1
|
Liu M, Meng Y, Ouyang S, Zhai M, Yang L, Yang Y, Wang Y. Neuromodulation technologies improve functional recovery after brain injury: From bench to bedside. Neural Regen Res 2026; 21:506-520. [PMID: 39851132 DOI: 10.4103/nrr.nrr-d-24-00652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/05/2024] [Indexed: 01/26/2025] Open
Abstract
Spontaneous recovery frequently proves maladaptive or insufficient because the plasticity of the injured adult mammalian central nervous system is limited. This limited plasticity serves as a primary barrier to functional recovery after brain injury. Neuromodulation technologies represent one of the fastest-growing fields in medicine. These techniques utilize electricity, magnetism, sound, and light to restore or optimize brain functions by promoting reorganization or long-term changes that support functional recovery in patients with brain injury. Therefore, this review aims to provide a comprehensive overview of the effects and underlying mechanisms of neuromodulation technologies in supporting motor function recovery after brain injury. Many of these technologies are widely used in clinical practice and show significant improvements in motor function across various types of brain injury. However, studies report negative findings, potentially due to variations in stimulation protocols, differences in observation periods, and the severity of functional impairments among participants across different clinical trials. Additionally, we observed that different neuromodulation techniques share remarkably similar mechanisms, including promoting neuroplasticity, enhancing neurotrophic factor release, improving cerebral blood flow, suppressing neuroinflammation, and providing neuroprotection. Finally, considering the advantages and disadvantages of various neuromodulation techniques, we propose that future development should focus on closed-loop neural circuit stimulation, personalized treatment, interdisciplinary collaboration, and precision stimulation.
Collapse
Affiliation(s)
- Mei Liu
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904 Hospital of PLA), Wuxi, Jiangsu Province, China
| | - Yijing Meng
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904 Hospital of PLA), Wuxi, Jiangsu Province, China
| | - Siguang Ouyang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904 Hospital of PLA), Wuxi, Jiangsu Province, China
| | - Meng'ai Zhai
- Department of Neurosurgery, The 904 Hospital of PLA, Jiangnan University, Wuxi, Jiangsu Province, China
| | - Likun Yang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904 Hospital of PLA), Wuxi, Jiangsu Province, China
| | - Yang Yang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904 Hospital of PLA), Wuxi, Jiangsu Province, China
| | - Yuhai Wang
- Department of Neurosurgery, Wuxi Clinical College of Anhui Medical University (The 904 Hospital of PLA), Wuxi, Jiangsu Province, China
| |
Collapse
|
2
|
Chen D, Zhao Z, Zhang S, Chen S, Wu X, Shi J, Liu N, Pan C, Tang Y, Meng C, Zhao X, Tao B, Liu W, Chen D, Ding H, Zhang P, Tang Z. Evolving Therapeutic Landscape of Intracerebral Hemorrhage: Emerging Cutting-Edge Advancements in Surgical Robots, Regenerative Medicine, and Neurorehabilitation Techniques. Transl Stroke Res 2025; 16:975-989. [PMID: 38558011 PMCID: PMC12045821 DOI: 10.1007/s12975-024-01244-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/06/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024]
Abstract
Intracerebral hemorrhage (ICH) is the most serious form of stroke and has limited available therapeutic options. As knowledge on ICH rapidly develops, cutting-edge techniques in the fields of surgical robots, regenerative medicine, and neurorehabilitation may revolutionize ICH treatment. However, these new advances still must be translated into clinical practice. In this review, we examined several emerging therapeutic strategies and their major challenges in managing ICH, with a particular focus on innovative therapies involving robot-assisted minimally invasive surgery, stem cell transplantation, in situ neuronal reprogramming, and brain-computer interfaces. Despite the limited expansion of the drug armamentarium for ICH over the past few decades, the judicious selection of more efficacious therapeutic modalities and the exploration of multimodal combination therapies represent opportunities to improve patient prognoses after ICH.
Collapse
Affiliation(s)
- Danyang Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhixian Zhao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shenglun Zhang
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shiling Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuan Wu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian Shi
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Na Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yingxin Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Cai Meng
- School of Astronautics, Beihang University, Beijing, China
| | - Xingwei Zhao
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Bo Tao
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenjie Liu
- Beijing WanTeFu Medical Instrument Co., Ltd., Beijing, China
| | - Diansheng Chen
- Institute of Robotics, School of Mechanical Engineering and Automation, Beihang University, Beijing, China
| | - Han Ding
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Endzelytė E, Petruševičienė D, Kubilius R, Mingaila S, Rapolienė J, Rimdeikienė I. Integrating Brain-Computer Interface Systems into Occupational Therapy for Enhanced Independence of Stroke Patients: An Observational Study. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:932. [PMID: 40428890 PMCID: PMC12113275 DOI: 10.3390/medicina61050932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/18/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025]
Abstract
Background and Objectives: Brain-computer interface (BCI) technology is revolutionizing stroke rehabilitation by offering innovative neuroengineering solutions to address neurological deficits. By bypassing peripheral nerves and muscles, BCIs enable individuals with severe motor impairments to communicate their intentions directly through control signals derived from brain activity, opening new pathways for recovery and improving the quality of life. The aim of this study was to explore the beneficial effects of BCI system-based interventions on upper limb motor function and performance of activities of daily living (ADL) in stroke patients. We hypothesized that integrating BCI into occupational therapy would result in measurable improvements in hand strength, dexterity, independence in daily activities, and cognitive function compared to baseline. Materials and Methods: An observational study was conducted on 56 patients with subacute stroke. All patients received standard medical care and rehabilitation for 54 days, as part of the comprehensive treatment protocol. Patients underwent BCI training 2-3 times a week instead of some occupational therapy sessions, with each patient completing 15 sessions of BCI-based recoveriX treatment during rehabilitation. The occupational therapy program included bilateral exercises, grip-strengthening activities, fine motor/coordination tasks, tactile discrimination exercises, proprioceptive training, and mirror therapy to enhance motor recovery through visual feedback. Participants received ADL-related training aimed at improving their functional independence in everyday activities. Routine occupational therapy was provided five times a week for 50 min per session. Upper extremity function was evaluated using the Box and Block Test (BBT), Nine-Hole Peg Test (9HPT), and dynamometry to assess gross manual dexterity, fine motor skills, and grip strength. Independence in daily living was assessed using the Functional Independence Measure (FIM). Results: Statistically significant improvements were observed across all the outcome measures (p < 0.001). The strength of the stroke-affected hand improved from 5.0 kg to 6.7 kg, and that of the unaffected hand improved from 29.7 kg to 40.0 kg. Functional independence increased notably, with the FIM scores rising from 43.0 to 83.5. Cognitive function also improved, with MMSE scores increasing from 22.0 to 26.0. The effect sizes ranged from moderate to large, indicating clinically meaningful benefits. Conclusions: This study suggests that BCI-based occupational therapy interventions effectively improve upper extremity motor function and daily functions and have a positive impact on the cognition of patients with subacute stroke.
Collapse
Affiliation(s)
- Erika Endzelytė
- Department of Rehabilitation, Faculty of Nursing, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (D.P.); (R.K.); (S.M.); (J.R.); (I.R.)
| | | | | | | | | | | |
Collapse
|
4
|
Padmaja GKR, Bhagat NA, Balasubramani PP. Assessing the utility of Fronto-Parietal and Cingulo-Opercular networks in predicting the trial success of brain-machine interfaces for upper extremity stroke rehabilitation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.08.25325026. [PMID: 40297442 PMCID: PMC12036372 DOI: 10.1101/2025.04.08.25325026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
For stroke participants undergoing motor rehabilitation, brain-machine/computer interfaces (BMI/BCI) can potentially improve the efficacy of robotic or exoskeleton-based therapies by ensuring patient engagement and active participation, through monitoring of motor intent. In such interventions, exploring the network-level understanding of the source space, in terms of various cognitive dimensions such as executive control versus reward processing is fruitful in both improving the existing therapy protocols as well as understanding the subject-level differences. This contrasts to traditional approaches that predominantly investigate rehabilitation from resting state data. Moreover, conventional BMIs used for stroke rehabilitation barely accommodate people suffering from moderate to severe cognitive impairments. In this first-of-the-kind study, we explore the cognitive dimensions of a BMI trial by probing the networks that are core to the BMI performance and propose a network connectivity-based measurement with the potential to characterize the cognitive impairments in patients for closed-loop intervention. Specifically, we tease apart the extent of cognitive evaluation versus executive control aspects of impairments in these patients, by measuring the activation power of a major cognitive evaluation network- the Cingulo-Opercular Network (CON) and a major executive control circuit- the Fronto-Parietal network (FPN), and the connectivity between FPN-CON. We test our hypothesis in a previously collected dataset of electroencephalography (EEG) and structural imaging performed on stroke patients with upper limb impairments, while they underwent an exoskeleton-based BMI intervention for about 12 sessions over 4 weeks. Our logistic regression modeling results suggest that the connectivity between FPN and CON networks and their source powers predict trial failure accurately to about 84.2%. In the future, we aim to integrate these observations into a closed-loop design to adaptively control the cognitive difficulty and passively increase the subject's motivation and attention factor for effective BMI learning.
Collapse
Affiliation(s)
| | - Nikunj Arunkumar Bhagat
- Department of Electrical Engineering, Indian Institute of Technology, Kanpur, India
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology, Kanpur, India
| | | |
Collapse
|
5
|
Hu Y, Li Y, Leung AYM, Li J, Mei X, Montayre J, Tao R, Yorke J. A scoping review on motor imagery-based rehabilitation: Potential working mechanisms and clinical application for cognitive function and depression. Clin Rehabil 2025; 39:504-523. [PMID: 39814525 DOI: 10.1177/02692155241313174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
ObjectiveTo map evidence on the characteristics, effectiveness, and potential mechanisms of motor imagery interventions targeting cognitive function and depression in adults with neurological disorders and/or mobility impairments.Data SourcesSix English databases (The Cochrane Library, PubMed, Embase, Scopus, Web of Sciences, and PsycINFO), two Chinese databases (CNKI and WanFang), and a gray literature database were searched from inception to December 2024.Review MethodsThis scoping review followed the Joanna Briggs Institute Scoping Review methodology. Interventional studies that evaluated motor imagery for cognitive function and/or depression in adults with neurological disorders and/or mobility impairments were included.ResultsA total of 24 studies, primarily involving adults with cerebrovascular diseases, multiple sclerosis, and Parkinson's disease, were identified. Motor imagery was typically conducted at home/clinic, occurring 2 to 3 sessions per week for approximately 2 months, with each session lasting 20 to 30 minutes. The 62.5% of studies (n = 10) reported significant improvements in cognitive function, exhibiting moderate-to-large effect sizes (Cohen's d = 0.48-3.41), especially in memory, attention, and executive function, while 53.3% (n = 8) indicated alleviation in depression with moderate-to-large effect sizes (Cohen's d = -0.72- -2.56). Motor imagery interventions could relieve pain perception and promote beneficial neurological changes in brains by facilitating neurotrophic factor expression and activating neural circuits related to motor, emotional, and cognitive functions.ConclusionMotor imagery could feasibly be conducted at home, with promising effects on cognitive function and depression. More high-quality randomized controlled trials and neuroimaging techniques are needed to investigate the effects of motor imagery on neuroplasticity and brain functional reorganization, thereby aiding in the development of mechanism-driven interventions.
Collapse
Affiliation(s)
- Yule Hu
- School of Nursing, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Yan Li
- School of Nursing, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | | | - Jiaying Li
- School of Nursing, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xiaoxiao Mei
- School of Nursing, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Jed Montayre
- School of Nursing, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Ran Tao
- Research Centre for Language, Cognition, and Neuroscience, Department of Chinese and Bilingual Studies, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Janelle Yorke
- School of Nursing, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
6
|
Liu XY, Wang WL, Liu M, Chen MY, Pereira T, Doda DY, Ke YF, Wang SY, Wen D, Tong XG, Li WG, Yang Y, Han XD, Sun YL, Song X, Hao CY, Zhang ZH, Liu XY, Li CY, Peng R, Song XX, Yasi A, Pang MJ, Zhang K, He RN, Wu L, Chen SG, Chen WJ, Chao YG, Hu CG, Zhang H, Zhou M, Wang K, Liu PF, Chen C, Geng XY, Qin Y, Gao DR, Song EM, Cheng LL, Chen X, Ming D. Recent applications of EEG-based brain-computer-interface in the medical field. Mil Med Res 2025; 12:14. [PMID: 40128831 PMCID: PMC11931852 DOI: 10.1186/s40779-025-00598-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
Brain-computer interfaces (BCIs) represent an emerging technology that facilitates direct communication between the brain and external devices. In recent years, numerous review articles have explored various aspects of BCIs, including their fundamental principles, technical advancements, and applications in specific domains. However, these reviews often focus on signal processing, hardware development, or limited applications such as motor rehabilitation or communication. This paper aims to offer a comprehensive review of recent electroencephalogram (EEG)-based BCI applications in the medical field across 8 critical areas, encompassing rehabilitation, daily communication, epilepsy, cerebral resuscitation, sleep, neurodegenerative diseases, anesthesiology, and emotion recognition. Moreover, the current challenges and future trends of BCIs were also discussed, including personal privacy and ethical concerns, network security vulnerabilities, safety issues, and biocompatibility.
Collapse
Affiliation(s)
- Xiu-Yun Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300380, China
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, China
| | - Wen-Long Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Miao Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Ming-Yi Chen
- Department of Micro/Nano Electronics, Shanghai Jiaotong University, Shanghai, 200240, China
| | - Tânia Pereira
- Institute for Systems and Computer Engineering, Technology and Science, 4099-002, Porto, Portugal
| | - Desta Yakob Doda
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Yu-Feng Ke
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Shou-Yan Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Dong Wen
- School of Intelligence Science and Technology, University of Sciences and Technology Beijing, Beijing, 100083, China
| | | | - Wei-Guang Li
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, 999077, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yi Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, China
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX1 3TH, UK
| | - Xiao-Di Han
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yu-Lin Sun
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Xin Song
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Cong-Ying Hao
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Zi-Hua Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Xin-Yang Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Chun-Yang Li
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Rui Peng
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Xiao-Xin Song
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Abi Yasi
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Mei-Jun Pang
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Kuo Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Run-Nan He
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Le Wu
- Department of Electric Engineering and Information Science, University of Science and Technology of China, Hefei, 230026, China
| | - Shu-Geng Chen
- Department of Rehabilitation, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wen-Jin Chen
- Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Yan-Gong Chao
- The First Hospital of Tsinghua University, Beijing, 100016, China
| | - Cheng-Gong Hu
- Department of Critical Care Medicine, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Heng Zhang
- Department of Neurosurgery, The First Hospital of China Medical University, Beijing, 110122, China
| | - Min Zhou
- Department of Critical Care Medicine, Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, Hefei, 230031, China
| | - Kun Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Peng-Fei Liu
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China
| | - Chen Chen
- School of Computer Science, Fudan University, Shanghai, 200438, China
| | - Xin-Yi Geng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yun Qin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Dong-Rui Gao
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - En-Ming Song
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, 200433, China
| | - Long-Long Cheng
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China.
| | - Xun Chen
- Department of Electric Engineering and Information Science, University of Science and Technology of China, Hefei, 230026, China.
| | - Dong Ming
- State Key Laboratory of Advanced Medical Materials and Devices, Medical School, Tianjin University, Tianjin, 300072, China.
- Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, 300380, China.
| |
Collapse
|
7
|
Rodríguez-García ME, Carino-Escobar RI, Carrillo-Mora P, Hernandez-Arenas C, Ramirez-Nava AG, Pacheco-Gallegos MDR, Valdés-Cristerna R, Cantillo-Negrete J. Neuroplasticity changes in cortical activity, grey matter, and white matter of stroke patients after upper extremity motor rehabilitation via a brain-computer interface therapy program. J Neural Eng 2025; 22:026025. [PMID: 40064104 DOI: 10.1088/1741-2552/adbebf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 03/10/2025] [Indexed: 03/21/2025]
Abstract
Objective. Upper extremity (UE) motor function loss is one of the most impactful consequences of stroke. Recently, brain-computer interface (BCI) systems have been utilized in therapy programs to enhance UE motor recovery after stroke, widely attributed to neuroplasticity mechanisms. However, the effect that the BCI's closed-loop feedback can have in these programs is unclear. The aim of this study was to quantitatively assess and compare the neuroplasticity effects elicited in stroke patients by a UE motor rehabilitation BCI therapy and by its sham-BCI counterpart.Approach. Twenty patients were randomly assigned to either the experimental group (EG), who controlled the BCI system via UE motor intention, or the control group (CG), who received random feedback. The elicited neuroplasticity effects were quantified using asymmetry metrics derived from electroencephalography (EEG), functional magnetic resonance imaging (fMRI), and diffusion tensor imaging (DTI) data acquired before, at the middle, and at the end of the intervention, alongside UE sensorimotor function evaluations. These asymmetry indexes compare the affected and unaffected hemispheres and are robust to lesion location variability.Main results. Most patients from the EG presented brain activity lateralisation to one brain hemisphere, as described by EEG (8 patients) and fMRI (6 patients) metrics. Conversely, the CG showed less pronounced lateralisations, presenting primarily bilateral activity patterns. DTI metrics showed increased white matter integrity in half of the EG patients' unaffected hemisphere, and in all but 2 CG patients' affected hemisphere. Individual patient analysis suggested that lesion location was relevant since functional and structural lateralisations occurred towards different hemispheres depending on stroke site.Significance. This study shows that a BCI intervention can elicit more pronounced neuroplasticity-related lateralisations than a sham-BCI therapy. These findings could serve as future biomarkers, helping to better select patients and increasing the impact that a BCI intervention can achieve. Clinical trial: NCT04724824.
Collapse
Affiliation(s)
| | - Ruben I Carino-Escobar
- Division of Research in Clinical Neuroscience, Instituto Nacional de Rehabilitación 'Luis Guillermo Ibarra Ibarra', Mexico City 14389, Mexico
| | - Paul Carrillo-Mora
- Division of Research in Clinical Neuroscience, Instituto Nacional de Rehabilitación 'Luis Guillermo Ibarra Ibarra', Mexico City 14389, Mexico
| | - Claudia Hernandez-Arenas
- Division of Neurological Rehabilitation, Instituto Nacional de Rehabilitación 'Luis Guillermo Ibarra Ibarra', Mexico City 14389, Mexico
| | - Ana G Ramirez-Nava
- Division of Neurological Rehabilitation, Instituto Nacional de Rehabilitación 'Luis Guillermo Ibarra Ibarra', Mexico City 14389, Mexico
| | | | - Raquel Valdés-Cristerna
- Electrical Engineering Department, Universidad Autónoma Metropolitana Unidad Iztapalapa, Mexico City 09340, Mexico
| | - Jessica Cantillo-Negrete
- Technological Research Subdirection, Instituto Nacional de Rehabilitación 'Luis Guillermo Ibarra Ibarra', Mexico City 14389, Mexico
| |
Collapse
|
8
|
Li D, Li R, Song Y, Qin W, Sun G, Liu Y, Bao Y, Liu L, Jin L. Effects of brain-computer interface based training on post-stroke upper-limb rehabilitation: a meta-analysis. J Neuroeng Rehabil 2025; 22:44. [PMID: 40033447 PMCID: PMC11874405 DOI: 10.1186/s12984-025-01588-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 02/21/2025] [Indexed: 03/05/2025] Open
Abstract
BACKGROUND Previous research has used the brain-computer interface (BCI) to promote upper-limb motor rehabilitation. However, the results of these studies were variable, leaving efficacy unclear. OBJECTIVES This review aims to evaluate the effects of BCI-based training on post-stroke upper-limb rehabilitation and identify potential factors that may affect the outcome. DESIGN A meta-analysis including all available randomized-controlled clinical trials (RCTs) that reported the efficacy of BCI-based training on upper-limb motor rehabilitation after stroke. DATA SOURCES AND METHODS We searched PubMed, Cochrane Library, and Web of Science before September 15, 2024, for relevant studies. The primary efficacy outcome was the Fugl-Meyer Assessment-Upper extremity (FMA-UE). RevMan 5.4.1 with a random effect model was used for data synthesis and analysis. Mean difference (MD) and 95% confidence interval (95%CI) were calculated. RESULTS Twenty-one RCTs (n = 886 patients) were reviewed in the meta-analysis. Compared with control, BCI-based training exerted significant effects on FMA-UE (MD = 3.69, 95%CI 2.41-4.96, P < 0.00001, moderate-quality evidence), Wolf Motor Function Test (WMFT) (MD = 5.00, 95%CI 2.14-7.86, P = 0.0006, low-quality evidence), and Action Research Arm Test (ARAT) (MD = 2.04, 95%CI 0.25-3.82, P = 0.03, high-quality evidence). Additionally, BCI-based training was effective on FMA-UE for both subacute (MD = 4.24, 95%CI 1.81-6.67, P = 0.0006) and chronic patients (MD = 2.63, 95%CI 1.50-3.76, P < 0.00001). BCI combined with functional electrical stimulation (FES) (MD = 4.37, 95%CI 3.09-5.65, P < 0.00001), robots (MD = 2.87, 95%CI 0.69-5.04, P = 0.010), and visual feedback (MD = 4.46, 95%CI 0.24-8.68, P = 0.04) exhibited significant effects on FMA-UE. BCI combined with FES significantly improved FMA-UE for both subacute (MD = 5.31, 95%CI 2.58-8.03, P = 0.0001) and chronic patients (MD = 3.71, 95%CI 2.44-4.98, P < 0.00001), and BCI combined with robots was effective for chronic patients (MD = 1.60, 95%CI 0.15-3.05, P = 0.03). Better results may be achieved with daily training sessions ranging from 20 to 90 min, conducted 2-5 sessions per week for 3-4 weeks. CONCLUSIONS BCI-based training may be a reliable rehabilitation program to improve upper-limb motor impairment and function. TRIAL REGISTRATION PROSPERO registration ID: CRD42022383390.
Collapse
Affiliation(s)
- Dan Li
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, , Tongji University, Shanghai, 201619, China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, 200438, China
| | - Ruoyu Li
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, , Tongji University, Shanghai, 201619, China
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, P. R. China
| | - Yunping Song
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, , Tongji University, Shanghai, 201619, China
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, P. R. China
| | - Wenting Qin
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, , Tongji University, Shanghai, 201619, China
| | - Guangli Sun
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, , Tongji University, Shanghai, 201619, China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, 200438, China
| | - Yunxi Liu
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, , Tongji University, Shanghai, 201619, China
| | - Yunjun Bao
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, , Tongji University, Shanghai, 201619, China
| | - Lingyu Liu
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, , Tongji University, Shanghai, 201619, China.
| | - Lingjing Jin
- Department of Neurology and Neurological Rehabilitation, Shanghai Disabled Persons' Federation Key Laboratory of Intelligent Rehabilitation Assistive Devices and Technologies, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, , Tongji University, Shanghai, 201619, China.
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, Shanghai, 200065, P. R. China.
| |
Collapse
|
9
|
Calderone A, Manuli A, Arcadi FA, Militi A, Cammaroto S, Maggio MG, Pizzocaro S, Quartarone A, De Nunzio AM, Calabrò RS. The Impact of Visualization on Stroke Rehabilitation in Adults: A Systematic Review of Randomized Controlled Trials on Guided and Motor Imagery. Biomedicines 2025; 13:599. [PMID: 40149575 PMCID: PMC11940390 DOI: 10.3390/biomedicines13030599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Guided imagery techniques, which include mentally picturing motions or activities to help motor recovery, are an important part of neuroplasticity-based motor therapy in stroke patients. Motor imagery (MI) is a kind of guided imagery in neurorehabilitation that focuses on mentally rehearsing certain motor actions in order to improve performance. This systematic review aims to evaluate the current evidence on guided imagery techniques and identify their therapeutic potential in stroke motor rehabilitation. Methods: Randomized controlled trials (RCTs) published in the English language were identified from an online search of PubMed, Web of Science, Embase, EBSCOhost, and Scopus databases without a specific search time frame. The inclusion criteria take into account guided imagery interventions and evaluate their impact on motor recovery through validated clinical, neurophysiological, or functional assessments. This review has been registered on Open OSF with the following number: DOI 10.17605/OSF.IO/3D7MF. Results: This review synthesized 41 RCTs on MI in stroke rehabilitation, with 996 participants in the intervention group and 757 in the control group (average age 50-70, 35% female). MI showed advantages for gait, balance, and upper limb function; however, the RoB 2 evaluation revealed 'some concerns' related to allocation concealment, blinding, and selective reporting issues. Integrating MI with gait training or action observation (AO) seems to improve motor recovery, especially in balance and walking. Technological methods like brain-computer interfaces (BCIs) and hybrid models that combine MI with circuit training hold potential for enhancing functional mobility and motor results. Conclusions: Guided imagery shows promise as a beneficial adjunct in stroke rehabilitation, with the potential to improve motor recovery across several domains such as gait, upper limb function, and balance.
Collapse
Affiliation(s)
- Andrea Calderone
- Department of Clinical and Experimental Medicine, University of Messina, Piazza Pugliatti, 98122 Messina, Italy
| | - Alfredo Manuli
- Physical Medicine and Rehabilitation Unit, AOU Policlinico Universitario in Messina, 98125 Messina, Italy;
| | - Francesca Antonia Arcadi
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy; (F.A.A.); (A.M.); (S.C.); (M.G.M.); (A.Q.); (R.S.C.)
| | - Annalisa Militi
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy; (F.A.A.); (A.M.); (S.C.); (M.G.M.); (A.Q.); (R.S.C.)
| | - Simona Cammaroto
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy; (F.A.A.); (A.M.); (S.C.); (M.G.M.); (A.Q.); (R.S.C.)
| | - Maria Grazia Maggio
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy; (F.A.A.); (A.M.); (S.C.); (M.G.M.); (A.Q.); (R.S.C.)
| | - Serena Pizzocaro
- Laboratory of Bioengineering, Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy
- Department of Health, LUNEX University of Applied Sciences, 50, Avenue du Parc des Sports, 4671 Differdange, Luxembourg;
| | - Angelo Quartarone
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy; (F.A.A.); (A.M.); (S.C.); (M.G.M.); (A.Q.); (R.S.C.)
| | - Alessandro Marco De Nunzio
- Department of Health, LUNEX University of Applied Sciences, 50, Avenue du Parc des Sports, 4671 Differdange, Luxembourg;
- Luxembourg Health & Sport Sciences Research Institute A.s.b.l., 50, Avenue du Parc des Sports, 4671 Differdange, Luxembourg
| | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi Bonino-Pulejo, S.S. 113 Via Palermo, C.da Casazza, 98124 Messina, Italy; (F.A.A.); (A.M.); (S.C.); (M.G.M.); (A.Q.); (R.S.C.)
| |
Collapse
|
10
|
El-Osta A, Al Ammouri M, Khan S, Altalib S, Karki M, Riboli-Sasco E, Majeed A. Community perspectives regarding brain-computer interfaces: A cross-sectional study of community-dwelling adults in the UK. PLOS DIGITAL HEALTH 2025; 4:e0000524. [PMID: 39908280 DOI: 10.1371/journal.pdig.0000524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 12/20/2024] [Indexed: 02/07/2025]
Abstract
BACKGROUND Brain-computer interfaces (BCIs) represent a ground-breaking advancement in neuroscience, facilitating direct communication between the brain and external devices. This technology has the potential to significantly improve the lives of individuals with neurological disorders by providing innovative solutions for rehabilitation, communication and personal autonomy. However, despite the rapid progress in BCI technology and social media discussions around Neuralink, public perceptions and ethical considerations concerning BCIs-particularly within community settings in the UK-have not been thoroughly investigated. OBJECTIVE The primary aim of this study was to investigate public knowledge, attitudes and perceptions regarding BCIs including ethical considerations. The study also explored whether demographic factors were related to beliefs about BCIs increasing inequalities, support for strict regulations, and perceptions of appropriate fields for BCI design, testing and utilization in healthcare. METHODS This cross-sectional study was conducted between 1 December 2023 and 8 March 2024. The survey included 29 structured questions covering demographics, awareness of BCIs, ethical considerations and willingness to use BCIs for various applications. The survey was distributed via the Imperial College Qualtrics platform. Participants were recruited primarily through Prolific Academic's panel and personal networks. Data analysis involved summarizing responses using frequencies and percentages, with chi-squared tests to compare groups. All data were securely stored and pseudo-anonymized to ensure confidentiality. RESULTS Of the 950 invited respondents, 846 participated and 806 completed the survey. The demographic profile was diverse, with most respondents aged 36-45 years (26%) balanced in gender (52% female), and predominantly identifying as White (86%). Most respondents (98%) had never used BCIs, and 65% were unaware of them prior to the survey. Preferences for BCI types varied by condition. Ethical concerns were prevalent, particularly regarding implantation risks (98%) and costs (92%). Significant associations were observed between demographic variables and perceptions of BCIs regarding inequalities, regulation and their application in healthcare. Conclusion: Despite strong interest in BCIs, particularly for medical applications, ethical concerns, safety and privacy issues remain significant highlighting the need for clear regulatory frameworks and ethical guidelines, as well as educational initiatives to improve public understanding and trust. Promoting public discourse and involving stakeholders including potential users, ethicists and technologists in the design process through co-design principles can help align technological development with public concerns whilst also helping developers to proactively address ethical dilemmas.
Collapse
Affiliation(s)
- Austen El-Osta
- Self-Care Academic Research Unit (SCARU), School of Public Health, Imperial College London, London, United Kingdom
| | - Mahmoud Al Ammouri
- Self-Care Academic Research Unit (SCARU), School of Public Health, Imperial College London, London, United Kingdom
| | - Shujhat Khan
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Sami Altalib
- Self-Care Academic Research Unit (SCARU), School of Public Health, Imperial College London, London, United Kingdom
| | - Manisha Karki
- Self-Care Academic Research Unit (SCARU), School of Public Health, Imperial College London, London, United Kingdom
| | - Eva Riboli-Sasco
- Self-Care Academic Research Unit (SCARU), School of Public Health, Imperial College London, London, United Kingdom
| | - Azeem Majeed
- Department of Primary Care & Public Health, School of Public Health, Imperial College London, London, United Kingdom
| |
Collapse
|
11
|
Liu Q, Liu Z, Xu Y, Liu L, Wang F, Zhao F, Cheng H, Hu X. Comparative efficacy of robot-assisted therapy associated with other different interventions on upper limb rehabilitation after stroke: A protocol for a network meta-analysis. PLoS One 2025; 20:e0304322. [PMID: 39874317 PMCID: PMC11774368 DOI: 10.1371/journal.pone.0304322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 05/09/2024] [Indexed: 01/30/2025] Open
Abstract
INTRODUCTION Post-stroke movement disorders are common, especially upper limb dysfunction, which seriously affects the physical and mental health of stroke patients. With the continuous development of intelligent technology, robot-assisted therapy has become a research hotspot in the upper limb rehabilitation of stroke patients in recent years. Many scholars have also integrated robot-assisted therapy with other interventions to improve rehabilitation outcomes. However, there is a lack of research to determine which auxiliary intervention is the best. Therefore, this protocol aims to guide the development of a network meta-analysis, which helps determine the most suitable auxiliary interventions for robot-assisted therapy. METHODS AND ANALYSIS Published randomized controlled trials will be included if robot-assisted therapy or robot-assisted therapy associated with other different interventions was applied in stroke patients with upper limb dysfunction in the experimental group and usual rehabilitation treatment and care was applied in the control group. CINAHL, PubMed, Web of Science, MEDLINE, Embase, CNKI, and Wanfang electronic databases will be searched. Studies should be published between January 1, 2013, and December 31, 2023. Two reviewers will independently select studies and extra data, and assess the quality of the included studies. The risk of bias will be evaluated based on the Cochrane Collaboration's risk of bias tool. The evidence quality will be measured according to the Grading of Recommendations Assessment, Development and Evaluation. A network meta-analysis will be conducted by using STATA version 15.0 and R version 4.1.3. The probabilities of rehabilitation interventions will be ranked according to the surface under the cumulative ranking curve. ETHICS AND DISSEMINATION Ethical approval is not needed for reviewing published studies. The results will be submitted to a journal. TRIAL REGISTRATION PROSPERO registration number: CRD42023486570.
Collapse
Affiliation(s)
- Qian Liu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Zuoyan Liu
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Xu
- Department of Rehabilitation Medicine Center, West China Hospital, Sichuan University, Chengdu, China
| | - Li Liu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Fang Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Fanyu Zhao
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Hong Cheng
- School of Automation Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiuying Hu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Kim MS, Park H, Kwon I, An KO, Kim H, Park G, Hyung W, Im CH, Shin JH. Efficacy of brain-computer interface training with motor imagery-contingent feedback in improving upper limb function and neuroplasticity among persons with chronic stroke: a double-blinded, parallel-group, randomized controlled trial. J Neuroeng Rehabil 2025; 22:1. [PMID: 39757218 PMCID: PMC11702034 DOI: 10.1186/s12984-024-01535-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Brain-computer interface (BCI) technology can enhance neural plasticity and motor recovery in persons with stroke. However, the effects of BCI training with motor imagery (MI)-contingent feedback versus MI-independent feedback remain unclear. This study aimed to investigate whether the contingent connection between MI-induced brain activity and feedback influences functional and neural plasticity outcomes. We hypothesized that BCI training, with MI-contingent feedback, would result in greater improvements in upper limb function and neural plasticity compared to BCI training, with MI-independent feedback. METHODS This randomized controlled trial included persons with chronic stroke who underwent BCI training involving functional electrical stimulation feedback on the affected wrist extensor. Primary outcomes included the Medical Research Council (MRC) scale score for muscle strength in the wrist extensor (MRC-WE) and active range of motion in wrist extension (AROM-WE). Resting-state electroencephalogram recordings were used to assess neural plasticity. RESULTS Compared to the MI-independent feedback BCI group, the MI-contingent feedback BCI group showed significantly greater improvements in MRC-WE scores (mean difference = 0.52, 95% CI = 0.03-1.00, p = 0.036) and demonstrated increased AROM-WE at 4 weeks post-intervention (p = 0.019). Enhanced functional connectivity in the affected hemisphere was observed in the MI-contingent feedback BCI group, correlating with MRC-WE and Fugl-Meyer assessment-distal scores. Improvements were also observed in the unaffected hemisphere's functional connectivity. CONCLUSIONS BCI training with MI-contingent feedback is more effective than MI-independent feedback in improving AROM-WE, MRC, and neural plasticity in individuals with chronic stroke. BCI technology could be a valuable addition to conventional rehabilitation for stroke survivors, enhancing recovery outcomes. TRIAL REGISTRATION CRIS (KCT0009013).
Collapse
Affiliation(s)
- Myeong Sun Kim
- Translational Research Center for Rehabilitation Robots, National Rehabilitation Center, Ministry of Health and Welfare, Seoul, Korea
- Department of Rehabilitative and Assistive Technology, Rehabilitation Research Institute, National Rehabilitation Center, Ministry of Health and Welfare, Seoul, Korea
| | - Hyunju Park
- Translational Research Center for Rehabilitation Robots, National Rehabilitation Center, Ministry of Health and Welfare, Seoul, Korea
- Department of Rehabilitative and Assistive Technology, Rehabilitation Research Institute, National Rehabilitation Center, Ministry of Health and Welfare, Seoul, Korea
| | - Ilho Kwon
- Translational Research Center for Rehabilitation Robots, National Rehabilitation Center, Ministry of Health and Welfare, Seoul, Korea
- Department of Rehabilitative and Assistive Technology, Rehabilitation Research Institute, National Rehabilitation Center, Ministry of Health and Welfare, Seoul, Korea
| | - Kwang-Ok An
- Department of Healthcare and Public Health Research, Rehabilitation Research Institute, National Rehabilitation Center, Ministry of Health and Welfare, Seoul, Korea
| | - Hayeon Kim
- Department of Healthcare and Public Health Research, Rehabilitation Research Institute, National Rehabilitation Center, Ministry of Health and Welfare, Seoul, Korea
| | - Gyulee Park
- Translational Research Center for Rehabilitation Robots, National Rehabilitation Center, Ministry of Health and Welfare, Seoul, Korea
- Department of Rehabilitative and Assistive Technology, Rehabilitation Research Institute, National Rehabilitation Center, Ministry of Health and Welfare, Seoul, Korea
| | - Wooseok Hyung
- Department of Artificial Intelligence, Hanyang University, Seoul, Republic of Korea
| | - Chang-Hwan Im
- Department of Biomedical Engineering, Hanyang University, Seoul, Republic of Korea
| | - Joon-Ho Shin
- Translational Research Center for Rehabilitation Robots, National Rehabilitation Center, Ministry of Health and Welfare, Seoul, Korea.
- Department of Rehabilitation Medicine, National Rehabilitation Center, Ministry of Health and Welfare, Seoul, Korea.
- Department of Rehabilitation Medicine, National Rehabilitation Center, Seoul, 01022, Korea.
| |
Collapse
|
13
|
Jiang C, Xiao J, Wei H, Wang MY, Chen C. Review on Portable-Powered Lower Limb Exoskeletons. SENSORS (BASEL, SWITZERLAND) 2024; 24:8090. [PMID: 39771825 PMCID: PMC11679449 DOI: 10.3390/s24248090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
Advancements in science and technology have driven the growing use of robots in daily life, with Portable-Powered Lower Limb Exoskeletons (PPLLEs) emerging as a key innovation. The selection of mechanisms, control strategies, and sensors directly influences the overall performance of the exoskeletons, making it a crucial consideration for research and development. This review examines the current state of PPLLE research, focusing on the aspects of mechanisms, control strategies, and sensors. We discuss the current research status of various technologies, their technological compatibility, and respective benefits comprehensively. Key findings highlight effective designs and strategies, as well as future challenges and opportunities. Finally, we summarize the overall status of PPLLE research and attempt to shed light on the future potential directions of research and development.
Collapse
Affiliation(s)
| | | | | | | | - Chao Chen
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia; (C.J.); (J.X.); (H.W.); (M.Y.W.)
| |
Collapse
|
14
|
Blanco-Diaz CF, Guerrero-Mendez CD, de Andrade RM, Badue C, De Souza AF, Delisle-Rodriguez D, Bastos-Filho T. Decoding lower-limb kinematic parameters during pedaling tasks using deep learning approaches and EEG. Med Biol Eng Comput 2024; 62:3763-3779. [PMID: 39028484 DOI: 10.1007/s11517-024-03147-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/29/2024] [Indexed: 07/20/2024]
Abstract
Stroke is a neurological condition that usually results in the loss of voluntary control of body movements, making it difficult for individuals to perform activities of daily living (ADLs). Brain-computer interfaces (BCIs) integrated into robotic systems, such as motorized mini exercise bikes (MMEBs), have been demonstrated to be suitable for restoring gait-related functions. However, kinematic estimation of continuous motion in BCI systems based on electroencephalography (EEG) remains a challenge for the scientific community. This study proposes a comparative analysis to evaluate two artificial neural network (ANN)-based decoders to estimate three lower-limb kinematic parameters: x- and y-axis position of the ankle and knee joint angle during pedaling tasks. Long short-term memory (LSTM) was used as a recurrent neural network (RNN), which reached Pearson correlation coefficient (PCC) scores close to 0.58 by reconstructing kinematic parameters from the EEG features on the delta band using a time window of 250 ms. These estimates were evaluated through kinematic variance analysis, where our proposed algorithm showed promising results for identifying pedaling and rest periods, which could increase the usability of classification tasks. Additionally, negative linear correlations were found between pedaling speed and decoder performance, thereby indicating that kinematic parameters between slower speeds may be easier to estimate. The results allow concluding that the use of deep learning (DL)-based methods is feasible for the estimation of lower-limb kinematic parameters during pedaling tasks using EEG signals. This study opens new possibilities for implementing controllers most robust for MMEBs and BCIs based on continuous decoding, which may allow for maximizing the degrees of freedom and personalized rehabilitation.
Collapse
Affiliation(s)
| | | | | | - Claudine Badue
- Department of Informatics, Federal University of Espirito Santo, Vitoria, Brazil
| | | | - Denis Delisle-Rodriguez
- Edmond and Lily Safra International Institute of Neurosciences, Santos Dumont Institute, Macaiba, RN, Brazil
| | - Teodiano Bastos-Filho
- Postgraduate Program in Electrical Engineering, Federal University of Espirito Santo, Vitoria, Brazil
| |
Collapse
|
15
|
Lo YT, Lim MJR, Kok CY, Wang S, Blok SZ, Ang TY, Ng VYP, Rao JP, Chua KSG. Neural Interface-Based Motor Neuroprosthesis in Poststroke Upper Limb Neurorehabilitation: An Individual Patient Data Meta-analysis. Arch Phys Med Rehabil 2024; 105:2336-2349. [PMID: 38579958 DOI: 10.1016/j.apmr.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
OBJECTIVE To determine the efficacy of neural interface-based neurorehabilitation, including brain-computer interface, through conventional and individual patient data (IPD) meta-analysis and to assess clinical parameters associated with positive response to neural interface-based neurorehabilitation. DATA SOURCES PubMed, EMBASE, and Cochrane Library databases up to February 2022 were reviewed. STUDY SELECTION Studies using neural interface-controlled physical effectors (functional electrical stimulation and/or powered exoskeletons) and reported Fugl-Meyer Assessment-upper-extremity (FMA-UE) scores were identified. This meta-analysis was prospectively registered on PROSPERO (#CRD42022312428). PRISMA guidelines were followed. DATA EXTRACTION Changes in FMA-UE scores were pooled to estimate the mean effect size. Subgroup analyses were performed on clinical parameters and neural interface parameters with both study-level variables and IPD. DATA SYNTHESIS Forty-six studies containing 617 patients were included. Twenty-nine studies involving 214 patients reported IPD. FMA-UE scores increased by a mean of 5.23 (95% confidence interval [CI]: 3.85-6.61). Systems that used motor attempt resulted in greater FMA-UE gain than motor imagery, as did training lasting >4 vs ≤4 weeks. On IPD analysis, the mean time-to-improvement above minimal clinically important difference (MCID) was 12 weeks (95% CI: 7 to not reached). At 6 months, 58% improved above MCID (95% CI: 41%-70%). Patients with severe impairment (P=.042) and age >50 years (P=.0022) correlated with the failure to improve above the MCID on univariate log-rank tests. However, these factors were only borderline significant on multivariate Cox analysis (hazard ratio [HR] 0.15, P=.08 and HR 0.47, P=.06, respectively). CONCLUSION Neural interface-based motor rehabilitation resulted in significant, although modest, reductions in poststroke impairment and should be considered for wider applications in stroke neurorehabilitation.
Collapse
Affiliation(s)
- Yu Tung Lo
- Department of Neurosurgery, National Neuroscience Institute; Duke-NUS Medical School.
| | - Mervyn Jun Rui Lim
- Department of Neurosurgery, National University Hospital; National University of Singapore, Yong Loo Lin School of Medicine
| | - Chun Yen Kok
- Department of Neurosurgery, National Neuroscience Institute
| | - Shilin Wang
- Department of Neurosurgery, National Neuroscience Institute
| | | | - Ting Yao Ang
- Department of Neurosurgery, National Neuroscience Institute
| | | | - Jai Prashanth Rao
- Department of Neurosurgery, National Neuroscience Institute; Duke-NUS Medical School
| | - Karen Sui Geok Chua
- National University of Singapore, Yong Loo Lin School of Medicine; Institute of Rehabilitation Excellence, Tan Tock Seng Hospital Rehabilitation Centre; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
16
|
Angulo Medina AS, Aguilar Bonilla MI, Rodríguez Giraldo ID, Montenegro Palacios JF, Cáceres Gutiérrez DA, Liscano Y. Electroencephalography-Based Brain-Computer Interfaces in Rehabilitation: A Bibliometric Analysis (2013-2023). SENSORS (BASEL, SWITZERLAND) 2024; 24:7125. [PMID: 39598903 PMCID: PMC11598414 DOI: 10.3390/s24227125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/24/2024] [Accepted: 10/03/2024] [Indexed: 11/29/2024]
Abstract
EEG-based Brain-Computer Interfaces (BCIs) have gained significant attention in rehabilitation due to their non-invasive, accessible ability to capture brain activity and restore neurological functions in patients with conditions such as stroke and spinal cord injuries. This study offers a comprehensive bibliometric analysis of global EEG-based BCI research in rehabilitation from 2013 to 2023. It focuses on primary research and review articles addressing technological innovations, effectiveness, and system advancements in clinical rehabilitation. Data were sourced from databases like Web of Science, and bibliometric tools (bibliometrix R) were used to analyze publication trends, geographic distribution, keyword co-occurrences, and collaboration networks. The results reveal a rapid increase in EEG-BCI research, peaking in 2022, with a primary focus on motor and sensory rehabilitation. EEG remains the most commonly used method, with significant contributions from Asia, Europe, and North America. Additionally, there is growing interest in applying BCIs to mental health, as well as integrating artificial intelligence (AI), particularly machine learning, to enhance system accuracy and adaptability. However, challenges remain, such as system inefficiencies and slow learning curves. These could be addressed by incorporating multi-modal approaches and advanced neuroimaging technologies. Further research is needed to validate the applicability of EEG-BCI advancements in both cognitive and motor rehabilitation, especially considering the high global prevalence of cerebrovascular diseases. To advance the field, expanding global participation, particularly in underrepresented regions like Latin America, is essential. Improving system efficiency through multi-modal approaches and AI integration is also critical. Ethical considerations, including data privacy, transparency, and equitable access to BCI technologies, must be prioritized to ensure the inclusive development and use of these technologies across diverse socioeconomic groups.
Collapse
Affiliation(s)
- Ana Sophia Angulo Medina
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 5183000, Colombia; (A.S.A.M.); (M.I.A.B.); (I.D.R.G.)
| | - Maria Isabel Aguilar Bonilla
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 5183000, Colombia; (A.S.A.M.); (M.I.A.B.); (I.D.R.G.)
| | - Ingrid Daniela Rodríguez Giraldo
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 5183000, Colombia; (A.S.A.M.); (M.I.A.B.); (I.D.R.G.)
| | - John Fernando Montenegro Palacios
- Specialization in Internal Medicine, Department of Health, Universidad Santiago de Cali, Cali 5183000, Colombia; (J.F.M.P.); (D.A.C.G.)
| | - Danilo Andrés Cáceres Gutiérrez
- Specialization in Internal Medicine, Department of Health, Universidad Santiago de Cali, Cali 5183000, Colombia; (J.F.M.P.); (D.A.C.G.)
| | - Yamil Liscano
- Grupo de Investigación en Salud Integral (GISI), Departamento Facultad de Salud, Universidad Santiago de Cali, Cali 5183000, Colombia; (A.S.A.M.); (M.I.A.B.); (I.D.R.G.)
| |
Collapse
|
17
|
Tian H. Human-robot interaction in motor imagery: A system based on the STFCN for unilateral upper limb rehabilitation assistance. J Neurosci Methods 2024; 411:110240. [PMID: 39111412 DOI: 10.1016/j.jneumeth.2024.110240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/30/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Rehabilitation training based on the brain-computer interface of motor imagery (MI-BCI) can help restore the connection between the brain and movement. However, the performance of most popular MI-BCI system is coarse-level, which means that they are good at guiding the rehabilitation exercises of different parts of the body, but not for the individual component. NEW METHODS In this paper, we designed a fine-level MI-BCI system for unilateral upper limb rehabilitation assistance. Besides, due to the low discrimination of different sample classes in a single part, a classification algorithm called spatial-temporal filtering convolutional network (STFCN) was proposed that used spatial filtering and deep learning. COMPARISON WITH EXISTING METHODS Our STFCN outperforms popular methods in recent years using BCI IV 2a and 2b data sets. RESULTS To verify the effectiveness of our system, we recruited 6 volunteers and collected their data for a four-classification online experiments, resulting in an average accuracy of 62.7 %. CONCLUSION This fine-level MI-BCI system has good appli-cation prospects, and inspires more exploration of rehabilitation in a single part of the human body.
Collapse
Affiliation(s)
- Hui Tian
- Anhui University of Chinese Medicine, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230000, China.
| |
Collapse
|
18
|
Cioffi E, Hutber A, Molloy R, Murden S, Yurkewich A, Kirton A, Lin JP, Gimeno H, McClelland VM. EEG-based sensorimotor neurofeedback for motor neurorehabilitation in children and adults: A scoping review. Clin Neurophysiol 2024; 167:143-166. [PMID: 39321571 PMCID: PMC11845253 DOI: 10.1016/j.clinph.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/17/2024] [Accepted: 08/03/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVE Therapeutic interventions for children and young people with dystonia and dystonic/dyskinetic cerebral palsy are limited. EEG-based neurofeedback is emerging as a neurorehabilitation tool. This scoping review maps research investigating EEG-based sensorimotor neurofeedback in adults and children with neurological motor impairments, including augmentative strategies. METHODS MEDLINE, CINAHL and Web of Science databases were searched up to 2023 for relevant studies. Study selection and data extraction were conducted independently by at least two reviewers. RESULTS Of 4380 identified studies, 133 were included, only three enrolling children. The most common diagnosis was adult-onset stroke (77%). Paradigms mostly involved upper limb motor imagery or motor attempt. Common neurofeedback modes included visual, haptic and/or electrical stimulation. EEG parameters varied widely and were often incompletely described. Two studies applied augmentative strategies. Outcome measures varied widely and included classification accuracy of the Brain-Computer Interface, degree of enhancement of mu rhythm modulation or other neurophysiological parameters, and clinical/motor outcome scores. Few studies investigated whether functional outcomes related specifically to the EEG-based neurofeedback. CONCLUSIONS There is limited evidence exploring EEG-based sensorimotor neurofeedback in individuals with movement disorders, especially in children. Further clarity of neurophysiological parameters is required to develop optimal paradigms for evaluating sensorimotor neurofeedback. SIGNIFICANCE The expanding field of sensorimotor neurofeedback offers exciting potential as a non-invasive therapy. However, this needs to be balanced by robust study design and detailed methodological reporting to ensure reproducibility and validation that clinical improvements relate to induced neurophysiological changes.
Collapse
Affiliation(s)
- Elena Cioffi
- Department of Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Paediatric Neurosciences, Evelina London Children's Hospital, London, UK.
| | - Anna Hutber
- Department of Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Paediatric Neurosciences, Evelina London Children's Hospital, London, UK.
| | - Rob Molloy
- Islington Paediatric Occupational Therapy, Whittington Hospital NHS Trust, London, UK; Barts Bone and Joint Health, Blizard Institute, Queen Mary University of London, London, UK.
| | - Sarah Murden
- Department of Paediatric Neurology, King's College Hospital NHS Foundation Trust, London, UK.
| | - Aaron Yurkewich
- Mechatronics Engineering, Ontario Tech University, Ontario, Canada.
| | - Adam Kirton
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| | - Jean-Pierre Lin
- Department of Paediatric Neurosciences, Evelina London Children's Hospital, London, UK.
| | - Hortensia Gimeno
- Barts Bone and Joint Health, Blizard Institute, Queen Mary University of London, London, UK; The Royal London Hospital and Tower Hamlets Community Children's Therapy Services, Barts Health NHS Trust, London, UK.
| | - Verity M McClelland
- Department of Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Paediatric Neurosciences, Evelina London Children's Hospital, London, UK.
| |
Collapse
|
19
|
Colamarino E, Morone G, Toppi J, Riccio A, Cincotti F, Mattia D, Pichiorri F. A Scoping Review of Technology-Based Approaches for Upper Limb Motor Rehabilitation after Stroke: Are We Really Targeting Severe Impairment? J Clin Med 2024; 13:5414. [PMID: 39336901 PMCID: PMC11432574 DOI: 10.3390/jcm13185414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Technology-based approaches for upper limb (UL) motor rehabilitation after stroke are mostly designed for severely affected patients to increase their recovery chances. However, the available randomized controlled trials (RCTs) focused on the efficacy of technology-based interventions often include patients with a wide range of motor impairment. This scoping review aims at overviewing the actual severity of stroke patients enrolled in RCTs that claim to specifically address UL severe motor impairment. The literature search was conducted on the Scopus and PubMed databases and included articles from 2008 to May 2024, specifically RCTs investigating the impact of technology-based interventions on UL motor functional recovery after stroke. Forty-eight studies were selected. They showed that, upon patients' enrollment, the values of the UL Fugl-Meyer Assessment and Action Research Arm Test covered the whole range of both scales, thus revealing the non-selective inclusion of severely impaired patients. Heterogeneity in terms of numerosity, characteristics of enrolled patients, trial design, implementation, and reporting was present across the studies. No clear difference in the severity of the included patients according to the intervention type was found. Patient stratification upon enrollment is crucial to best direct resources to those patients who will benefit the most from a given technology-assisted approach (personalized rehabilitation).
Collapse
Affiliation(s)
- Emma Colamarino
- Department of Computer, Control, and Management Engineering “Antonio Ruberti”, Sapienza University of Rome, 00185 Rome, Italy; (E.C.); (J.T.); (F.C.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (A.R.); (D.M.); (F.P.)
| | - Giovanni Morone
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Jlenia Toppi
- Department of Computer, Control, and Management Engineering “Antonio Ruberti”, Sapienza University of Rome, 00185 Rome, Italy; (E.C.); (J.T.); (F.C.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (A.R.); (D.M.); (F.P.)
| | - Angela Riccio
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (A.R.); (D.M.); (F.P.)
| | - Febo Cincotti
- Department of Computer, Control, and Management Engineering “Antonio Ruberti”, Sapienza University of Rome, 00185 Rome, Italy; (E.C.); (J.T.); (F.C.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (A.R.); (D.M.); (F.P.)
| | - Donatella Mattia
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (A.R.); (D.M.); (F.P.)
| | | |
Collapse
|
20
|
Kim MS, Park H, Kwon I, An KO, Shin JH. Brain-computer interface on wrist training with or without neurofeedback in subacute stroke: a study protocol for a double-blinded, randomized control pilot trial. Front Neurol 2024; 15:1376782. [PMID: 39144712 PMCID: PMC11322049 DOI: 10.3389/fneur.2024.1376782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Background After a stroke, damage to the part of the brain that controls movement results in the loss of motor function. Brain-computer interface (BCI)-based stroke rehabilitation involves patients imagining movement without physically moving while the system measures the perceptual-motor rhythm in the motor cortex. Visual feedback through virtual reality and functional electrical stimulation is provided simultaneously. The superiority of real BCI over sham BCI in the subacute phase of stroke remains unclear. Therefore, we aim to compare the effects of real and sham BCI on motor function and brain activity among patients with subacute stroke with weak wrist extensor strength. Methods This is a double-blinded randomized controlled trial. Patients with stroke will be categorized into real BCI and sham BCI groups. The BCI task involves wrist extension for 60 min/day, 5 times/week for 4 weeks. Twenty sessions will be conducted. The evaluation will be conducted four times, as follows: before the intervention, 2 weeks after the start of the intervention, immediately after the intervention, and 4 weeks after the intervention. The assessments include a clinical evaluation, electroencephalography, and electromyography using motor-evoked potentials. Discussion Patients will be categorized into two groups, as follows: those who will be receiving neurofeedback and those who will not receive this feedback during the BCI rehabilitation training. We will examine the importance of motor imaging feedback, and the effect of patients' continuous participation in the training rather than their being passive.Clinical Trial Registration: KCT0008589.
Collapse
Affiliation(s)
- Myeong Sun Kim
- Translational Research Center for Rehabilitation Robots, National Rehabilitation Center, Ministry of Health and Welfare, Seoul, Republic of Korea
- Department of Rehabilitative and Assistive Technology, National Rehabilitation Center, Rehabilitation Research Institute, Ministry of Health and Welfare, Seoul, Republic of Korea
| | - Hyunju Park
- Translational Research Center for Rehabilitation Robots, National Rehabilitation Center, Ministry of Health and Welfare, Seoul, Republic of Korea
- Department of Rehabilitative and Assistive Technology, National Rehabilitation Center, Rehabilitation Research Institute, Ministry of Health and Welfare, Seoul, Republic of Korea
| | - Ilho Kwon
- Translational Research Center for Rehabilitation Robots, National Rehabilitation Center, Ministry of Health and Welfare, Seoul, Republic of Korea
- Department of Rehabilitative and Assistive Technology, National Rehabilitation Center, Rehabilitation Research Institute, Ministry of Health and Welfare, Seoul, Republic of Korea
| | - Kwang-Ok An
- Department of Healthcare and Public Health Research, National Rehabilitation Center, Rehabilitation Research Institute, Ministry of Health and Welfare, Seoul, Republic of Korea
| | - Joon-Ho Shin
- Translational Research Center for Rehabilitation Robots, National Rehabilitation Center, Ministry of Health and Welfare, Seoul, Republic of Korea
- Department of Rehabilitation Medicine, National Rehabilitation Center, Ministry of Health and Welfare, Seoul, Republic of Korea
| |
Collapse
|
21
|
Martinez-Peon D, Garcia-Hernandez NV, Benavides-Bravo FG, Parra-Vega V. Characterization and classification of kinesthetic motor imagery levels. J Neural Eng 2024; 21:046024. [PMID: 38963179 DOI: 10.1088/1741-2552/ad5f27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Objective.Kinesthetic Motor Imagery (KMI) represents a robust brain paradigm intended for electroencephalography (EEG)-based commands in brain-computer interfaces (BCIs). However, ensuring high accuracy in multi-command execution remains challenging, with data from C3 and C4 electrodes reaching up to 92% accuracy. This paper aims to characterize and classify EEG-based KMI of multilevel muscle contraction without relying on primary motor cortex signals.Approach.A new method based on Hurst exponents is introduced to characterize EEG signals of multilevel KMI of muscle contraction from electrodes placed on the premotor, dorsolateral prefrontal, and inferior parietal cortices. EEG signals were recorded during a hand-grip task at four levels of muscle contraction (0%, 10%, 40%, and 70% of the maximal isometric voluntary contraction). The task was executed under two conditions: first, physically, to train subjects in achieving muscle contraction at each level, followed by mental imagery under the KMI paradigm for each contraction level. EMG signals were recorded in both conditions to correlate muscle contraction execution, whether correct or null accurately. Independent component analysis (ICA) maps EEG signals from the sensor to the source space for preprocessing. For characterization, three algorithms based on Hurst exponents were used: the original (HO), using partitions (HRS), and applying semivariogram (HV). Finally, seven classifiers were used: Bayes network (BN), naive Bayes (NB), support vector machine (SVM), random forest (RF), random tree (RT), multilayer perceptron (MP), and k-nearest neighbors (kNN).Main results.A combination of the three Hurst characterization algorithms produced the highest average accuracy of 96.42% from kNN, followed by MP (92.85%), SVM (92.85%), NB (91.07%), RF (91.07%), BN (91.07%), and RT (80.35%). of 96.42% for kNN.Significance.Results show the feasibility of KMI multilevel muscle contraction detection and, thus, the viability of non-binary EEG-based BCI applications without using signals from the motor cortex.
Collapse
Affiliation(s)
- D Martinez-Peon
- Department of Electrical and Electronic Engineering, National Technological Institute of Mexico (TecNM)- IT Nuevo Leon, Guadalupe, Mexico
| | - N V Garcia-Hernandez
- National Council on Science and Technology, Saltillo, Mexico
- Robotics and Advanced Manufacturing, Research Center for Advanced Studies (Cinvestav), Saltillo, Mexico
| | - F G Benavides-Bravo
- Department of Basic Sciences, National Technological Institute of Mexico (TecNM)- IT Nuevo Leon, Guadalupe, Mexico
| | - V Parra-Vega
- Robotics and Advanced Manufacturing, Research Center for Advanced Studies (Cinvestav), Saltillo, Mexico
| |
Collapse
|
22
|
Chaudhry ZA, Baxter RH, Fu JL, Wang PT, Sohn WJ, Do AH. Feasibility of Immersive Virtual Reality Feedback for Enhancing Learning in Brain-Computer Interface Control of Ambulation. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40040231 DOI: 10.1109/embc53108.2024.10782667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
After prolonged paralysis, paraplegic spinal cord injury (SCI) patients typically lose the ability to generate the expected electroencephalogram (EEG) α/β modulation associated with leg movements. Brain computer interface (BCI)-controlled ambulation devices have emerged as a way to restore brain-controlled walking, but this loss of EEG signal modulation may impede the ability to operate such systems and prolonged training may be necessary to restore this physiologic phenomenon. To address this issue, this study explores the use of immersive virtual reality (VR) in providing more convincing feedback to enhance learning within a BCI training paradigm. Here, an EEG-based BCI-controlled walking simulator with an environment composed of 10 designated stop zones along a linear course was used to test this concept. Able-bodied subjects were tasked with using idling or kinesthetic motor imagery (KMI) of gait to control an avatar to either dwell at each designated stop for 5 s or advance along the course respectively. Subject performance was measured using a composite score per run and learning rate across runs. Composite scores were calculated as the geometric mean of two subscores: a stop score (reflecting the number of successful stops), and a time score (reflecting how fast the course was completed). The learning rate was calculated as the slope of the composite scores across all runs. A random walk procedure was performed to determine the statistical likelihood that each BCI run was purposeful (p≤ 0.001). Three able-bodied subjects were recruited (2 in immersive VR group and 1 in non-immersive VR group), and operated the simulator for up to 4 separate visits. The immersive VR group achieved an average composite score of 60.4% ± 12.9, while the non-VR group had an average composite score of 79.0% ± 12.2. The learning rate was 1.07%/run and 0.42%/run for the immersive and non-immersive VR groups, respectively. Purposeful control was attained in a higher proportion of runs for the immersive VR group than in the non-immersive VR group. Although limited by small sample size, this study demonstrates a conceptual framework of implementing immersive VR feedback using more convincing sensory feedback to aid training with BCI devices. Future work will test this protocol in SCI patients and with larger sample size.
Collapse
|
23
|
Darvishi S, Datta Gupta A, Hamilton-Bruce A, Koblar S, Baumert M, Abbott D. Enhancing poststroke hand movement recovery: Efficacy of RehabSwift, a personalized brain-computer interface system. PNAS NEXUS 2024; 3:pgae240. [PMID: 38984151 PMCID: PMC11232286 DOI: 10.1093/pnasnexus/pgae240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024]
Abstract
This study explores the efficacy of our novel and personalized brain-computer interface (BCI) therapy, in enhancing hand movement recovery among stroke survivors. Stroke often results in impaired motor function, posing significant challenges in daily activities and leading to considerable societal and economic burdens. Traditional physical and occupational therapies have shown limitations in facilitating satisfactory recovery for many patients. In response, our study investigates the potential of motor imagery-based BCIs (MI-BCIs) as an alternative intervention. In this study, MI-BCIs translate imagined hand movements into actions using a combination of scalp-recorded electrical brain activity and signal processing algorithms. Our prior research on MI-BCIs, which emphasizes the benefits of proprioceptive feedback over traditional visual feedback and the importance of customizing the delay between brain activation and passive hand movement, led to the development of RehabSwift therapy. In this study, we recruited 12 chronic-stage stroke survivors to assess the effectiveness of our solution. The primary outcome measure was the Fugl-Meyer upper extremity (FMA-UE) assessment, complemented by secondary measures including the action research arm test, reaction time, unilateral neglect, spasticity, grip and pinch strength, goal attainment scale, and FMA-UE sensation. Our findings indicate a remarkable improvement in hand movement and a clinically significant reduction in poststroke arm and hand impairment following 18 sessions of neurofeedback training. The effects persisted for at least 4 weeks posttreatment. These results underscore the potential of MI-BCIs, particularly our solution, as a prospective tool in stroke rehabilitation, offering a personalized and adaptable approach to neurofeedback training.
Collapse
Affiliation(s)
- Sam Darvishi
- RehabSwift Pty Ltd, 10 Pulteney Street, The University of Adelaide, Adelaide, SA 5000, Australia
- School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Anupam Datta Gupta
- Department of Rehabilitation Medicine, The Queen Elizabeth Hospital, Woodville, SA 5011, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Anne Hamilton-Bruce
- Stroke Research Programme, Basil Hetzel Institute, The Queen Elizabeth Hospital, Central Adelaide Local Health Network, Woodville, SA 5011, Australia
| | - Simon Koblar
- Adelaide Medical School, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Mathias Baumert
- School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA 5000, Australia
| | - Derek Abbott
- School of Electrical and Electronic Engineering, The University of Adelaide, Adelaide, SA 5000, Australia
| |
Collapse
|
24
|
Wang A, Tian X, Jiang D, Yang C, Xu Q, Zhang Y, Zhao S, Zhang X, Jing J, Wei N, Wu Y, Lv W, Yang B, Zang D, Wang Y, Zhang Y, Wang Y, Meng X. Rehabilitation with brain-computer interface and upper limb motor function in ischemic stroke: A randomized controlled trial. MED 2024; 5:559-569.e4. [PMID: 38642555 DOI: 10.1016/j.medj.2024.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/01/2024] [Accepted: 02/28/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Upper limb motor dysfunction is a major problem in the rehabilitation of patients with stroke. Brain-computer interface (BCI) is a kind of communication system that converts the "ideas" in the brain into instructions and has been used in stroke rehabilitation. This study aimed to investigate the efficacy and safety of BCI in rehabilitation training on upper limb motor function among patients with ischemic stroke. METHODS This was an investigator-initiated, multicenter, randomized, open-label, blank-controlled clinical trial with blinded outcome assessment conducted at 17 centers in China. Patients were assigned in a 1:1 ratio to the BCI group or the control group based on traditional rehabilitation training. The primary efficacy outcome is the difference in improvement of the Fugl-Meyer Assessment upper extremity (FMA-UE) score between two groups at month 1 after randomization. The safety outcomes were any adverse events within 3 months. FINDINGS A total of 296 patients with ischemic stroke were enrolled and randomly allocated to the BCI group (n = 150) and the control group (n = 146). The primary efficacy outcomes of FMA-UE score change from baseline to 1 month were 13.17 (95% confidence interval [CI], 11.56-14.79) in the BCI group and 9.83 (95% CI, 8.19-11.47) in the control group (mean difference between groups was 3.35; 95% CI, 1.05-5.65; p = 0.0045). Adverse events occurred in 33 patients (22.00%) in the BCI group and in 31 patients (21.23%) in the control group. CONCLUSIONS BCI rehabilitation training can further improve upper limb motor function based on traditional rehabilitation training in patients with ischemic stroke. This study was registered at ClinicalTrials.gov: NCT04387474. FUNDING This work was supported by the National Key R&D Program of China (2018YFC1312903), the National Key Research and Development Program of China (2022YFC3600600), the Training Fund for Open Projects at Clinical Institutes and Departments of Capital Medical University (CCMU2022ZKYXZ009), the Beijing Natural Science Foundation Haidian original innovation joint fund (L222123), the Fund for Young Talents of Beijing Medical Management Center (QML20230505), and the high-level public health talents (xuekegugan-02-47).
Collapse
Affiliation(s)
- Anxin Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Xue Tian
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China; Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Di Jiang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chengyuan Yang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Qin Xu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yifei Zhang
- Research and Development Center, Shandong Haitian Intelligent Engineering Co., Ltd., Shandong, China
| | - Shaoqing Zhao
- School of Informatics, University of Edinburgh, Edinburgh, UK
| | - Xiaoli Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jing Jing
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ning Wei
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yuqian Wu
- Department of Rehabilitation Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wei Lv
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Banghua Yang
- School of Mechatronic Engineering and Automation, Research Center of Brain Computer Engineering, Shanghai University, Shanghai, China
| | - Dawei Zang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yumei Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; Department of Rehabilitation Medicine, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
25
|
Liu L, Li J, Ouyang R, Zhou D, Fan C, Liang W, Li F, Lv Z, Wu X. Multimodal brain-controlled system for rehabilitation training: Combining asynchronous online brain-computer interface and exoskeleton. J Neurosci Methods 2024; 406:110132. [PMID: 38604523 DOI: 10.1016/j.jneumeth.2024.110132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/11/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Traditional therapist-based rehabilitation training for patients with movement impairment is laborious and expensive. In order to reduce the cost and improve the treatment effect of rehabilitation, many methods based on human-computer interaction (HCI) technology have been proposed, such as robot-assisted therapy and functional electrical stimulation (FES). However, due to the lack of active participation of brain, these methods have limited effects on the promotion of damaged nerve remodeling. NEW METHOD Based on the neurofeedback training provided by the combination of brain-computer interface (BCI) and exoskeleton, this paper proposes a multimodal brain-controlled active rehabilitation system to help improve limb function. The joint control mode of steady-state visual evoked potential (SSVEP) and motor imagery (MI) is adopted to achieve self-paced control and thus maximize the degree of brain involvement, and a requirement selection function based on SSVEP design is added to facilitate communication with aphasia patients. COMPARISON WITH EXISTING METHODS In addition, the Transformer is introduced as the MI decoder in the asynchronous online BCI to improve the global perception of electroencephalogram (EEG) signals and maintain the sensitivity and efficiency of the system. RESULTS In two multi-task online experiments for left hand, right hand, foot and idle states, subject achieves 91.25% and 92.50% best accuracy, respectively. CONCLUSION Compared with previous studies, this paper aims to establish a high-performance and low-latency brain-controlled rehabilitation system, and provide an independent and autonomous control mode of the brain, so as to improve the effect of neural remodeling. The performance of the proposed method is evaluated through offline and online experiments.
Collapse
Affiliation(s)
- Lei Liu
- School of Computer Science and Technology, Anhui University, Hefei 230601, China; Anhui Province Key Laboratory of Multimodal Cognitive Computation, Anhui University, Hefei 230601, China
| | - Jian Li
- School of Computer Science and Technology, Anhui University, Hefei 230601, China; Anhui Province Key Laboratory of Multimodal Cognitive Computation, Anhui University, Hefei 230601, China
| | - Rui Ouyang
- School of Computer Science and Technology, Anhui University, Hefei 230601, China; Anhui Province Key Laboratory of Multimodal Cognitive Computation, Anhui University, Hefei 230601, China
| | - Danya Zhou
- National Centre for International Research in Cell and Gene Therapy, School of Basic Medical Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Cunhang Fan
- School of Computer Science and Technology, Anhui University, Hefei 230601, China; Anhui Province Key Laboratory of Multimodal Cognitive Computation, Anhui University, Hefei 230601, China.
| | - Wen Liang
- Google Inc, United States of America
| | - Fan Li
- Civil Aviation Flight University of China, China
| | - Zhao Lv
- Anhui Province Key Laboratory of Multimodal Cognitive Computation, Anhui University, Hefei 230601, China; Civil Aviation Flight University of China, China
| | - Xiaopei Wu
- School of Computer Science and Technology, Anhui University, Hefei 230601, China; Anhui Province Key Laboratory of Multimodal Cognitive Computation, Anhui University, Hefei 230601, China.
| |
Collapse
|
26
|
Gangadharan SK, Ramakrishnan S, Paek A, Ravindran A, Prasad VA, Vidal JLC. Characterization of Event Related Desynchronization in Chronic Stroke Using Motor Imagery Based Brain Computer Interface for Upper Limb Rehabilitation. Ann Indian Acad Neurol 2024; 27:297-306. [PMID: 38835164 PMCID: PMC11232817 DOI: 10.4103/aian.aian_1056_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/02/2024] [Indexed: 06/06/2024] Open
Abstract
OBJECTIVE Motor imagery-based brain-computer interface (MI-BCI) is a promising novel mode of stroke rehabilitation. The current study aims to investigate the feasibility of MI-BCI in upper limb rehabilitation of chronic stroke survivors and also to study the early event-related desynchronization after MI-BCI intervention. METHODS Changes in the characteristics of sensorimotor rhythm modulations in response to a short brain-computer interface (BCI) intervention for upper limb rehabilitation of stroke-disabled hand and normal hand were examined. The participants were trained to modulate their brain rhythms through motor imagery or execution during calibration, and they played a virtual marble game during the feedback session, where the movement of the marble was controlled by their sensorimotor rhythm. RESULTS Ipsilesional and contralesional activities were observed in the brain during the upper limb rehabilitation using BCI intervention. All the participants were able to successfully control the position of the virtual marble using their sensorimotor rhythm. CONCLUSIONS The preliminary results support the feasibility of BCI in upper limb rehabilitation and unveil the capability of MI-BCI as a promising medical intervention. This study provides a strong platform for clinicians to build upon new strategies for stroke rehabilitation by integrating MI-BCI with various therapeutic options to induce neural plasticity and recovery.
Collapse
Affiliation(s)
- Sagila K Gangadharan
- Department of Electrical Engineering, Indian Institute of Technology Palakkad, Palakkad, Kerala, India
| | - Subasree Ramakrishnan
- Department of Neurology, National Institute of Mental Health and Neuroscience, Bengaluru, Karnataka, India
| | - Andrew Paek
- Department of Electrical and Computer Engineering, Noninvasive Brain Machine Interface Systems Lab, University of Houston, Houston, USA
| | - Akshay Ravindran
- Department of Electrical and Computer Engineering, Noninvasive Brain Machine Interface Systems Lab, University of Houston, Houston, USA
| | - Vinod A Prasad
- Infocomm Technology Cluster, Singapore Institute of Technology, Singapore
| | - Jose L Contreras Vidal
- Department of Electrical and Computer Engineering, Noninvasive Brain Machine Interface Systems Lab, University of Houston, Houston, USA
| |
Collapse
|
27
|
Venu K, Natesan P. Hybrid optimization assisted channel selection of EEG for deep learning model-based classification of motor imagery task. BIOMED ENG-BIOMED TE 2024; 69:125-140. [PMID: 37935217 DOI: 10.1515/bmt-2023-0407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 09/30/2023] [Indexed: 11/09/2023]
Abstract
OBJECTIVES To design and develop an approach named HC + SMA-SSA scheme for classifying motor imagery task. METHODS The offered model employs a new method for classifying motor imagery task. Initially, down sampling is deployed to pre-process the incoming signal. Subsequently, "Modified Stockwell Transform (ST) and common spatial pattern (CSP) based features are extracted". Then, optimal channel selection is made by a novel hybrid optimization model named as Spider Monkey Assisted SSA (SMA-SSA). Here, "Long Short Term Memory (LSTM) and Bidirectional Gated Recurrent Unit (BI-GRU)" models are used for final classification, whose outcomes are averaged at the end. At last, the improvement of SMA-SSA based model is proven over different metrics. RESULTS A superior sensitivity of 0.939 is noted for HC + SMA-SSA that was higher over HC with no optimization and proposed with traditional ST. CONCLUSIONS The proposed method achieved effective classification performance in terms of performance measures.
Collapse
Affiliation(s)
- K Venu
- Department of Computer Science and Engineering, Kongu Engineering College, Perundurai, Tamilnadu, India
| | - P Natesan
- Department of Computer Science and Engineering, Kongu Engineering College, Perundurai, Tamilnadu, India
| |
Collapse
|
28
|
Behboodi A, Kline J, Gravunder A, Phillips C, Parker SM, Damiano DL. Development and evaluation of a BCI-neurofeedback system with real-time EEG detection and electrical stimulation assistance during motor attempt for neurorehabilitation of children with cerebral palsy. Front Hum Neurosci 2024; 18:1346050. [PMID: 38633751 PMCID: PMC11021665 DOI: 10.3389/fnhum.2024.1346050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/22/2024] [Indexed: 04/19/2024] Open
Abstract
In the realm of motor rehabilitation, Brain-Computer Interface Neurofeedback Training (BCI-NFT) emerges as a promising strategy. This aims to utilize an individual's brain activity to stimulate or assist movement, thereby strengthening sensorimotor pathways and promoting motor recovery. Employing various methodologies, BCI-NFT has been shown to be effective for enhancing motor function primarily of the upper limb in stroke, with very few studies reported in cerebral palsy (CP). Our main objective was to develop an electroencephalography (EEG)-based BCI-NFT system, employing an associative learning paradigm, to improve selective control of ankle dorsiflexion in CP and potentially other neurological populations. First, in a cohort of eight healthy volunteers, we successfully implemented a BCI-NFT system based on detection of slow movement-related cortical potentials (MRCP) from EEG generated by attempted dorsiflexion to simultaneously activate Neuromuscular Electrical Stimulation which assisted movement and served to enhance sensory feedback to the sensorimotor cortex. Participants also viewed a computer display that provided real-time visual feedback of ankle range of motion with an individualized target region displayed to encourage maximal effort. After evaluating several potential strategies, we employed a Long short-term memory (LSTM) neural network, a deep learning algorithm, to detect the motor intent prior to movement onset. We then evaluated the system in a 10-session ankle dorsiflexion training protocol on a child with CP. By employing transfer learning across sessions, we could significantly reduce the number of calibration trials from 50 to 20 without compromising detection accuracy, which was 80.8% on average. The participant was able to complete the required calibration trials and the 100 training trials per session for all 10 sessions and post-training demonstrated increased ankle dorsiflexion velocity, walking speed and step length. Based on exceptional system performance, feasibility and preliminary effectiveness in a child with CP, we are now pursuing a clinical trial in a larger cohort of children with CP.
Collapse
Affiliation(s)
- Ahad Behboodi
- Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, United States
- Neurorehabilitation and Biomechanics Research Section, Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Julia Kline
- Neurorehabilitation and Biomechanics Research Section, Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Andrew Gravunder
- Neurorehabilitation and Biomechanics Research Section, Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Connor Phillips
- Neurorehabilitation and Biomechanics Research Section, Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Sheridan M. Parker
- Neurorehabilitation and Biomechanics Research Section, Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Diane L. Damiano
- Neurorehabilitation and Biomechanics Research Section, Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
29
|
Mokienko O. Brain-Computer Interfaces with Intracortical Implants for Motor and Communication Functions Compensation: Review of Recent Developments. Sovrem Tekhnologii Med 2024; 16:78-89. [PMID: 39421626 PMCID: PMC11482094 DOI: 10.17691/stm2024.16.1.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Indexed: 10/19/2024] Open
Abstract
Brain-computer interfaces allow the exchange of data between the brain and an external device, bypassing the muscular system. Clinical studies of invasive brain-computer interface technologies have been conducted for over 20 years. During this time, there has been a continuous improvement of approaches to neuronal signal processing in order to improve the quality of control of external devices. Currently, brain-computer interfaces with intracortical implants allow completely paralyzed patients to control robotic limbs for self-service, use a computer or a tablet, type text, and reproduce speech at an optimal speed. Studies of invasive brain-computer interfaces regularly provide new fundamental data on functioning of the central nervous system. In recent years, breakthrough discoveries and achievements have been annually made in this sphere. This review analyzes the results of clinical experiments of brain-computer interfaces with intracortical implants, provides information on the stages of this technology development, its main discoveries and achievements.
Collapse
Affiliation(s)
- O.A. Mokienko
- Senior Researcher, Mathematical Neurobiology of Learning Laboratory; Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, 5a Butlerova St., Moscow, 117485, Russia; Senior Researcher, Engineering Center; N.I. Pirogov Russian National Research Medical University, 1 Ostrovityanova St., Moscow, 117997, Russia; Researcher, Brain–Computer Interface Group of Institute for Neurorehabilitation and Restorative Technologies; Research Center of Neurology, 80 Volokolamskoye Shosse, Moscow, 125367, Russia
| |
Collapse
|
30
|
Zhang M, Zhu F, Jia F, Wu Y, Wang B, Gao L, Chu F, Tang W. Efficacy of brain-computer interfaces on upper extremity motor function rehabilitation after stroke: A systematic review and meta-analysis. NeuroRehabilitation 2024; 54:199-212. [PMID: 38143387 DOI: 10.3233/nre-230215] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
BACKGROUND The recovery of upper limb function is crucial to the daily life activities of stroke patients. Brain-computer interface technology may have potential benefits in treating upper limb dysfunction. OBJECTIVE To systematically evaluate the efficacy of brain-computer interfaces (BCI) in the rehabilitation of upper limb motor function in stroke patients. METHODS Six databases up to July 2023 were reviewed according to the PRSIMA guidelines. Randomized controlled trials of BCI-based upper limb functional rehabilitation for stroke patients were selected for meta-analysis by pooling standardized mean difference (SMD) to summarize the evidence. The Cochrane risk of bias tool was used to assess the methodological quality of the included studies. RESULTS Twenty-five studies were included. The studies showed that BCI had a small effect on the improvement of upper limb function after the intervention. In terms of total duration of training, < 12 hours of training may result in better rehabilitation, but training duration greater than 12 hours suggests a non significant therapeutic effect of BCI training. CONCLUSION This meta-analysis suggests that BCI has a slight efficacy in improving upper limb function and has favorable long-term outcomes. In terms of total duration of training, < 12 hours of training may lead to better rehabilitation.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Mechatronic Engineering, China University of Mining and Technology, Jiangsu, China
- The Affiliated Xuzhou Rehabilitation Hospital of Xuzhou Medical University, Xuzhou Medical University, Jiangsu, China
| | - Feilong Zhu
- College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Fan Jia
- The Affiliated Xuzhou Rehabilitation Hospital of Xuzhou Medical University, Xuzhou Medical University, Jiangsu, China
| | - Yu Wu
- Department of Sports and Exercise Science, Zhejiang University, Hangzhou, China
| | - Bin Wang
- Departments of Rehabilitation Medicine, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ling Gao
- The Affiliated Xuzhou Rehabilitation Hospital of Xuzhou Medical University, Xuzhou Medical University, Jiangsu, China
| | - Fengming Chu
- The Affiliated Xuzhou Rehabilitation Hospital of Xuzhou Medical University, Xuzhou Medical University, Jiangsu, China
| | - Wei Tang
- Department of Mechatronic Engineering, China University of Mining and Technology, Jiangsu, China
| |
Collapse
|
31
|
Qu H, Zeng F, Tang Y, Shi B, Wang Z, Chen X, Wang J. The clinical effects of brain-computer interface with robot on upper-limb function for post-stroke rehabilitation: a meta-analysis and systematic review. Disabil Rehabil Assist Technol 2024; 19:30-41. [PMID: 35450498 DOI: 10.1080/17483107.2022.2060354] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/26/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Many recent clinical studies have suggested that the combination of brain-computer interfaces (BCIs) can induce neurological recovery and improvement in motor function. In this review, we performed a systematic review and meta-analysis to evaluate the clinical effects of BCI-robot systems. METHODS The articles published from January 2010 to December 2020 have been searched by using the databases (EMBASE, PubMed, CINAHL, EBSCO, Web of Science and manual search). The single-group studies were qualitatively described, and only the controlled-trial studies were included for the meta-analysis. The mean difference (MD) of Fugl-Meyer Assessment (FMA) scores were pooled and the random-effects model method was used to perform the meta-analysis. The PRISMA criteria were followed in current review. RESULTS A total of 897 records were identified, eight single-group studies and 11 controlled-trial studies were included in our review. The systematic analysis indicated that the BCI-robot systems had a significant improvement on motor function recovery. The meta-analysis showed there were no statistic differences between BCI-robot groups and robot groups, neither in the immediate effects nor long-term effects (p > 0.05). CONCLUSION The use of BCI-robot systems has significant improvement on the motor function recovery of hemiparetic upper-limb, and there is a sustaining effect. The meta-analysis showed no statistical difference between the experimental group (BCI-robot) and the control group (robot). However, there are a few shortcomings in the experimental design of existing studies, more clinical trials need to be conducted, and the experimental design needs to be more rigorous.Implications for RehabilitationIn this review, we evaluated the clinical effects of brain-computer interface with robot on upper-limb function for post-stroke rehabilitation. After we screened the databases, 19 articles were included in this review. These articles all clinical trial research, they all used non-invasive brain-computer interfaces and upper-limb robot.We conducted the systematic review with nine articles, the result indicated that the BCI-robot system had a significant improvement on motor function recovery. Eleven articles were included for the meta-analysis, the result showed there were no statistic differences between BCI-robot groups and robot groups, neither in the immediate effects nor long-term effects.We thought the result of meta-analysis which showed no statistic difference was probably caused by the heterogenicity of clinical trial designs of these articles.We thought the BCI-robot systems are promising strategies for post-stroke rehabilitation. And we gave several suggestions for further research: (1) The experimental design should be more rigorous, and describe the experimental designs in detail, especially the control group intervention, to make the experiment replicability. (2) New evaluation criteria need to be established, more objective assessment such as biomechanical assessment, fMRI should be utilised as the primary outcome. (3) More clinical studies with larger sample size, novel external devices, and BCI systems need to be conducted to investigate the differences between BCI-robot system and other interventions. (4) Further research could shift the focus to the patients who are in subacute stage, to explore if the early BCI training can make a positive impact on cerebral cortical recovery.
Collapse
Affiliation(s)
- Hao Qu
- Institute of Robotics and Intelligent Systems, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Feixiang Zeng
- Department of Rehabilitation Medicine, HuiZhou Third People's Hospital, Huizhou, China
| | - Yongbin Tang
- Institute of Robotics and Intelligent Systems, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Bin Shi
- Institute of Robotics and Intelligent Systems, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Zhijun Wang
- Department of Rehabilitation Medicine, FoShan Fifth People's Hospital, Guangdong, China
| | - Xiaokai Chen
- Department of Rehabilitation Medicine, HuiZhou Third People's Hospital, Huizhou, China
| | - Jing Wang
- Institute of Robotics and Intelligent Systems, School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
32
|
Mokienko O, Lyukmanov R, Bobrov P, Suponeva N, Piradov M. Brain-Computer Interfaces for Upper Limb Motor Recovery after Stroke: Current Status and Development Prospects (Review). Sovrem Tekhnologii Med 2023; 15:63-73. [PMID: 39944367 PMCID: PMC11811833 DOI: 10.17691/stm2023.15.6.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Indexed: 04/30/2025] Open
Abstract
Brain-computer interfaces (BCIs) are a group of technologies that allow mental training with feedback for post-stroke motor recovery. Varieties of these technologies have been studied in numerous clinical trials for more than 10 years, and their construct and software are constantly being improved. Despite the positive treatment results and the availability of registered medical devices, there are currently a number of problems for the wide clinical application of BCI technologies. This review provides information on the most studied types of BCIs and its training protocols and describes the evidence base for the effectiveness of BCIs for upper limb motor recovery after stroke. The main problems of scaling this technology and ways to solve them are also described.
Collapse
Affiliation(s)
- O.A. Mokienko
- MD, PhD, Researcher, Brain–Computer Interface Group of Institute for Neurorehabilitation and Restorative Technologies; Research Center of Neurology, 80 Volokolamskoe Shosse, Moscow, 125367, Russia; Senior Researcher, Mathematical Neurobiology of Learning Laboratory; Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, 5A Butlerova St., Moscow, 117485, Russia
| | - R.Kh. Lyukmanov
- MD, PhD, Head of the Brain–Computer Interface Group of Institute for Neurorehabilitation and Restorative Technologies; Research Center of Neurology, 80 Volokolamskoe Shosse, Moscow, 125367, Russia
| | - P.D. Bobrov
- PhD, Head of the Mathematical Neurobiology of Learning Laboratory; Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, 5A Butlerova St., Moscow, 117485, Russia
| | - N.A. Suponeva
- MD, DSc, Corresponding Member of Russian Academy of Sciences, Director of Institute for Neurorehabilitation and Restorative Technologies; Research Center of Neurology, 80 Volokolamskoe Shosse, Moscow, 125367, Russia
| | - M.A. Piradov
- MD, DSc, Professor, Academician of Russian Academy of Sciences, Director; Research Center of Neurology, 80 Volokolamskoe Shosse, Moscow, 125367, Russia
| |
Collapse
|
33
|
Cantillo-Negrete J, Carino-Escobar RI, Ortega-Robles E, Arias-Carrión O. A comprehensive guide to BCI-based stroke neurorehabilitation interventions. MethodsX 2023; 11:102452. [PMID: 38023311 PMCID: PMC10630643 DOI: 10.1016/j.mex.2023.102452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Brain-Computer Interfaces (BCIs) offer the potential to facilitate neurorehabilitation in stroke patients by decoding user intentions from the central nervous system, thereby enabling control over external devices. Despite their promise, the diverse range of intervention parameters and technical challenges in clinical settings have hindered the accumulation of substantial evidence supporting the efficacy and effectiveness of BCIs in stroke rehabilitation. This article introduces a practical guide designed to navigate through these challenges in conducting BCI interventions for stroke rehabilitation. Applicable regardless of infrastructure and study design limitations, this guide acts as a comprehensive reference for executing BCI-based stroke interventions. Furthermore, it encapsulates insights gleaned from administering hundreds of BCI rehabilitation sessions to stroke patients.•Presents a comprehensive methodology for implementing BCI-based upper extremity therapy in stroke patients.•Provides detailed guidance on the number of sessions, trials, as well as the necessary hardware and software for effective intervention.
Collapse
Affiliation(s)
- Jessica Cantillo-Negrete
- División de Investigación en Neurociencias Clínica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra, Mexico City, NM 14389, Mexico
| | - Ruben I. Carino-Escobar
- División de Investigación en Neurociencias Clínica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra, Mexico City, NM 14389, Mexico
| | - Emmanuel Ortega-Robles
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea González, Mexico City 14080, Mexico
| | - Oscar Arias-Carrión
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea González, Mexico City 14080, Mexico
| |
Collapse
|
34
|
Ribeiro TF, Carriello MA, de Paula EP, Garcia AC, da Rocha GL, Teive HAG. Clinical applications of neurofeedback based on sensorimotor rhythm: a systematic review and meta-analysis. Front Neurosci 2023; 17:1195066. [PMID: 38053609 PMCID: PMC10694284 DOI: 10.3389/fnins.2023.1195066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/07/2023] [Indexed: 12/07/2023] Open
Abstract
Background Among the brain-machine interfaces, neurofeedback is a non-invasive technique that uses sensorimotor rhythm (SMR) as a clinical intervention protocol. This study aimed to investigate the clinical applications of SMR neurofeedback to understand its clinical effectiveness in different pathologies or symptoms. Methods A systematic review study with meta-analysis of the clinical applications of EEG-based SMR neurofeedback performed using pre-selected publication databases. A qualitative analysis of these studies was performed using the Consensus tool on the Reporting and Experimental Design of Neurofeedback studies (CRED-nf). The Meta-analysis of clinical efficacy was carried out using Review Manager software, version 5.4.1 (RevMan 5; Cochrane Collaboration, Oxford, UK). Results The qualitative analysis includes 44 studies, of which only 27 studies had some kind of control condition, five studies were double-blinded, and only three reported a blind follow-up throughout the intervention. The meta-analysis included a total sample of 203 individuals between stroke and fibromyalgia. Studies on multiple sclerosis, insomnia, quadriplegia, paraplegia, and mild cognitive impairment were excluded due to the absence of a control group or results based only on post-intervention scales. Statistical analysis indicated that stroke patients did not benefit from neurofeedback interventions when compared to other therapies (Std. mean. dif. 0.31, 95% CI 0.03-0.60, p = 0.03), and there was no significant heterogeneity among stroke studies, classified as moderate I2 = 46% p-value = 0.06. Patients diagnosed with fibromyalgia showed, by means of quantitative analysis, a better benefit for the group that used neurofeedback (Std. mean. dif. -0.73, 95% CI -1.22 to -0.24, p = 0.001). Thus, on performing the pooled analysis between conditions, no significant differences were observed between the neurofeedback intervention and standard therapy (0.05, CI 95%, -0.20 to -0.30, p = 0.69), with the presence of substantial heterogeneity I2 = 92.2%, p-value < 0.001. Conclusion We conclude that although neurofeedback based on electrophysiological patterns of SMR contemplates the interest of numerous researchers and the existence of research that presents promising results, it is currently not possible to point out the clinical benefits of the technique as a form of clinical intervention. Therefore, it is necessary to develop more robust studies with a greater sample of a more rigorous methodology to understand the benefits that the technique can provide to the population.
Collapse
Affiliation(s)
- Tatiana Ferri Ribeiro
- Internal Medicine and Health Sciences, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Marcelo Alves Carriello
- Internal Medicine and Health Sciences, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Eugenio Pereira de Paula
- Physical Education (UFPR)—Invited Colaborador, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Amanda Carvalho Garcia
- Internal Medicine and Health Sciences, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Guilherme Luiz da Rocha
- Internal Medicine and Health Sciences, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| | - Helio Afonso Ghizoni Teive
- Internal Medicine and Health Sciences, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
- Department of Clinical Medicine, UFPR, and Coordinator of the Movement Disorders Sector, Neurology Service, Clinic Hospital, Federal University of Paraná (UFPR), Curitiba, Paraná, Brazil
| |
Collapse
|
35
|
Lim RY, Ang KK, Chew E, Guan C. A Review on Motor Imagery with Transcranial Alternating Current Stimulation: Bridging Motor and Cognitive Welfare for Patient Rehabilitation. Brain Sci 2023; 13:1584. [PMID: 38002544 PMCID: PMC10670393 DOI: 10.3390/brainsci13111584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/26/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Research has shown the effectiveness of motor imagery in patient motor rehabilitation. Transcranial electrical stimulation has also demonstrated to improve patient motor and non-motor performance. However, mixed findings from motor imagery studies that involved transcranial electrical stimulation suggest that current experimental protocols can be further improved towards a unified design for consistent and effective results. This paper aims to review, with some clinical and neuroscientific findings from literature as support, studies of motor imagery coupled with different types of transcranial electrical stimulation and their experiments onhealthy and patient subjects. This review also includes the cognitive domains of working memory, attention, and fatigue, which are important for designing consistent and effective therapy protocols. Finally, we propose a theoretical all-inclusive framework that synergizes the three cognitive domains with motor imagery and transcranial electrical stimulation for patient rehabilitation, which holds promise of benefiting patients suffering from neuromuscular and cognitive disorders.
Collapse
Affiliation(s)
- Rosary Yuting Lim
- Institute for Infocomm Research, Agency for Science Technology and Research, A*STAR, 1 Fusionopolis Way, #21-01 Connexis, Singapore 138632, Singapore;
| | - Kai Keng Ang
- Institute for Infocomm Research, Agency for Science Technology and Research, A*STAR, 1 Fusionopolis Way, #21-01 Connexis, Singapore 138632, Singapore;
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Ave., #32 Block N4 #02a, Singapore 639798, Singapore;
| | - Effie Chew
- Division of Rehabilitation Medicine, Department of Medicine, National University Hospital, 5 Lower Kent Ridge Rd, Singapore 119074, Singapore;
- Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Dr, Singapore 117597, Singapore
| | - Cuntai Guan
- School of Computer Science and Engineering, Nanyang Technological University, 50 Nanyang Ave., #32 Block N4 #02a, Singapore 639798, Singapore;
| |
Collapse
|
36
|
Liang W, Jin J, Daly I, Sun H, Wang X, Cichocki A. Novel channel selection model based on graph convolutional network for motor imagery. Cogn Neurodyn 2023; 17:1283-1296. [PMID: 37786654 PMCID: PMC10542066 DOI: 10.1007/s11571-022-09892-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 11/03/2022] Open
Abstract
Multi-channel electroencephalography (EEG) is used to capture features associated with motor imagery (MI) based brain-computer interface (BCI) with a wide spatial coverage across the scalp. However, redundant EEG channels are not conducive to improving BCI performance. Therefore, removing irrelevant channels can help improve the classification performance of BCI systems. We present a new method for identifying relevant EEG channels. Our method is based on the assumption that useful channels share related information and that this can be measured by inter-channel connectivity. Specifically, we treat all candidate EEG channels as a graph and define channel selection as the problem of node classification on a graph. Then we design a graph convolutional neural network (GCN) model for channels classification. Channels are selected based on the outputs of our GCN model. We evaluate our proposed GCN-based channel selection (GCN-CS) method on three MI datasets. On three datasets, GCN-CS achieves performance improvements by reducing the number of channels. Specifically, we achieve classification accuracies of 79.76% on Dataset 1, 89.14% on Dataset 2 and 87.96% on Dataset 3, which outperform competing methods significantly.
Collapse
Affiliation(s)
- Wei Liang
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, 200237 China
| | - Jing Jin
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, 200237 China
- Shenzhen Research Institute of East China University of Technology, Shenzhen, 518063 China
| | - Ian Daly
- Brain-Computer Interfacing and Neural Engineering Laboratory, School of Computer Science and Electronic Engineering, University of Essex, Colchester, UK
| | - Hao Sun
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, 200237 China
| | - Xingyu Wang
- Key Laboratory of Smart Manufacturing in Energy Chemical Process, Ministry of Education, East China University of Science and Technology, Shanghai, 200237 China
| | - Andrzej Cichocki
- Skolkovo Institute of Science and Technology, Moscow, Russia 143026
- Systems Research Institute of Polish Academy of Science, Warsaw, Poland
- Department of Informatics, Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
37
|
Ierardi E, Eilbeck JC, van Wijck F, Ali M, Coupar F. Data mining versus manual screening to select papers for inclusion in systematic reviews: a novel method to increase efficiency. Int J Rehabil Res 2023; 46:284-292. [PMID: 37477349 DOI: 10.1097/mrr.0000000000000595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Systematic reviews rely on identification of studies, initially through electronic searches yielding potentially thousands of studies, and then reviewer-led screening studies for inclusion. This standard method is time- and resource-intensive. We designed and applied an algorithm written in Python involving computer-aided identification of keywords within each paper for an exemplar systematic review of arm impairment after stroke. The standard method involved reading each abstract searching for these keywords. We compared the methods in terms of accuracy in identification of keywords, abstracts' eligibility, and time taken to make a decision about eligibility. For external validation, we adapted the algorithm for a different systematic review, and compared eligible studies using the algorithm with those included in that review. For the exemplar systematic review, the algorithm failed on 72 out of 2,789 documents retrieved (2.6%). Both methods identified the same 610 studies for inclusion. Based on a sample of 21 randomly selected abstracts, the standard screening took 1.58 ± 0.26 min per abstract. Computer output screening took 0.43 ± 0.14 min per abstract. The mean difference between the two methods was 1.15 min ( P < 0.0001), saving 73% per abstract. For the other systematic review, use of the algorithm resulted in the same studies being identified. One study was excluded based on the interpretation of the comparison intervention. Our purpose-built software was an accurate and significantly time-saving method for identifying eligible abstracts for inclusion in systematic reviews. This novel method could be adapted for other systematic reviews in future for the benefit of authors, reviewers and editors.
Collapse
Affiliation(s)
- Elena Ierardi
- Department of Occupational Therapy, and Human Nutrition and Dietetics, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow
| | - J Chris Eilbeck
- Department of Mathematics, School of Mathematical and Computer Sciences and Maxwell Institute, Heriot-Watt University, Edinburgh
| | - Frederike van Wijck
- Department of Physiotherapy and Paramedicine, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow
| | - Myzoon Ali
- School of Cardiovascular and Metabolic Health, University of Glasgow
- NMAHP Research Unit, Glasgow Caledonian University, Glasgow, UK
| | - Fiona Coupar
- Department of Occupational Therapy, and Human Nutrition and Dietetics, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow
| |
Collapse
|
38
|
Li F, Zhang D, Chen J, Tang K, Li X, Hou Z. Research hotspots and trends of brain-computer interface technology in stroke: a bibliometric study and visualization analysis. Front Neurosci 2023; 17:1243151. [PMID: 37732305 PMCID: PMC10507647 DOI: 10.3389/fnins.2023.1243151] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023] Open
Abstract
Background The incidence and mortality rates of stroke are escalating due to the growing aging population, which presents a significant hazard to human health. In the realm of stroke, brain-computer interface (BCI) technology has gained considerable attention as a means to enhance treatment efficacy and improve quality of life. Consequently, a bibliometric visualization analysis was performed to investigate the research hotspots and trends of BCI technology in stroke, with the objective of furnishing reference and guidance for future research. Methods This study utilized the Science Citation Index Expanded (SCI-Expanded) within the Web of Science Core Collection (WoSCC) database as the data source, selecting relevant literature published between 2013 and 2022 as research sample. Through the application of VOSviewer 1.6.19 and CiteSpace 6.2.R2 visualization analysis software, as well as the bibliometric online analysis platform, the scientific knowledge maps were constructed and subjected to visualization display, and statistical analysis. Results This study encompasses a total of 693 relevant literature, which were published by 2,556 scholars from 975 institutions across 53 countries/regions and have been collected by 185 journals. In the past decade, BCI technology in stroke research has exhibited an upward trend in both annual publications and citations. China and the United States are high productivity countries, while the University of Tubingen stands out as the most contributing institution. Birbaumer N and Pfurtscheller G are the authors with the highest publication and citation frequency in this field, respectively. Frontiers in Neuroscience has published the most literature, while Journal of Neural Engineering has the highest citation frequency. The research hotspots in this field cover keywords such as stroke, BCI, rehabilitation, motor imagery (MI), motor recovery, electroencephalogram (EEG), neurorehabilitation, neural plasticity, task analysis, functional electrical stimulation (FES), motor impairment, feature extraction, and induced movement therapy, which to a certain extent reflect the development trend and frontier research direction of this field. Conclusion This study comprehensively and visually presents the extensive and in-depth literature resources of BCI technology in stroke research in the form of knowledge maps, which facilitates scholars to gain a more convenient understanding of the development and prospects in this field, thereby promoting further research work.
Collapse
Affiliation(s)
- Fangcun Li
- Department of Rehabilitation Medicine, Guilin Municipal Hospital of Traditional Chinese Medicine, Guilin, China
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Ding Zhang
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Jie Chen
- Department of Pharmacy, Guilin Municipal Hospital of Traditional Chinese Medicine, Guilin, China
| | - Ke Tang
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaomei Li
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Zhaomeng Hou
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
- Department of Orthopedics and Traumatology, Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, China
- Department of Orthopedics and Traumatology, Yancheng TCM Hospital, Yancheng, China
| |
Collapse
|
39
|
Zhang J, Huang W, Chen Z, Jiang H, Su M, Wang C. Effect of auricular acupuncture on neuroplasticity of stroke patients with motor dysfunction: A fNIRS study. Neurosci Lett 2023; 812:137398. [PMID: 37468089 DOI: 10.1016/j.neulet.2023.137398] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Cerebral Stroke is an acute cerebrovascular disease, a disease of brain tissue damage caused by the sudden rupture or blockage of blood vessels in the brain that prevents blood flow to the brain. Acupuncture has become a popular treatment for stroke, with auricular acupuncture providing a new idea for stroke treatment. However, the neuromodulatory mechanism of auricular acupuncture in the brain is still unclear. The aim of this study was to investigate the effect of auricular acupuncture in the treatment of upper limb dysfunction and the activation of specific brain regions in stroke patients. Forty patients with stroke hemiplegia who met the nerf criteria were included in the experiment and randomly assigned into two groups (20 patients in each group): the auricular acupuncture group and the control group. Fugl-Meyer score (FMA) assessment of upper limb motor function, motor evoked potential (MEP) measurement, and functional near-infrared brain function imaging (fNIRS) data acquisition in the primary motor M1 area of the brain at rest were performed before and after treatment, respectively. It was found that: 1) after auricular acupuncture treatment, the patients in the auricular acupuncture group showed significantly greater peak MEP and significantly higher oxyhemoglobin content in the M1 region of the brain compared with the control group, with a significant activation effect (MEP: P-value = 0.032, t = -2.22; HbO2; f = 4.225, p = 0.046); 2) in the clinical efficacy assessment, the FMA score in the auricular acupuncture group after treatment (p = 0.0122, t = 2.769). The results suggest that auricular acupuncture has an ameliorative effect on upper limb motor deficits after stroke and that activation of the M1 region of the brain may be a key node in auricular acupuncture for treating upper limb dysfunction in stroke patients, a finding that emphasizes the potential for clinical application of auricular acupuncture therapy for stroke patients with potential mechanisms influencing the outcome.
Collapse
Affiliation(s)
- Jin Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China; Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenhao Huang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhihong Chen
- Nanhai District People's Hospital of Foshan, Foshan, China
| | - Haoxiang Jiang
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Minzhi Su
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Cong Wang
- Guangzhou University of Chinese Medicine, Guangzhou, China; Center of Traditional Remedies, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, China.
| |
Collapse
|
40
|
He C, Chen YY, Phang CR, Stevenson C, Chen IP, Jung TP, Ko LW. Diversity and Suitability of the State-of-the-Art Wearable and Wireless EEG Systems Review. IEEE J Biomed Health Inform 2023; 27:3830-3843. [PMID: 37022001 DOI: 10.1109/jbhi.2023.3239053] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Wireless electroencephalography (EEG) systems have been attracting increasing attention in recent times. Both the number of articles discussing wireless EEG and their proportion relative to general EEG publications have increased over years. These trends indicate that wireless EEG systems could be more accessible to researchers and the research community has recognized the potential of wireless EEG systems. To explore the development and diverse applications of wireless EEG systems, this review highlights the trends in wearable and wireless EEG systems over the past decade and compares the specifications and research applications of the major wireless systems marketed by 16 companies. For each product, five parameters (number of channels, sampling rate, cost, battery life, and resolution) were assessed for comparison. Currently, these wearable and portable wireless EEG systems have three main application areas: consumer, clinical, and research. To address this multitude of options, the article also discussed the thought process to find a suitable device that meets personalization and use cases specificities. These investigations suggest that low-price and convenience are key factors for consumer applications, wireless EEG systems with FDA or CE-certification may be more suitable for clinical settings, and devices that provide raw EEG data with high-density channels are important for laboratory research. This article presents an overview of the current state of the wireless EEG systems specifications and possible applications and serves as a guide point as it is expected that more influential and novel research will cyclically promote the development of such EEG systems.
Collapse
|
41
|
Yakovlev L, Syrov N, Kaplan A. Investigating the influence of functional electrical stimulation on motor imagery related μ-rhythm suppression. Front Neurosci 2023; 17:1202951. [PMID: 37492407 PMCID: PMC10365101 DOI: 10.3389/fnins.2023.1202951] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 06/19/2023] [Indexed: 07/27/2023] Open
Abstract
Background Motor Imagery (MI) is a well-known cognitive technique that utilizes the same neural circuits as voluntary movements. Therefore, MI practice is widely used in sport training and post-stroke rehabilitation. The suppression of the μ-rhythm in electroencephalogram (EEG) is a conventional marker of sensorimotor cortical activation during motor imagery. However, the role of somatosensory afferentation in mental imagery processes is not yet clear. In this study, we investigated the impact of functional electrical stimulation (FES) on μ-rhythm suppression during motor imagery. Methods Thirteen healthy experienced participants were asked to imagine their right hand grasping, while a 30-channel EEG was recorded. FES was used to influence sensorimotor activation during motor imagery of the same hand. Results We evaluated cortical activation by estimating the μ-rhythm suppression index, which was assessed in three experimental conditions: MI, MI + FES, and FES. Our findings shows that motor imagery enhanced by FES leads to a more prominent μ-rhythm suppression. Obtained results suggest a direct effect of peripheral electrical stimulation on cortical activation, especially when combined with motor imagery. Conclusion This research sheds light on the potential benefits of integrating FES into motor imagery-based interventions to enhance cortical activation and holds promise for applications in neurorehabilitation.
Collapse
Affiliation(s)
- Lev Yakovlev
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Nikolay Syrov
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Alexander Kaplan
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
- Laboratory for Neurophysiology and Neuro-Computer Interfaces, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
42
|
Bates M, Sunderam S. Hand-worn devices for assessment and rehabilitation of motor function and their potential use in BCI protocols: a review. Front Hum Neurosci 2023; 17:1121481. [PMID: 37484920 PMCID: PMC10357516 DOI: 10.3389/fnhum.2023.1121481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 06/01/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction Various neurological conditions can impair hand function. Affected individuals cannot fully participate in activities of daily living due to the lack of fine motor control. Neurorehabilitation emphasizes repetitive movement and subjective clinical assessments that require clinical experience to administer. Methods Here, we perform a review of literature focused on the use of hand-worn devices for rehabilitation and assessment of hand function. We paid particular attention to protocols that involve brain-computer interfaces (BCIs) since BCIs are gaining ground as a means for detecting volitional signals as the basis for interactive motor training protocols to augment recovery. All devices reviewed either monitor, assist, stimulate, or support hand and finger movement. Results A majority of studies reviewed here test or validate devices through clinical trials, especially for stroke. Even though sensor gloves are the most commonly employed type of device in this domain, they have certain limitations. Many such gloves use bend or inertial sensors to monitor the movement of individual digits, but few monitor both movement and applied pressure. The use of such devices in BCI protocols is also uncommon. Discussion We conclude that hand-worn devices that monitor both flexion and grip will benefit both clinical diagnostic assessment of function during treatment and closed-loop BCI protocols aimed at rehabilitation.
Collapse
Affiliation(s)
- Madison Bates
- Neural Systems Lab, F. Joseph Halcomb III, M.D. Department of Biomedical Engineering, University of Kentucky, Lexington, KY, United States
| | | |
Collapse
|
43
|
Shou YZ, Wang XH, Yang GF. Verum versus Sham brain-computer interface on upper limb function recovery after stroke: A systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore) 2023; 102:e34148. [PMID: 37390271 PMCID: PMC10313240 DOI: 10.1097/md.0000000000034148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 06/08/2023] [Indexed: 07/02/2023] Open
Abstract
BACKGROUND Previous clinical trials have reported that the brain-computer interface (BCI) is a useful management tool for upper limb function recovery (ULFR) in stroke. However, there is insufficient evidence regarding this topic. Thus, this study aimed to investigate the effectiveness of verum versus sham BCI on the ULFR in stroke patients. METHODS We comprehensively searched the Cochrane Library, PUBMED, EMBASE, Web of Science, and China National Knowledge Infrastructure databases from their inception to January 1, 2023. Randomized clinical trials (RCTs) assessing the effectiveness and safety of BCI for ULFR after stroke were included. The outcomes were the Fugl-Meyer Assessment for Upper Extremity, Wolf Motor Function Test, Modified Barthel Index, motor activity log, and Action Research Arm Test. The methodological quality of all the included randomized controlled trials was evaluated using the Cochrane risk-of-bias tool. Statistical analysis was performed using RevMan 5.4 software. RESULTS Eleven eligible studies involving 334 patients were included. The results of the meta-analysis showed significant differences in the Fugl-Meyer Assessment for Upper Extremity (mean difference [MD] = 4.78, 95% confidence interval [CI] [1.90, 7.65], I2 = 0%, P = .001) and Modified Barthel Index (MD = 7.37, 95% CI [1.89, 12.84], I2 = 19%, P = .008). However, no significant differences were found on motor activity log (MD = -0.70, 95% CI [-3.17, 1.77]), Action Research Arm Test (MD = 3.05, 95% CI [-8.33, 14.44], I2 = 0%, P = .60), and Wolf Motor Function Test (MD = 4.23, 95% CI [-0.55, 9.01], P = .08). CONCLUSION BCI may be an effective management strategy for ULFR in stroke patients. Future studies with larger sample size and strict design are still needed to warrant the current findings.
Collapse
Affiliation(s)
- Yi-zhou Shou
- Department of Rehabilitation, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Xin-hua Wang
- Department of Tuina, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Gui-fen Yang
- Department of Rehabilitation, Tongde Hospital of Zhejiang Province, Hangzhou, China
| |
Collapse
|
44
|
Kurkin S, Gordleeva S, Savosenkov A, Grigorev N, Smirnov N, Grubov VV, Udoratina A, Maksimenko V, Kazantsev V, Hramov AE. Transcranial Magnetic Stimulation of the Dorsolateral Prefrontal Cortex Increases Posterior Theta Rhythm and Reduces Latency of Motor Imagery. SENSORS (BASEL, SWITZERLAND) 2023; 23:4661. [PMID: 37430576 DOI: 10.3390/s23104661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 07/12/2023]
Abstract
Experiments show activation of the left dorsolateral prefrontal cortex (DLPFC) in motor imagery (MI) tasks, but its functional role requires further investigation. Here, we address this issue by applying repetitive transcranial magnetic stimulation (rTMS) to the left DLPFC and evaluating its effect on brain activity and the latency of MI response. This is a randomized, sham-controlled EEG study. Participants were randomly assigned to receive sham (15 subjects) or real high-frequency rTMS (15 subjects). We performed EEG sensor-level, source-level, and connectivity analyses to evaluate the rTMS effects. We revealed that excitatory stimulation of the left DLPFC increases theta-band power in the right precuneus (PrecuneusR) via the functional connectivity between them. The precuneus theta-band power negatively correlates with the latency of the MI response, so the rTMS speeds up the responses in 50% of participants. We suppose that posterior theta-band power reflects attention modulation of sensory processing; therefore, high power may indicate attentive processing and cause faster responses.
Collapse
Affiliation(s)
- Semen Kurkin
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
| | - Susanna Gordleeva
- Neurodynamics and Cognitive Technology Laboratory, Lobachevsky State University of Nizhny Novgorod, 603105 Nizhniy Novgorod, Russia
| | - Andrey Savosenkov
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
- Neurodynamics and Cognitive Technology Laboratory, Lobachevsky State University of Nizhny Novgorod, 603105 Nizhniy Novgorod, Russia
| | - Nikita Grigorev
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
- Neurodynamics and Cognitive Technology Laboratory, Lobachevsky State University of Nizhny Novgorod, 603105 Nizhniy Novgorod, Russia
| | - Nikita Smirnov
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
| | - Vadim V Grubov
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
| | - Anna Udoratina
- Neurodynamics and Cognitive Technology Laboratory, Lobachevsky State University of Nizhny Novgorod, 603105 Nizhniy Novgorod, Russia
| | - Vladimir Maksimenko
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
- Neurodynamics and Cognitive Technology Laboratory, Lobachevsky State University of Nizhny Novgorod, 603105 Nizhniy Novgorod, Russia
| | - Victor Kazantsev
- Neurodynamics and Cognitive Technology Laboratory, Lobachevsky State University of Nizhny Novgorod, 603105 Nizhniy Novgorod, Russia
| | - Alexander E Hramov
- Baltic Center for Neurotechnology and Artificial Intelligence, Immanuel Kant Baltic Federal University, 236016 Kaliningrad, Russia
- Neurodynamics and Cognitive Technology Laboratory, Lobachevsky State University of Nizhny Novgorod, 603105 Nizhniy Novgorod, Russia
| |
Collapse
|
45
|
Liu X, Zhang W, Li W, Zhang S, Lv P, Yin Y. Effects of motor imagery based brain-computer interface on upper limb function and attention in stroke patients with hemiplegia: a randomized controlled trial. BMC Neurol 2023; 23:136. [PMID: 37003976 PMCID: PMC10064693 DOI: 10.1186/s12883-023-03150-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/07/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Seeking positive and comprehensive rehabilitation methods after stroke is an urgent problem to be solved, which is very important to improve the dysfunction of stroke. The aim of this study was to investigate the effects of motor imagery-based brain-computer interface training (MI-BCI) on upper limb function and attention in stroke patients with hemiplegia. METHODS Sixty stroke patients with impairment of upper extremity function and decreased attention were randomly assigned to the control group (CR group) or the experimental group (BCI group) in a 1:1 ratio. Patients in the CR group received conventional rehabilitation. Patients in the BCI group received 20 min of MI-BCI training five times a week for 3 weeks (15 sessions) in addition to conventional rehabilitation. The primary outcome measures were the changes in Fugl-Meyer Motor Function Assessment of Upper Extremities (FMA-UE) and Attention Network Test (ANT) from baseline to 3 weeks. RESULTS About 93% of the patients completed the allocated training. Compared with the CR group, among those in the BCI group, FMA-UE was increased by 8.0 points (95%CI, 5.0 to 10.0; P < 0.001). Alert network response time (32.4ms; 95%CI, 58.4 to 85.6; P < 0.001), orienting network response (5.6ms; 95%CI, 29.8 to 55.8; P = 0.010), and corrects number (8.0; 95%CI, 17.0 to 28.0; P < 0.001) also increased in the BCI group compared with the CR group. Additionally, the executive control network response time (- 105.9ms; 95%CI, - 68.3 to - 23.6; P = 0.002), the total average response time (- 244.8ms; 95%CI, - 155.8 to - 66.2; P = 0.002), and total time (- 122.0ms; 95%CI, - 80.0 to - 35.0; P = 0.001) were reduced in the BCI group compared with the CR group. CONCLUSION MI-BCI combined with conventional rehabilitation training could better enhance upper limb motor function and attention in stroke patients. This training method may be feasible and suitable for individuals with stroke. TRIAL REGISTRATION This study was registered in the Chinese Clinical Trial Registry with Portal Number ChiCTR2100050430(27/08/2021).
Collapse
Affiliation(s)
- Xiaolu Liu
- College of Nursing and Rehabilitation, North China University of Science and Technology, Tangshan, 063210, China
- Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, 050000, China
| | - Wendong Zhang
- Department of Rehabilitation, Hebei General Hospital, Shijiazhuang, 050000, China
| | - Weibo Li
- Department of Gastrointestinal Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China.
| | - Shaohua Zhang
- Department of Medical, The Eighth People's Hospital of Hebei Province, Shijiazhuang, 050000, China
| | - Peiyuan Lv
- Department of Neurology, Hebei General Hospital, Shijiazhuang, 050000, China
- Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, 050000, China
| | - Yu Yin
- Department of Rehabilitation, Hebei General Hospital, Shijiazhuang, 050000, China.
- Hebei Provincial Key Laboratory of Cerebral Networks and Cognitive Disorders, Shijiazhuang, 050000, China.
| |
Collapse
|
46
|
Jia T, Li C, Mo L, Qian C, Li W, Xu Q, Pan Y, Liu A, Ji L. Tailoring brain-machine interface rehabilitation training based on neural reorganization: towards personalized treatment for stroke patients. Cereb Cortex 2023; 33:3043-3052. [PMID: 35788284 PMCID: PMC10016036 DOI: 10.1093/cercor/bhac259] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/04/2022] [Accepted: 06/06/2022] [Indexed: 11/14/2022] Open
Abstract
Electroencephalogram (EEG)-based brain-machine interface (BMI) has the potential to enhance rehabilitation training efficiency, but it still remains elusive regarding how to design BMI training for heterogeneous stroke patients with varied neural reorganization. Here, we hypothesize that tailoring BMI training according to different patterns of neural reorganization can contribute to a personalized rehabilitation trajectory. Thirteen stroke patients were recruited in a 2-week personalized BMI training experiment. Clinical and behavioral measurements, as well as cortical and muscular activities, were assessed before and after training. Following treatment, significant improvements were found in motor function assessment. Three types of brain activation patterns were identified during BMI tasks, namely, bilateral widespread activation, ipsilesional focusing activation, and contralesional recruitment activation. Patients with either ipsilesional dominance or contralesional dominance can achieve recovery through personalized BMI training. Results indicate that personalized BMI training tends to connect the potentially reorganized brain areas with event-contingent proprioceptive feedback. It can also be inferred that personalization plays an important role in establishing the sensorimotor loop in BMI training. With further understanding of neural rehabilitation mechanisms, personalized treatment strategy is a promising way to improve the rehabilitation efficacy and promote the clinical use of rehabilitation robots and other neurotechnologies.
Collapse
Affiliation(s)
| | - Chong Li
- Corresponding authors: Division of Intelligent and Bio-mimetic Machinery, The State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China. ; Beijing Rehabilitation Hospital of Capital Medical University, Capital Medical University, Beijing 100144, China. ; Division of Intelligent and Bio-mimetic Machinery, The State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China.
| | - Linhong Mo
- Beijing Rehabilitation Hospital of Capital Medical University, Capital Medical University, Beijing 100144, China
| | - Chao Qian
- Division of Intelligent and Bio-mimetic Machinery, The State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Wei Li
- Division of Intelligent and Bio-mimetic Machinery, The State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Quan Xu
- Division of Intelligent and Bio-mimetic Machinery, The State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
- Department of Physical Medicine and Rehabilitation, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Yu Pan
- Department of Physical Medicine and Rehabilitation, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Aixian Liu
- Corresponding authors: Division of Intelligent and Bio-mimetic Machinery, The State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China. ; Beijing Rehabilitation Hospital of Capital Medical University, Capital Medical University, Beijing 100144, China. ; Division of Intelligent and Bio-mimetic Machinery, The State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China.
| | - Linhong Ji
- Corresponding authors: Division of Intelligent and Bio-mimetic Machinery, The State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China. ; Beijing Rehabilitation Hospital of Capital Medical University, Capital Medical University, Beijing 100144, China. ; Division of Intelligent and Bio-mimetic Machinery, The State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
47
|
Sheng B, Zhao J, Zhang Y, Xie S, Tao J. Commercial device-based hand rehabilitation systems for stroke patients: State of the art and future prospects. Heliyon 2023; 9:e13588. [PMID: 36873497 PMCID: PMC9982629 DOI: 10.1016/j.heliyon.2023.e13588] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/26/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Various hand rehabilitation systems have recently been developed for stroke patients, particularly commercial devices. Articles from 10 electronic databases from 2010 to 2022 were extracted to conduct a systematic review to explore the existing commercial training systems (hardware and software) and evaluate their clinical effectiveness. This review divided the rehabilitation equipment into contact and non-contact types. Game-based training protocols were further classified into two types: immersion and non-immersion. The results of the review indicated that the majority of the devices included were effective in improving hand function. Users who underwent rehabilitation training with these devices reported improvements in their hand function. Game-based training protocols were particularly appealing as they helped reduce boredom during rehabilitation training sessions. However, the review also identified some common technical drawbacks in the devices, particularly in non-contact devices, such as their vulnerability to the effects of light. Additionally, it was found that currently, there is no commercially available game-based training protocol that specifically targets hand rehabilitation. Given the ongoing COVID-19 pandemic, there is a need to develop safer non-contact rehabilitation equipment and more engaging training protocols for community and home-based rehabilitation. Additionally, the review suggests the need for revisions or the development of new clinical scales for hand rehabilitation evaluation that consider the current scenario, where in-person interactions might be limited.
Collapse
Affiliation(s)
- Bo Sheng
- School of Mechatronic Engineering and Automation, Shanghai University, 99 Shangda Road, Baoshan, Shanghai, China
| | - Jianyu Zhao
- School of Mechatronic Engineering and Automation, Shanghai University, 99 Shangda Road, Baoshan, Shanghai, China
| | - Yanxin Zhang
- Department of Exercise Sciences, The University of Auckland, 4703906, Newmarket, Auckland, New Zealand
| | - Shengquan Xie
- School of Electronic and Electrical Engineering, University of Leeds, 3 LS2 9JT, Leeds, United Kingdom
| | - Jing Tao
- School of Mechatronic Engineering and Automation, Shanghai University, 99 Shangda Road, Baoshan, Shanghai, China
| |
Collapse
|
48
|
de Miguel-Fernández J, Lobo-Prat J, Prinsen E, Font-Llagunes JM, Marchal-Crespo L. Control strategies used in lower limb exoskeletons for gait rehabilitation after brain injury: a systematic review and analysis of clinical effectiveness. J Neuroeng Rehabil 2023; 20:23. [PMID: 36805777 PMCID: PMC9938998 DOI: 10.1186/s12984-023-01144-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/07/2023] [Indexed: 02/21/2023] Open
Abstract
BACKGROUND In the past decade, there has been substantial progress in the development of robotic controllers that specify how lower-limb exoskeletons should interact with brain-injured patients. However, it is still an open question which exoskeleton control strategies can more effectively stimulate motor function recovery. In this review, we aim to complement previous literature surveys on the topic of exoskeleton control for gait rehabilitation by: (1) providing an updated structured framework of current control strategies, (2) analyzing the methodology of clinical validations used in the robotic interventions, and (3) reporting the potential relation between control strategies and clinical outcomes. METHODS Four databases were searched using database-specific search terms from January 2000 to September 2020. We identified 1648 articles, of which 159 were included and evaluated in full-text. We included studies that clinically evaluated the effectiveness of the exoskeleton on impaired participants, and which clearly explained or referenced the implemented control strategy. RESULTS (1) We found that assistive control (100% of exoskeletons) that followed rule-based algorithms (72%) based on ground reaction force thresholds (63%) in conjunction with trajectory-tracking control (97%) were the most implemented control strategies. Only 14% of the exoskeletons implemented adaptive control strategies. (2) Regarding the clinical validations used in the robotic interventions, we found high variability on the experimental protocols and outcome metrics selected. (3) With high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented a combination of trajectory-tracking and compliant control showed the highest clinical effectiveness for acute stroke. However, they also required the longest training time. With high grade of evidence and low number of participants (N = 8), assistive control strategies that followed a threshold-based algorithm with EMG as gait detection metric and control signal provided the highest improvements with the lowest training intensities for subacute stroke. Finally, with high grade of evidence and a moderate number of participants (N = 19), assistive control strategies that implemented adaptive oscillator algorithms together with trajectory-tracking control resulted in the highest improvements with reduced training intensities for individuals with chronic stroke. CONCLUSIONS Despite the efforts to develop novel and more effective controllers for exoskeleton-based gait neurorehabilitation, the current level of evidence on the effectiveness of the different control strategies on clinical outcomes is still low. There is a clear lack of standardization in the experimental protocols leading to high levels of heterogeneity. Standardized comparisons among control strategies analyzing the relation between control parameters and biomechanical metrics will fill this gap to better guide future technical developments. It is still an open question whether controllers that provide an on-line adaptation of the control parameters based on key biomechanical descriptors associated to the patients' specific pathology outperform current control strategies.
Collapse
Affiliation(s)
- Jesús de Miguel-Fernández
- Biomechanical Engineering Lab, Department of Mechanical Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | | | - Erik Prinsen
- Roessingh Research and Development, Roessinghsbleekweg 33b, 7522AH Enschede, Netherlands
| | - Josep M. Font-Llagunes
- Biomechanical Engineering Lab, Department of Mechanical Engineering and Research Centre for Biomedical Engineering, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Santa Rosa 39-57, 08950 Esplugues de Llobregat, Spain
| | - Laura Marchal-Crespo
- Cognitive Robotics Department, Delft University of Technology, Mekelweg 2, 2628 Delft, Netherlands
- Motor Learning and Neurorehabilitation Lab, ARTORG Center for Biomedical Engineering Research, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland
- Department of Rehabilitation Medicine, Erasmus MC University Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
49
|
Delisle-Rodriguez D, Silva L, Bastos-Filho T. EEG changes during passive movements improve the motor imagery feature extraction in BCIs-based sensory feedback calibration. J Neural Eng 2023; 20. [PMID: 36716494 DOI: 10.1088/1741-2552/acb73b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/30/2023] [Indexed: 01/31/2023]
Abstract
Objective.This work proposes a method for two calibration schemes based on sensory feedback to extract reliable motor imagery (MI) features, and provide classification outputs more correlated to the user's intention.Method.After filtering the raw electroencephalogram (EEG), a two-step method for spatial feature extraction by using the Riemannian covariance matrices (RCM) method and common spatial patterns is proposed here. It uses EEG data from trials providing feedback, in an intermediate step composed of bothkth nearest neighbors and probability analyses, to find periods of time in which the user probably performed well the MI task without feedback. These periods are then used to extract features with better separability, and train a classifier for MI recognition. For evaluation, an in-house dataset with eight healthy volunteers and two post-stroke patients that performed lower-limb MI, and consequently received passive movements as feedback was used. Other popular public EEG datasets (such as BCI Competition IV dataset IIb, among others) from healthy subjects that executed upper-and lower-limbs MI tasks under continuous visual sensory feedback were further used.Results.The proposed system based on the Riemannian geometry method in two-steps (RCM-RCM) outperformed significantly baseline methods, reaching average accuracy up to 82.29%. These findings show that EEG data on periods providing passive movement can be used to contribute greatly during MI feature extraction.Significance.Unconscious brain responses elicited over the sensorimotor areas may be avoided or greatly reduced by applying our approach in MI-based brain-computer interfaces (BCIs). Therefore, BCI's outputs more correlated to the user's intention can be obtained.
Collapse
Affiliation(s)
- Denis Delisle-Rodriguez
- Edmond and Lily Safra International Institute of Neurosciences, Santos Dumont Institute, 59288-899 Macaiba, Brazil
| | - Leticia Silva
- Postgraduate Program in Electrical Engineering, Federal University of Espirito Santo, 29075-910 Vitoria, Brazil
| | - Teodiano Bastos-Filho
- Postgraduate Program in Electrical Engineering, Federal University of Espirito Santo, 29075-910 Vitoria, Brazil
| |
Collapse
|
50
|
Huang X, Liang S, Zhang Y, Zhou N, Pedrycz W, Choi KS. Relation Learning Using Temporal Episodes for Motor Imagery Brain-Computer Interfaces. IEEE Trans Neural Syst Rehabil Eng 2023; 31:530-543. [PMID: 37015468 DOI: 10.1109/tnsre.2022.3228216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For practical motor imagery (MI) brain-computer interface (BCI) applications, generating a reliable model for a target subject with few MI trials is important since the data collection process is labour-intensive and expensive. In this paper, we address this issue by proposing a few-shot learning method called temporal episode relation learning (TERL). TERL models MI with only limited trials from the target subject by the ability to compare MI trials through episode-based training. It can be directly applied to a new user without being re-trained, which is vital to improve user experience and realize real-world MIBCI applications. We develop a new and effective approach where, unlike the original episode learning, the temporal pattern between trials in each episode is encoded during the learning to boost the classification performance. We also perform an online evaluation simulation, in addition to the offline analysis that the previous studies only conduct, to better understand the performance of different approaches in real-world scenario. Extensive experiments are completed on four publicly available MIBCI datasets to evaluate the proposed TERL. Results show that TERL outperforms baseline and recent state-of-the-art methods, demonstrating competitive performance for subject-specific MIBCI where few trials are available from a target subject and a considerable number of trials from other source subjects.
Collapse
|