neuroscience Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama, Japan
| | - Kenji Kansaku
- Systems Neuroscience Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Saitama, Japan
- Brain Science Inspired Life Support Research Center, The University of Electro-Communications, Tokyo, Japan
- Department of Physiology and Biological Information, Dokkyo Medical University School of Medicine, Tochigi, Japan
| |
Collapse
|
12
|
Onishi A, Takano K, Kawase T, Ora H, Kansaku K. Affective Stimuli for an Auditory P300 Brain-Computer Interface. Front Neurosci 2017; 11:522. [PMID: 28983235 PMCID: PMC5613193 DOI: 10.3389/fnins.2017.00522] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 09/05/2017] [Indexed: 12/04/2022] Open
Abstract
Gaze-independent brain computer interfaces (BCIs) are a potential communication tool for persons with paralysis. This study applies affective auditory stimuli to investigate their effects using a P300 BCI. Fifteen able-bodied participants operated the P300 BCI, with positive and negative affective sounds (PA: a meowing cat sound, NA: a screaming cat sound). Permuted stimuli of the positive and negative affective sounds (permuted-PA, permuted-NA) were also used for comparison. Electroencephalography data was collected, and offline classification accuracies were compared. We used a visual analog scale (VAS) to measure positive and negative affective feelings in the participants. The mean classification accuracies were 84.7% for PA and 67.3% for permuted-PA, while the VAS scores were 58.5 for PA and −12.1 for permuted-PA. The positive affective stimulus showed significantly higher accuracy and VAS scores than the negative affective stimulus. In contrast, mean classification accuracies were 77.3% for NA and 76.0% for permuted-NA, while the VAS scores were −50.0 for NA and −39.2 for permuted NA, which are not significantly different. We determined that a positive affective stimulus with accompanying positive affective feelings significantly improved BCI accuracy. Additionally, an ALS patient achieved 90% online classification accuracy. These results suggest that affective stimuli may be useful for preparing a practical auditory BCI system for patients with disabilities.
Collapse
Affiliation(s)
- Akinari Onishi
- Systems Neuroscience Section, Department of Rehabilitation for Brain Function, Research Institute of National Rehabilitation Center for Persons with DisabilitiesTokorozawa, Japan.,Center for Frontier Medical Engineering, Chiba UniversityInage, Japan
| | - Kouji Takano
- Systems Neuroscience Section, Department of Rehabilitation for Brain Function, Research Institute of National Rehabilitation Center for Persons with DisabilitiesTokorozawa, Japan
| | - Toshihiro Kawase
- Systems Neuroscience Section, Department of Rehabilitation for Brain Function, Research Institute of National Rehabilitation Center for Persons with DisabilitiesTokorozawa, Japan.,Biointerfaces Unit, Institute of Innovative Research, Tokyo Institute of TechnologyYokohama, Japan
| | - Hiroki Ora
- Systems Neuroscience Section, Department of Rehabilitation for Brain Function, Research Institute of National Rehabilitation Center for Persons with DisabilitiesTokorozawa, Japan.,Brain Science Inspired Life Support Research Center, The University of Electro-CommunicationsChofu, Japan
| | - Kenji Kansaku
- Systems Neuroscience Section, Department of Rehabilitation for Brain Function, Research Institute of National Rehabilitation Center for Persons with DisabilitiesTokorozawa, Japan.,Brain Science Inspired Life Support Research Center, The University of Electro-CommunicationsChofu, Japan
| |
Collapse
|
13
|
Okahara Y, Takano K, Komori T, Nagao M, Iwadate Y, Kansaku K. Operation of a P300-based brain-computer interface by patients with spinocerebellar ataxia. Clin Neurophysiol Pract 2017; 2:147-153. [PMID: 30214988 PMCID: PMC6123944 DOI: 10.1016/j.cnp.2017.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/12/2017] [Accepted: 06/24/2017] [Indexed: 11/16/2022] Open
Abstract
Objective We investigated the efficacy of a P300-based brain-computer interface (BCI) for patients with spinocerebellar ataxia (SCA), which is often accompanied by cerebellar impairment. Methods Eight patients with SCA and eight age- and gender-matched healthy controls were instructed to input Japanese hiragana characters using the P300-based BCI with green/blue flicker. All patients depended on some assistance in their daily lives (modified Rankin scale: mean 3.5). The chief symptom was cerebellar ataxia; no cognitive deterioration was present. A region-based, two-step P300-based BCI was used. During the P300 task, eight-channel EEG data were recorded, and a linear discriminant analysis distinguished the target from other nontarget regions of the matrix. Results The mean online accuracy in BCI operation was 82.9% for patients with SCA and 83.2% for controls; no significant difference was detected. Conclusion The P300-based BCI was operated successfully not only by healthy controls but also by individuals with SCA. Significance These results suggest that the P300-based BCI may be applicable for patients with SCA.
Collapse
Affiliation(s)
- Yoji Okahara
- Systems Neuroscience Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation for Persons with Disabilities, Tokorozawa, Saitama 359-8555, Japan.,Department of Neurological Surgery, Chiba University Graduate School of Medicine, Chiba, Chiba 260-8670, Japan
| | - Kouji Takano
- Systems Neuroscience Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation for Persons with Disabilities, Tokorozawa, Saitama 359-8555, Japan
| | - Tetsuo Komori
- Department of Neurology, National Hakone Hospital, Odawara, Kanagawa 250-0032, Japan
| | - Masahiro Nagao
- Department of Neurology, Tokyo Metropolitan Neurological Hospital, Fuchu, Tokyo 183-0042, Japan
| | - Yasuo Iwadate
- Department of Neurological Surgery, Chiba University Graduate School of Medicine, Chiba, Chiba 260-8670, Japan
| | - Kenji Kansaku
- Systems Neuroscience Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation for Persons with Disabilities, Tokorozawa, Saitama 359-8555, Japan.,Brain Science Inspired Life Support Research Center, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
| |
Collapse
|