1
|
Kasahara S, Chiba A, Jiang L, Ishida T, Koshino Y, Samukawa M, Saito H, Tohyama H. Association Between Physical Activity and Performance in Skill Learning Among Older Adults Based on Cognitive Function. J Aging Phys Act 2024:1-12. [PMID: 39467541 DOI: 10.1123/japa.2024-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/12/2024] [Accepted: 08/09/2024] [Indexed: 10/30/2024]
Abstract
BACKGROUND/OBJECTIVES Most older adults experience cognitive and physical functioning problems; however, they require the ability to learn skills in response to age-related or social environmental changes for independent living. This study aimed to clarify the associations between age-related physical activity and performance in skill learning tasks based on cognitive function. METHODS Fifty-eight adults participated in this study and were divided into two groups: the control group (aged under 65 years) and older adult group (aged over 65). All the participants performed two-skill learning exercises based on cognitive function. Habitual exercise was measured using an accelerometer and a self-reported questionnaire. RESULTS At baseline, the scores on skill tasks were lower in the older adult group than in the control group and were associated with habitual exercise and motor performance. Skill acquisition, observed in both groups, was associated with age and self-reported physical activity. Retention of the acquired skill was not associated with habitual exercise, and it declined significantly in the older group. CONCLUSIONS Skill acquisition was maintained regardless of age; however, the ability to retain the acquired skills decreased among the older adults. Habitual physical activity was associated with skill acquisition but not the retention of the acquired skill. Significance/Implications: The study findings highlight the association between habitual exercise and motor skill learning in older adults, providing insight for practitioners in the rehabilitation and health care fields.
Collapse
Affiliation(s)
- Satoshi Kasahara
- Department of Rehabilitation Sciences, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Ami Chiba
- Department of Rehabilitation, Hirosaki University Hospital, Hirosaki, Japan
| | - Linjing Jiang
- Department of Rehabilitation Sciences, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Tomoya Ishida
- Department of Rehabilitation Sciences, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Yuta Koshino
- Department of Rehabilitation Sciences, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Mina Samukawa
- Department of Rehabilitation Sciences, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Hiroshi Saito
- Department of Physical Therapy, School of Rehabilitation, Tokyo Kasei University, Sayama, Japan
| | - Harukazu Tohyama
- Department of Rehabilitation Sciences, Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|
2
|
Zhao N, Tao J, Wong C, Wu JS, Liu J, Chen LD, Lee TMC, Xu Y, Chan CCH. Theta burst stimulation on the fronto-cerebellar connective network promotes cognitive processing speed in the simple cognitive task. Front Hum Neurosci 2024; 18:1387299. [PMID: 39314267 PMCID: PMC11417469 DOI: 10.3389/fnhum.2024.1387299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/21/2024] [Indexed: 09/25/2024] Open
Abstract
Background The fronto-cerebellar functional network has been proposed to subserve cognitive processing speed. This study aims to elucidate how the long-range frontal-to-cerebellar effective connectivity contributes to faster speed. Methods In total, 60 healthy participants were randomly allocated to three five-daily sessions of transcranial magnetic stimulation conditions, namely intermittent theta-burst stimulation (iTBS, excitatory), continuous theta-burst stimulation (CTBS, inhibitory), or a sham condition. The sites of the stimulations were the right pre-supplementary motor area (RpSMA), medial cerebellar vermis VI (MCV6), and vertex, respectively. Performances in two reaction time tasks were recorded at different time points. Results Post-stimulation speeds revealed marginal decreases in the simple but not complex task. Nevertheless, participants in the excitatory RpSMA and inhibitory MCV6 conditions showed direct and negative path effects on faster speeds compared to the sham condition in the simple reaction time (SRT) task (β = -0.320, p = 0.045 and β = -0.414, p = 0.007, respectively). These path effects were not observed in the SDMT task. Discussion RpSMA and MCV6 were involved in promoting the path effects of faster reaction times on simple cognitive task. This study offers further evidence to support their roles within the long-range frontal-to-cerebellar connectivity subserving cognitive processing speed. The enhancement effects, however, are likely limited to simple rather than complex mental operations.
Collapse
Affiliation(s)
- Ning Zhao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Department of Rehabilitation, The 6th Affiliated Hospital of Shenzhen University Medical School, Shenzhen, China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Clive Wong
- Department of Psychology, The Education University of Hong Kong, Tai Po, Hong Kong SAR, China
| | - Jing-song Wu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jiao Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Li-dian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Tatia M. C. Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Laboratory of Neuropsychology and Human Neuroscience, Department of Psychology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Yanwen Xu
- Department of Rehabilitation Medicine, Affiliated Hospital of Soochow University, Wuxi, China
| | - Chetwyn C. H. Chan
- Department of Psychology, The Education University of Hong Kong, Tai Po, Hong Kong SAR, China
| |
Collapse
|
3
|
Liu M, Yu C, Shi J, Xu Y, Li Z, Huang J, Si Z, Yao L, Yin K, Zhao Z. Effects of one-week bilateral cerebellar iTBS on resting-state functional brain network and multi-task attentional performance in healthy individuals: A randomized, sham-controlled trial. Neuroimage 2024; 295:120648. [PMID: 38761882 DOI: 10.1016/j.neuroimage.2024.120648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Cerebellar intermittent theta burst stimulation (iTBS) modulates the excitability of the cerebral cortex and may enhance attentional performance. To date, few studies have conducted iTBS on healthy subjects for one week and used electroencephalography (EEG) to investigate the effect of multiple stimulation sessions on resting-state functional brain networks and the daily stimulation effect on attentional performance. METHODS 16 healthy subjects participated in a one-week experiment, receiving bilateral cerebellar iTBS or sham stimulation and engaging in multi-task attentional training. The primary measures were the one-week attentional performance and pre- and post-experiment resting-state EEG activities. Amplitude Envelope Correlation (AEC) was used to construct the functional connectivity in the eye-open (EO) and eye-closed (EC) phases. RESULTS At least three sessions of iTBS were required to enhance multi-task performance significantly, whereas only one or two sessions failed to elicit the improvement. Compared with the control group, iTBS induced significant changes in PSD, AEC functional connectivity, and AEC network properties during the EO phase, while it had little effect during the EC phase. During the EO phase, the network property changes of the iTBS subject were correlated with improved attentional performance. CONCLUSION The multi-task performance requires multiple stimulations to enhance. iTBS affects the resting-state alpha band brain activities during the EO rather than the EC phase. The AEC network properties may serve as a biomarker to assess the attentional potential of healthy subjects.
Collapse
Affiliation(s)
- Meiliang Liu
- School of Artificial Intelligence, Beijing Normal University, Beijing, China.
| | - Chao Yu
- Nanjing Research Institute of Electronics Technology, Nanjing, China.
| | - Jinping Shi
- Department of Neurology, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Yunfang Xu
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
| | - Zijin Li
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
| | - Junhao Huang
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
| | - Zhengye Si
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
| | - Li Yao
- School of Artificial Intelligence, Beijing Normal University, Beijing, China
| | - Kuiying Yin
- Nanjing Research Institute of Electronics Technology, Nanjing, China.
| | - Zhiwen Zhao
- School of Artificial Intelligence, Beijing Normal University, Beijing, China; Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China.
| |
Collapse
|
4
|
Xu P, Lin F, Alimu G, Zhang J, Jin Z, Li L. The Important Role of the Right Dorsolateral Prefrontal Cortex in Conflict Adaptation: A Combined Voxel-Based Morphometry and Continuous Theta Burst Stimulation Study. J Cogn Neurosci 2024; 36:1172-1183. [PMID: 38579250 DOI: 10.1162/jocn_a_02155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
Humans can flexibly adjust their executive control to resolve conflicts. Conflict adaptation and conflict resolution are crucial aspects of conflict processing. Functional neuroimaging studies have associated the dorsolateral prefrontal cortex (DLPFC) with conflict processing, but its causal role remains somewhat controversial. Moreover, the neuroanatomical basis of conflict processing has not been thoroughly examined. In this study, the Stroop task, a well-established measure of conflict, was employed to investigate (1) the neuroanatomical basis of conflict resolution and conflict adaptation with the voxel-based morphometry analysis, (2) the causal role of DLPFC in conflict processing with the application of the continuous theta burst stimulation to DLPFC. The results revealed that the Stroop effect was correlated to the gray matter volume of the precuneus, postcentral gyrus, and cerebellum, and the congruency sequence effect was correlated to the gray matter volume of superior frontal gyrus, postcentral gyrus, and lobule paracentral gyrus. These findings indicate the neuroanatomical basis of conflict resolution and adaptation. In addition, the continuous theta burst stimulation over the right DLPFC resulted in a significant reduction in the Stroop effect of RT after congruent trials compared with vertex stimulation and a significant increase in the Stroop effect of accuracy rate after incongruent trials than congruent trials, demonstrating the causal role of right DLPFC in conflict adaptation. Moreover, the DLPFC stimulation did not affect the Stroop effect of RT and accuracy rate. Overall, our study offers further insights into the neural mechanisms underlying conflict resolution and adaptation.
Collapse
Affiliation(s)
- Ping Xu
- University of Electronic Science and Technology of China
| | - Feng Lin
- University of Electronic Science and Technology of China
| | | | - Junjun Zhang
- University of Electronic Science and Technology of China
| | - Zhenlan Jin
- University of Electronic Science and Technology of China
| | - Ling Li
- University of Electronic Science and Technology of China
| |
Collapse
|
5
|
Xu M, Nikolin S, Moffa AM, Xu XM, Su Y, Li R, Chan HF, Loo CK, Martin DM. Prolonged intermittent theta burst stimulation targeting the left prefrontal cortex and cerebellum does not affect executive functions in healthy individuals. Sci Rep 2024; 14:11847. [PMID: 38782921 PMCID: PMC11116424 DOI: 10.1038/s41598-024-61404-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) for alleviating negative symptoms and cognitive dysfunction in schizophrenia commonly targets the left dorsolateral prefrontal cortex (LDLPFC). However, the therapeutic effectiveness of rTMS at this site remains inconclusive and increasingly, studies are focusing on cerebellar rTMS. Recently, prolonged intermittent theta-burst stimulation (iTBS) has emerged as a rapid-acting form of rTMS with promising clinical benefits. This study explored the cognitive and neurophysiological effects of prolonged iTBS administered to the LDLPFC and cerebellum in a healthy cohort. 50 healthy participants took part in a cross-over study and received prolonged (1800 pulses) iTBS targeting the LDLPFC, cerebellar vermis, and sham iTBS. Mixed effects repeated measures models examined cognitive and event-related potentials (ERPs) from 2-back (P300, N200) and Stroop (N200, N450) tasks after stimulation. Exploratory non-parametric cluster-based permutation tests compared ERPs between conditions. There were no significant differences between conditions for behavioural and ERP outcomes on the 2-back and Stroop tasks. Exploratory cluster-based permutation tests of ERPs did not identify any significant differences between conditions. We did not find evidence that a single session of prolonged iTBS administered to either the LDLPFC or cerebellum could cause any cognitive or ERP changes compared to sham in a healthy sample.
Collapse
Affiliation(s)
- Mei Xu
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, High St, Kensington, Sydney, NSW, 2052, Australia
- Black Dog Institute, Sydney, Australia
| | - Stevan Nikolin
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, High St, Kensington, Sydney, NSW, 2052, Australia
- Black Dog Institute, Sydney, Australia
| | - Adriano M Moffa
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, High St, Kensington, Sydney, NSW, 2052, Australia
- Black Dog Institute, Sydney, Australia
| | - Xiao Min Xu
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, High St, Kensington, Sydney, NSW, 2052, Australia
| | - Yon Su
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, High St, Kensington, Sydney, NSW, 2052, Australia
| | - Roger Li
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, High St, Kensington, Sydney, NSW, 2052, Australia
| | - Ho Fung Chan
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, High St, Kensington, Sydney, NSW, 2052, Australia
| | - Colleen K Loo
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, High St, Kensington, Sydney, NSW, 2052, Australia
- Black Dog Institute, Sydney, Australia
- The George Institute for Global Health, Sydney, Australia
| | - Donel M Martin
- Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, School of Clinical Medicine, University of New South Wales, High St, Kensington, Sydney, NSW, 2052, Australia.
- Black Dog Institute, Sydney, Australia.
| |
Collapse
|
6
|
Xu P, Wang S, Yang Y, Guragai B, Zhang Q, Zhang J, Jin Z, Li L. cTBS to Right DLPFC Modulates Physiological Correlates of Conflict Processing: Evidence from a Stroop task. Brain Topogr 2024; 37:37-51. [PMID: 37880501 DOI: 10.1007/s10548-023-01015-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023]
Abstract
Conflict typically occurs when goal-directed processing competes with more automatic responses. Though previous studies have highlighted the importance of the right dorsolateral prefrontal cortex (rDLPFC) in conflict processing, its causal role remains unclear. In the current study, the behavioral experiment, the continuous theta burst stimulation (cTBS), and the electroencephalography (EEG) were combined to explore the effects of behavioral performance and physiological correlates during conflict processing, after the cTBS over the rDLPFC and vertex (the control condition). Twenty-six healthy participants performed the Stroop task which included congruent and incongruent trials. Although the cTBS did not induce significant changes in the behavioral performance, the cTBS over the rDLPFC reduced the Stroop effects of conflict monitoring-related frontal-central N2 component and theta oscillation, and conflict resolution-related parieto-occipital alpha oscillation, compared to the vertex stimulation. Moreover, a significant hemispheric difference in alpha oscillation was exploratively observed after the cTBS over the rDLPFC. Interestingly, we found the rDLPFC stimulation resulted in significantly reduced Stroop effects of theta and gamma oscillation after response, which may reflect the adjustment of cognitive control for the next trial. In conclusion, our study not only demonstrated the critical involvement of the rDLPFC in conflict monitoring, conflict resolution processing, and conflict adaptation but also revealed the electrophysiological mechanism of conflict processing mediated by the rDLPFC.
Collapse
Affiliation(s)
- Ping Xu
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Song Wang
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yulu Yang
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Bishal Guragai
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Qiuzhu Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Junjun Zhang
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zhenlan Jin
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Ling Li
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, China.
| |
Collapse
|
7
|
Hobot J, Skóra Z, Wierzchoń M, Sandberg K. Continuous Theta Burst Stimulation to the left anterior medial prefrontal cortex influences metacognitive efficiency. Neuroimage 2023; 272:119991. [PMID: 36858333 DOI: 10.1016/j.neuroimage.2023.119991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/04/2023] [Accepted: 02/25/2023] [Indexed: 03/03/2023] Open
Abstract
The contribution of the prefrontal areas to visual awareness is critical for the Global Neuronal Workspace Theory and higher-order theories of consciousness. The goal of the present study was to test the potential engagement of the anterior medial prefrontal cortex (aMPFC) in visual awareness judgements. We aimed to temporarily influence the neuronal dynamics of the left aMPFC via neuroplasticity-like mechanisms. We used different Theta Burst Stimulation (TBS) protocols in combination with a visual identification task and visual awareness ratings. Either continuous TBS (cTBS), intermittent TBS (iTBS), or sham TBS was applied prior to the experimental paradigm in a within-participant design. Compared with sham TBS, we observed an increase in participants' ability to judge their perception adequately (metacognitive efficiency) following cTBS but not iTBS. The effect was accompanied by lower visual awareness ratings in incorrect responses. No significant differences in the identification task performance were observed. We interpret these results as evidence of the involvement of PFC in the brain network that underlies metacognition. Further, we discuss whether the results of TMS studies on perceptual metacognition can be taken as evidence for PFC involvement in awareness itself.
Collapse
Affiliation(s)
- Justyna Hobot
- Consciousness Lab, Psychology Institute, Jagiellonian University, Krakow, Poland; Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark.
| | - Zuzanna Skóra
- Colourlab, Department of Computer Science, Norwegian University of Science and Technology, Gjøvik, Norway
| | - Michał Wierzchoń
- Consciousness Lab, Psychology Institute, Jagiellonian University, Krakow, Poland
| | - Kristian Sandberg
- Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark; Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
8
|
Feng Y, Zhang JJ, Zhu J, Tan X, Huang S, Bai Z, Yin Y. Does intermittent theta burst stimulation improve working memory capacity? A randomized controlled cross-over experiment. Behav Brain Res 2022; 436:114086. [DOI: 10.1016/j.bbr.2022.114086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 12/01/2022]
|
9
|
Repetitive transcranial magnetic stimulation (rTMS) for multiple neurological conditions in rodent animal models: A systematic review. Neurochem Int 2022; 157:105356. [DOI: 10.1016/j.neuint.2022.105356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 12/09/2022]
|
10
|
Balasubramani PP, Ojeda A, Grennan G, Maric V, Le H, Alim F, Zafar-Khan M, Diaz-Delgado J, Silveira S, Ramanathan D, Mishra J. Mapping cognitive brain functions at scale. Neuroimage 2021; 231:117641. [PMID: 33338609 PMCID: PMC8221518 DOI: 10.1016/j.neuroimage.2020.117641] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/31/2020] [Accepted: 12/08/2020] [Indexed: 12/30/2022] Open
Abstract
A fundamental set of cognitive abilities enable humans to efficiently process goal-relevant information, suppress irrelevant distractions, maintain information in working memory, and act flexibly in different behavioral contexts. Yet, studies of human cognition and their underlying neural mechanisms usually evaluate these cognitive constructs in silos, instead of comprehensively in-tandem within the same individual. Here, we developed a scalable, mobile platform, "BrainE" (short for Brain Engagement), to rapidly assay several essential aspects of cognition simultaneous with wireless electroencephalography (EEG) recordings. Using BrainE, we rapidly assessed five aspects of cognition including (1) selective attention, (2) response inhibition, (3) working memory, (4) flanker interference and (5) emotion interference processing, in 102 healthy young adults. We evaluated stimulus encoding in all tasks using the EEG neural recordings, and isolated the cortical sources of the spectrotemporal EEG dynamics. Additionally, we used BrainE in a two-visit study in 24 young adults to investigate the reliability of the neuro-cognitive data as well as its plasticity to transcranial magnetic stimulation (TMS). We found that stimulus encoding on multiple cognitive tasks could be rapidly assessed, identifying common as well as distinct task processes in both sensory and cognitive control brain regions. Event related synchronization (ERS) in the theta (3-7 Hz) and alpha (8-12 Hz) frequencies as well as event related desynchronization (ERD) in the beta frequencies (13-30 Hz) were distinctly observed in each task. The observed ERS/ERD effects were overall anticorrelated. The two-visit study confirmed high test-retest reliability for both cognitive and neural data, and neural responses showed specific TMS protocol driven modulation. We also show that the global cognitive neural responses are sensitive to mental health symptom self-reports. This first study with the BrainE platform showcases its utility in studying neuro-cognitive dynamics in a rapid and scalable fashion.
Collapse
Affiliation(s)
| | - Alejandro Ojeda
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Gillian Grennan
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Vojislav Maric
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Hortense Le
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Fahad Alim
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Mariam Zafar-Khan
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Juan Diaz-Delgado
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Sarita Silveira
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Dhakshin Ramanathan
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA; Department of Mental Health, VA San Diego Medical Center, San Diego, CA
| | - Jyoti Mishra
- Neural Engineering and Translation Labs, Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
11
|
Oberman LM, Hynd M, Nielson DM, Towbin KE, Lisanby SH, Stringaris A. Repetitive Transcranial Magnetic Stimulation for Adolescent Major Depressive Disorder: A Focus on Neurodevelopment. Front Psychiatry 2021; 12:642847. [PMID: 33927653 PMCID: PMC8076574 DOI: 10.3389/fpsyt.2021.642847] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/18/2021] [Indexed: 12/31/2022] Open
Abstract
Adolescent depression is a potentially lethal condition and a leading cause of disability for this age group. There is an urgent need for novel efficacious treatments since half of adolescents with depression fail to respond to current therapies and up to 70% of those who respond will relapse within 5 years. Repetitive transcranial magnetic stimulation (rTMS) has emerged as a promising treatment for major depressive disorder (MDD) in adults who do not respond to pharmacological or behavioral interventions. In contrast, rTMS has not demonstrated the same degree of efficacy in adolescent MDD. We argue that this is due, in part, to conceptual and methodological shortcomings in the existing literature. In our review, we first provide a neurodevelopmentally focused overview of adolescent depression. We then summarize the rTMS literature in adult and adolescent MDD focusing on both the putative mechanisms of action and neurodevelopmental factors that may influence efficacy in adolescents. We then identify limitations in the existing adolescent MDD rTMS literature and propose specific parameters and approaches that may be used to optimize efficacy in this uniquely vulnerable age group. Specifically, we suggest ways in which future studies reduce clinical and neural heterogeneity, optimize neuronavigation by drawing from functional brain imaging, apply current knowledge of rTMS parameters and neurodevelopment, and employ an experimental therapeutics platform to identify neural targets and biomarkers for response. We conclude that rTMS is worthy of further investigation. Furthermore, we suggest that following these recommendations in future studies will offer a more rigorous test of rTMS as an effective treatment for adolescent depression.
Collapse
|
12
|
Holczer A, Németh VL, Vékony T, Kocsis K, Király A, Kincses ZT, Vécsei L, Klivényi P, Must A. The Effects of Bilateral Theta-burst Stimulation on Executive Functions and Affective Symptoms in Major Depressive Disorder. Neuroscience 2021; 461:130-139. [PMID: 33731314 DOI: 10.1016/j.neuroscience.2021.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 01/02/2023]
Abstract
Major depressive disorder (MDD) is characterized by severe affective as well as cognitive symptoms. Moreover, cognitive impairment in MDD can persist after the remission of affective symptoms. Theta-burst stimulation (TBS) is a promising tool to manage the affective symptoms of major depressive disorder (MDD); however, its cognition-enhancing effects are sparsely investigated. Here, we aimed to examine whether the administration of bilateral TBS has pro-cognitive effects in MDD. Ten daily sessions of neuronavigated active or sham TBS were delivered bilaterally over the dorsolateral prefrontal cortex to patients with MDD. The n-back task and the attention network task were administered to assess working memory and attention, respectively. Affective symptoms were measured using the 21-item Hamilton Depression Rating Scale. We observed moderate evidence that the depressive symptoms of patients receiving active TBS improved compared to participants in the sham stimulation. No effects of TBS on attention and working memory were detected, supported by a moderate-to-strong level of evidence. The effects of TBS on psychomotor processing speed should be further investigated. Bilateral TBS has a substantial antidepressive effect with no immediate adverse effects on executive functions.
Collapse
Affiliation(s)
- Adrienn Holczer
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
| | - Viola Luca Németh
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
| | - Teodóra Vékony
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary; Lyon Neuroscience Research Center (CRNL), INSERM, CNRS, Université Claude Bernard Lyon 1, Lyon, France
| | - Krisztián Kocsis
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
| | - András Király
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary; Central European Institute of Technology, Brno, Czech Republic
| | - Zsigmond Tamás Kincses
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary; Department of Radiology, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary; MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Péter Klivényi
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
| | - Anita Must
- Institute of Psychology, Faculty of Arts, University of Szeged, Szeged, Hungary.
| |
Collapse
|
13
|
Stauch BJ, Braun V, Hanslmayr S. Probing the causal involvement of dlPFC in directed forgetting using rTMS-A replication study. PLoS One 2020; 15:e0236287. [PMID: 32785218 PMCID: PMC7423109 DOI: 10.1371/journal.pone.0236287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/01/2020] [Indexed: 11/19/2022] Open
Abstract
The forgetting of previously remembered information has, for a long time, been explained by purely passive processes. This viewpoint has been challenged by the finding that humans show worse memory for specific items that they have been instructed to forget. The dorsolateral prefrontal cortex has, through imaging, lesion and brain stimulation studies, been implied in controlling such active forgetting processes. In this study, we attempted to solidify evidence for such a causal role of the dlPFC in directed forgetting by replicating an existing rTMS study (Hanslmayr S, 2012) in a preregistered within-participant design. We stimulated participants at the dlPFC (BA9) or vertex using 45s of 1Hz rTMS after instructions to forget previously remembered words in a list-method directed forgetting paradigm and tested for effects on the amount of forgotten information. Contrary to the study we were attempting to replicate, no significant increase in forgetting under dlPFC stimulation was found in our participants. However, when combining our results with the study we were attempting to replicate, dlPFC stimulation led to significantly increased directed forgetting in both studies combined. We further explored if the rTMS parameters used here and in earlier work (Hanslmayr S, 2012) influenced inhibitory processing at their time of delivery or in a more persistent manner. Unaltered incongruency and negative priming effects in a Stroop task conducted directly after stimulation suggests that our rTMS stimulation did not continue to influence inhibitory processing after the time of stimulation. As the combined evidence for increased directed forgetting due to rTMS dlPFC stimulation is still quite weak, additional replications are necessary to show that directed forgetting is indeed causally driven by an active prefrontal process.
Collapse
Affiliation(s)
- Benjamin J Stauch
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany
- International Max Planck Research School for Neural Circuits, Frankfurt, Germany
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Verena Braun
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | - Simon Hanslmayr
- School of Psychology, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| |
Collapse
|
14
|
Ngetich R, Zhou J, Zhang J, Jin Z, Li L. Assessing the Effects of Continuous Theta Burst Stimulation Over the Dorsolateral Prefrontal Cortex on Human Cognition: A Systematic Review. Front Integr Neurosci 2020; 14:35. [PMID: 32848648 PMCID: PMC7417340 DOI: 10.3389/fnint.2020.00035] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/03/2020] [Indexed: 01/11/2023] Open
Abstract
Theta burst stimulation is increasingly growing in popularity as a non-invasive method of moderating corticospinal networks. Theta burst stimulation uses gamma frequency trains applied at the rhythm of theta, thus, mimicking theta–gamma coupling involved in cognitive processes. The dorsolateral prefrontal cortex has been found to play a crucial role in numerous cognitive processes. Here, we include 25 studies for review to determine the cognitive effects of continuous theta burst stimulation over the dorsolateral prefrontal cortex; 20 of these studies are healthy participant and five are patient (pharmacotherapy-resistant depression) studies. Due to the heterogeneous nature of the included studies, only a descriptive approach is used and meta-analytics ruled out. The cognitive effect is measured on various cognitive domains: attention, working memory, planning, language, decision making, executive function, and inhibitory and cognitive control. We conclude that continuous theta burst stimulation over the dorsolateral prefrontal cortex mainly inhibits cognitive performance. However, in some instances, it can lead to improved performance by inhibiting the effect of distractors or other competing irrelevant cognitive processes. To be precise, continuous theta burst stimulation over the right dorsolateral prefrontal cortex impaired attention, inhibitory control, planning, and goal-directed behavior in decision making but also improved decision making by reducing impulsivity. Conversely, continuous theta burst stimulation over the left dorsolateral prefrontal cortex impaired executive function, working, auditory feedback regulation, and cognitive control but accelerated the planning, decision-making process. These findings constitute a useful contribution to the literature on the cognitive effects of continuous theta burst stimulation over the dorsolateral prefrontal cortex.
Collapse
Affiliation(s)
- Ronald Ngetich
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Zhou
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Junjun Zhang
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenlan Jin
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Ling Li
- Key Laboratory for Neuroinformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
15
|
Palaus M, Viejo-Sobera R, Redolar-Ripoll D, Marrón EM. Cognitive Enhancement via Neuromodulation and Video Games: Synergistic Effects? Front Hum Neurosci 2020; 14:235. [PMID: 32636739 PMCID: PMC7319101 DOI: 10.3389/fnhum.2020.00235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022] Open
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation technique able to modulate cortical excitability. This modulation may influence areas and networks responsible for specific cognitive processes, and the repetition of the induced temporary changes can produce long-lasting effects. TMS effectiveness may be enhanced when used in conjunction with cognitive training focused on specific cognitive functions. Playing video games can be an optimal cognitive training since it involves different cognitive components and high levels of engagement and motivation. The goal of this study is to assess the synergistic effects of TMS and video game training to enhance cognition, specifically, working memory and executive functions. We conducted a randomized 2 × 3 repeated measures (stimulation × time) study, randomly assigning 27 healthy volunteers to an active intermittent theta-burst stimulation or a sham stimulation group. Participants were assessed using a comprehensive neuropsychological battery before, immediately after, and 15 days after finishing the video game+TMS training. The training consisted of 10 sessions where participants played a 3D platform video game for 1.5 h. After each gaming session, TMS was applied over the right dorsolateral prefrontal cortex (DLPFC). All participants improved their video gaming performance, but we did not find a synergistic effect of stimulation and video game training. Neither had we found cognitive improvements related to the stimulation. We explored possible confounding variables such as age, gender, and early video gaming experience through linear regression. The early video gaming experience was related to improvements in working memory and inhibitory control. This result, although exploratory, highlights the influence of individual variables and previous experiences on brain plasticity.
Collapse
Affiliation(s)
| | - Raquel Viejo-Sobera
- Cognitive NeuroLab, Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| | | | | |
Collapse
|
16
|
Bakulin I, Zabirova A, Lagoda D, Poydasheva A, Cherkasova A, Pavlov N, Kopnin P, Sinitsyn D, Kremneva E, Fedorov M, Gnedovskaya E, Suponeva N, Piradov M. Combining HF rTMS over the Left DLPFC with Concurrent Cognitive Activity for the Offline Modulation of Working Memory in Healthy Volunteers: A Proof-of-Concept Study. Brain Sci 2020; 10:brainsci10020083. [PMID: 32033106 PMCID: PMC7071618 DOI: 10.3390/brainsci10020083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 01/28/2023] Open
Abstract
It has been proposed that the effectiveness of non-invasive brain stimulation (NIBS) as a cognitive enhancement technique may be enhanced by combining the stimulation with concurrent cognitive activity. However, the benefits of such a combination in comparison to protocols without ongoing cognitive activity have not yet been studied. In the present study, we investigate the effects of fMRI-guided high-frequency repetitive transcranial magnetic stimulation (HF rTMS) over the left dorsolateral prefrontal cortex (DLPFC) on working memory (WM) in healthy volunteers, using an n-back task with spatial and verbal stimuli and a spatial span task. In two combined protocols (TMS + WM + (maintenance) and TMS + WM + (rest)) trains of stimuli were applied in the maintenance and rest periods of the modified Sternberg task, respectively. We compared them to HF rTMS without a cognitive load (TMS + WM −) and control stimulation (TMS − WM + (maintenance)). No serious adverse effects appeared in this study. Among all protocols, significant effects on WM were shown only for the TMS + WM − with oppositely directed influences of this protocol on storage and manipulation in spatial WM. Moreover, there was a significant difference between the effects of TMS + WM − and TMS + WM + (maintenance), suggesting that simultaneous cognitive activity does not necessarily lead to an increase in TMS effects.
Collapse
Affiliation(s)
- Ilya Bakulin
- Research Center of Neurology, Volokolamskoe Shosse, 80, Moscow 125367, Russia; (A.Z.); (D.L.); (A.P.); (A.C.); (N.P.); (P.K.); (D.S.); (E.K.); (E.G.); (N.S.); (M.P.)
- Correspondence: ; Tel.: +7-495-490-2010
| | - Alfiia Zabirova
- Research Center of Neurology, Volokolamskoe Shosse, 80, Moscow 125367, Russia; (A.Z.); (D.L.); (A.P.); (A.C.); (N.P.); (P.K.); (D.S.); (E.K.); (E.G.); (N.S.); (M.P.)
| | - Dmitry Lagoda
- Research Center of Neurology, Volokolamskoe Shosse, 80, Moscow 125367, Russia; (A.Z.); (D.L.); (A.P.); (A.C.); (N.P.); (P.K.); (D.S.); (E.K.); (E.G.); (N.S.); (M.P.)
| | - Alexandra Poydasheva
- Research Center of Neurology, Volokolamskoe Shosse, 80, Moscow 125367, Russia; (A.Z.); (D.L.); (A.P.); (A.C.); (N.P.); (P.K.); (D.S.); (E.K.); (E.G.); (N.S.); (M.P.)
| | - Anastasiia Cherkasova
- Research Center of Neurology, Volokolamskoe Shosse, 80, Moscow 125367, Russia; (A.Z.); (D.L.); (A.P.); (A.C.); (N.P.); (P.K.); (D.S.); (E.K.); (E.G.); (N.S.); (M.P.)
| | - Nikolay Pavlov
- Research Center of Neurology, Volokolamskoe Shosse, 80, Moscow 125367, Russia; (A.Z.); (D.L.); (A.P.); (A.C.); (N.P.); (P.K.); (D.S.); (E.K.); (E.G.); (N.S.); (M.P.)
| | - Peter Kopnin
- Research Center of Neurology, Volokolamskoe Shosse, 80, Moscow 125367, Russia; (A.Z.); (D.L.); (A.P.); (A.C.); (N.P.); (P.K.); (D.S.); (E.K.); (E.G.); (N.S.); (M.P.)
| | - Dmitry Sinitsyn
- Research Center of Neurology, Volokolamskoe Shosse, 80, Moscow 125367, Russia; (A.Z.); (D.L.); (A.P.); (A.C.); (N.P.); (P.K.); (D.S.); (E.K.); (E.G.); (N.S.); (M.P.)
| | - Elena Kremneva
- Research Center of Neurology, Volokolamskoe Shosse, 80, Moscow 125367, Russia; (A.Z.); (D.L.); (A.P.); (A.C.); (N.P.); (P.K.); (D.S.); (E.K.); (E.G.); (N.S.); (M.P.)
| | - Maxim Fedorov
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30, bld. 1, Territory of Innovation Center «Skolkovo», Moscow 121205, Russia;
| | - Elena Gnedovskaya
- Research Center of Neurology, Volokolamskoe Shosse, 80, Moscow 125367, Russia; (A.Z.); (D.L.); (A.P.); (A.C.); (N.P.); (P.K.); (D.S.); (E.K.); (E.G.); (N.S.); (M.P.)
- Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30, bld. 1, Territory of Innovation Center «Skolkovo», Moscow 121205, Russia;
| | - Natalia Suponeva
- Research Center of Neurology, Volokolamskoe Shosse, 80, Moscow 125367, Russia; (A.Z.); (D.L.); (A.P.); (A.C.); (N.P.); (P.K.); (D.S.); (E.K.); (E.G.); (N.S.); (M.P.)
| | - Michael Piradov
- Research Center of Neurology, Volokolamskoe Shosse, 80, Moscow 125367, Russia; (A.Z.); (D.L.); (A.P.); (A.C.); (N.P.); (P.K.); (D.S.); (E.K.); (E.G.); (N.S.); (M.P.)
| |
Collapse
|
17
|
Bentley JN, Irwin ZT, Black SD, Roach ML, Vaden RJ, Gonzalez CL, Khan AU, El-Sayed GA, Knight RT, Guthrie BL, Walker HC. Subcortical Intermittent Theta-Burst Stimulation (iTBS) Increases Theta-Power in Dorsolateral Prefrontal Cortex (DLPFC). Front Neurosci 2020; 14:41. [PMID: 32082113 PMCID: PMC7006239 DOI: 10.3389/fnins.2020.00041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/13/2020] [Indexed: 12/20/2022] Open
Abstract
Introduction Cognitive symptoms from Parkinson’s disease cause severe disability and significantly limit quality of life. Little is known about mechanisms of cognitive impairment in PD, although aberrant oscillatory activity in basal ganglia-thalamo-prefrontal cortical circuits likely plays an important role. While continuous high-frequency deep brain stimulation (DBS) improves motor symptoms, it is generally ineffective for cognitive symptoms. Although we lack robust treatment options for these symptoms, recent studies with transcranial magnetic stimulation (TMS), applying intermittent theta-burst stimulation (iTBS) to dorsolateral prefrontal cortex (DLPFC), suggest beneficial effects for certain aspects of cognition, such as memory or inhibitory control. While TMS is non-invasive, its results are transient and require repeated application. Subcortical DBS targets have strong reciprocal connections with prefrontal cortex, such that iTBS through the permanently implanted lead might represent a more durable solution. Here we demonstrate safety and feasibility for delivering iTBS from the DBS electrode and explore changes in DLPFC electrophysiology. Methods We enrolled seven participants with medically refractory Parkinson’s disease who underwent DBS surgery targeting either the subthalamic nucleus (STN) or globus pallidus interna (GPi). We temporarily placed an electrocorticography strip over DLPFC through the DBS burr hole. After placement of the DBS electrode into either GPi (n = 3) or STN (n = 4), awake subjects rested quietly during iTBS (three 50-Hz pulses delivered at 5 Hz for 2 s, followed by 8 s of rest). We contrasted power spectra in DLPFC local field potentials during iTBS versus at rest, as well as between iTBS and conventional high-frequency stimulation (HFS). Results Dominant frequencies in DLPFC at rest varied among subjects and along the subdural strip electrode, though they were generally localized in theta (3–8 Hz) and/or beta (10–30 Hz) ranges. Both iTBS and HFS were well-tolerated and imperceptible. iTBS increased theta-frequency activity more than HFS. Further, GPi stimulation resulted in significantly greater theta-power versus STN stimulation in our sample. Conclusion Acute subcortical iTBS from the DBS electrode was safe and well-tolerated. This novel stimulation pattern delivered from the GPi may increase theta-frequency power in ipsilateral DLPFC. Future studies will confirm these changes in DLPFC activity during iTBS and evaluate whether they are associated with improvements in cognitive or behavioral symptoms from PD.
Collapse
Affiliation(s)
- J Nicole Bentley
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Zachary T Irwin
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sarah D Black
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Megan L Roach
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ryan J Vaden
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Christopher L Gonzalez
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Anas U Khan
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Galal A El-Sayed
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert T Knight
- Department of Psychology and Neuroscience, University of California, Berkeley, Berkeley, CA, United States.,Department of Neurology and Neurosurgery, University of California, San Francisco, San Francisco, CA, United States
| | - Barton L Guthrie
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Harrison C Walker
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
18
|
Basso D, Saracini C. Differential involvement of left and right frontoparietal areas in visuospatial planning: An rTMS study. Neuropsychologia 2020; 136:107260. [DOI: 10.1016/j.neuropsychologia.2019.107260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 11/04/2019] [Accepted: 11/08/2019] [Indexed: 01/27/2023]
|
19
|
Hill AT, McModie S, Fung W, Hoy KE, Chung SW, Bertram KL. Impact of prefrontal intermittent theta-burst stimulation on working memory and executive function in Parkinson's disease: A double-blind sham-controlled pilot study. Brain Res 2019; 1726:146506. [PMID: 31634450 DOI: 10.1016/j.brainres.2019.146506] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/18/2019] [Accepted: 10/09/2019] [Indexed: 02/08/2023]
Abstract
Cognitive impairment is a prevalent non-motor feature of Parkinson's disease (PD) which can present even in early stages of the disease. Impairments in executive processing and working memory (WM) are common and have been attributed, in part, to abnormalities within the dorsolateral prefrontal cortex (DLPFC) and broader fronto-striatal circuitry. Previous studies in cognitively normal adults have suggested intermittent Theta Burst Stimulation (iTBS), an excitatory plasticity-inducing non-invasive brain stimulation technique, can enhance these cognitive functions. Fourteen participants with a diagnosis of idiopathic PD received either Active or Sham iTBS over the left DLPFC across two separate experimental sessions as part of a double-blind sham-controlled crossover experimental design. The Berg's Card Sorting Test (BCST) and N-Back tasks, which measure executive function and WM respectively, were administered prior to iTBS and again five- and 30-minutes following stimulation. Despite being well-tolerated, iTBS failed to modulate performance on any of the cognitive outcome measures. This finding was further supported by Bayes Factor analyses which indicated moderate levels of support for the null hypothesis overall. This initial pilot study therefore does not support single-session iTBS as an efficacious method for modulating either executive processes or WM in PD. We discuss potential reasons for this finding along with directions for future research.
Collapse
Affiliation(s)
- Aron T Hill
- Neurology Department, The Alfred Hospital, Melbourne, Australia; Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, ON, Canada.
| | - Salar McModie
- Neurology Department, The Alfred Hospital, Melbourne, Australia
| | - Wilson Fung
- Neurology Department, The Alfred Hospital, Melbourne, Australia
| | - Kate E Hoy
- Epworth Centre for Innovation in Mental Health, Epworth HealthCare and Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia; Monash Alfred Psychiatry Research Centre, The Alfred and Monash University, Central Clinical School, Victoria, Australia
| | - Sung-Wook Chung
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University, Central Clinical School, Victoria, Australia
| | - Kelly L Bertram
- Neurology Department, The Alfred Hospital, Melbourne, Australia; Neurosciences, Central Clinical School, Monash University, Victoria, Australia
| |
Collapse
|
20
|
Curtin A, Ayaz H, Tang Y, Sun J, Wang J, Tong S. Enhancing neural efficiency of cognitive processing speed via training and neurostimulation: An fNIRS and TMS study. Neuroimage 2019; 198:73-82. [PMID: 31078636 DOI: 10.1016/j.neuroimage.2019.05.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 11/24/2022] Open
Abstract
Speed of Processing (SoP) represents a fundamental limiting step in cognitive performance which may underlie General Intelligence. The measure of SoP is particularly sensitive to aging, neurological or cognitive diseases, and has become a benchmark for diagnosis, cognitive remediation, and enhancement. Neural efficiency of the Dorsolateral Prefrontal Cortex (DLPFC) is proposed to account for individual differences in SoP. However, the mechanisms by which DLPFC efficiency is shaped by training and whether it can be enhanced remain elusive. To address this, we monitored the brain activity of sixteen healthy participants using functional Near Infrared Spectroscopy (fNIRS) while practicing a common SoP task (Symbol Digit Substitution Task) across 4 sessions. Furthermore, in each session, participants received counterbalanced excitatory repetitive transcranial magnetic stimulation (rTMS) during mid-session breaks. Results indicate a significant involvement of the left-DLPFC in SoP, whose neural efficiency is consistently increased through task practice. Active neurostimulation, but not Sham, significantly enhanced the neural efficiency. These findings suggest a common mechanism by which neurostimulation may aid to accelerate learning.
Collapse
Affiliation(s)
- Adrian Curtin
- Drexel University, School of Biomedical Engineering, Science and Health Systems, Philadelphia, PA, USA; Shanghai Jiao Tong University, School of Biomedical Engineering, Shanghai, China
| | - Hasan Ayaz
- Drexel University, School of Biomedical Engineering, Science and Health Systems, Philadelphia, PA, USA; University of Pennsylvania, Department of Family and Community Health, Philadelphia, PA, USA; Children's Hospital of Philadelphia, Center for Injury Research and Prevention, Philadelphia, PA, USA.
| | - Yingying Tang
- Shanghai Mental Health Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Junfeng Sun
- Shanghai Jiao Tong University, School of Biomedical Engineering, Shanghai, China
| | - Jijun Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Shanbao Tong
- Shanghai Jiao Tong University, School of Biomedical Engineering, Shanghai, China.
| |
Collapse
|
21
|
Continuous theta-burst stimulation over the dorsolateral prefrontal cortex inhibits improvement on a working memory task. Sci Rep 2018; 8:14835. [PMID: 30287868 PMCID: PMC6172210 DOI: 10.1038/s41598-018-33187-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 09/24/2018] [Indexed: 01/12/2023] Open
Abstract
Theta-burst stimulation (TBS) over the dorsolateral prefrontal cortex (DLPFC) may be more effective for modulating cortical excitability compared to standard repetitive transcranial magnetic stimulation. However, the impact of intermittent (iTBS) and continuous TBS (cTBS) on working memory (WM) is poorly studied. The aim of our study was to compare the effects of iTBS and cTBS on WM over the left and right DLPFC. iTBS, cTBS or sham stimulation was administered over the right and left hemisphere of fifty-one healthy human subjects. WM was assessed before and after TBS using the 1-back, 2-back, and 3-back tasks. We found classical practice effects in the iTBS and the sham group: WM performance improved following stimulation as measured by the discriminability index. However, this effect could not be observed in the cTBS group. We did not find any hemisphere-dependent effects, suggesting that the practice effect is not lateralized, and TBS affects WM performance in a comparable manner if administered either over the left or the right hemisphere. We propose that our findings represent a useful addition to the literature of TBS-induced effects on WM. Moreover, these results indicate the possibility of clarifying processes underlying WM performance changes by using non-invasive brain stimulation.
Collapse
|
22
|
Chung SW, Sullivan CM, Rogasch NC, Hoy KE, Bailey NW, Cash RFH, Fitzgerald PB. The effects of individualised intermittent theta burst stimulation in the prefrontal cortex: A TMS-EEG study. Hum Brain Mapp 2018; 40:608-627. [PMID: 30251765 DOI: 10.1002/hbm.24398] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 08/08/2018] [Accepted: 09/04/2018] [Indexed: 01/08/2023] Open
Abstract
Recent studies have highlighted variability in response to theta burst stimulation (TBS) in humans. TBS paradigm was originally developed in rodents to mimic gamma bursts coupled with theta rhythms, and was shown to elicit long-term potentiation. The protocol was subsequently adapted for humans using standardised frequencies of stimulation. However, each individual has different rhythmic firing pattern. The present study sought to explore whether individualised intermittent TBS (Ind iTBS) could outperform the effects of two other iTBS variants. Twenty healthy volunteers received iTBS over left prefrontal cortex using 30 Hz at 6 Hz, 50 Hz at 5 Hz, or individualised frequency in separate sessions. Ind iTBS was determined using theta-gamma coupling during the 3-back task. Concurrent use of transcranial magnetic stimulation and electroencephalography (TMS-EEG) was used to track changes in cortical plasticity. We also utilised mood ratings using a visual analogue scale and assessed working memory via the 3-back task before and after stimulation. No group-level effect was observed following either 30 or 50 Hz iTBS in TMS-EEG. Ind iTBS significantly increased the amplitude of the TMS-evoked P60, and decreased N100 and P200 amplitudes. A significant positive correlation between neurophysiological change and change in mood rating was also observed. Improved accuracy in the 3-back task was observed following both 50 Hz and Ind iTBS conditions. These findings highlight the critical importance of frequency in the parameter space of iTBS. Tailored stimulation parameters appear more efficacious than standard paradigms in neurophysiological and mood changes. This novel approach presents a promising option and benefits may extend to clinical applications.
Collapse
Affiliation(s)
- Sung Wook Chung
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Caley M Sullivan
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Nigel C Rogasch
- Brain and Mental Health Laboratory, School of Psychological Sciences and Monash Biomedical Imaging, Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Melbourne, Australia
| | - Kate E Hoy
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Neil W Bailey
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Robin F H Cash
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia.,Epworth Clinic, Epworth Healthcare, Melbourne, Australia
| |
Collapse
|
23
|
Causal role of the inferolateral prefrontal cortex in balancing goal-directed and habitual control of behavior. Sci Rep 2018; 8:9382. [PMID: 29925889 PMCID: PMC6010441 DOI: 10.1038/s41598-018-27678-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 06/07/2018] [Indexed: 11/08/2022] Open
Abstract
Successful adaptation to complex environments depends on the balance of at least two systems: a flexible but slow goal-directed system encoding action-outcome associations and an efficient but rigid habitual system linking responses to preceding stimuli. Recent evidence suggests that the inferolateral prefrontal cortex (ilPFC), a region well known to contribute to cognitive control processes, may play a crucial role in the balance of goal-directed and habitual responding. This evidence, however, comes mainly from correlational data and whether the ilPFC is indeed causally involved in the goal-directed vs. habitual control of behavior is unclear. Here, we used neuro-navigated theta-burst stimulation (TBS) to either inhibit or enhance right ilPFC functionality before participants completed an instrumental learning task designed to probe goal-directed vs. habitual behavioral control. TBS did not affect overall learning performance. However, participants that had received inhibitory TBS were less able to adapt their behavior to altered task demands, indicating a shift from goal-directed towards more habitual control of behavior. Sham or excitatory TMS groups showed no such effect and were comparable in their performance to an unstimulated control group. Our findings indicate a causal role of the ilPFC in the balance of goal-directed vs. habitual control of behavior.
Collapse
|
24
|
The effect of single and repeated prefrontal intermittent theta burst stimulation on cortical reactivity and working memory. Brain Stimul 2018; 11:566-574. [DOI: 10.1016/j.brs.2018.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/18/2017] [Accepted: 01/04/2018] [Indexed: 01/26/2023] Open
|
25
|
Lowe CJ, Manocchio F, Safati AB, Hall PA. The effects of theta burst stimulation (TBS) targeting the prefrontal cortex on executive functioning: A systematic review and meta-analysis. Neuropsychologia 2018; 111:344-359. [PMID: 29438672 DOI: 10.1016/j.neuropsychologia.2018.02.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 02/02/2018] [Accepted: 02/03/2018] [Indexed: 12/16/2022]
Abstract
Theta burst stimulation (TBS) is a highly efficient repetitive transcranial magnetic stimulation (rTMS) variant employed in experimental and clinical treatment paradigms. Despite widespread usage of TBS targeting the prefrontal cortex (PFC), there has been no systematic review of the evidence linking TBS protocols to changes in task performance on common measures of prefrontal function in general, and executive functions specifically. A systematic review of the literature was conducted using PsycINFO, PubMed, Web of Science and Scopus databases to identify articles examining the effects of TBS targeting the PFC on executive function task performance. Both the up-regulating (intermittent theta burst stimulation; iTBS) and down-regulating (continuous theta burst stimulation; cTBS) variants of TBS were considered. 32 (29 cTBS; 8 iTBS) studies met the inclusion criteria. Participants (n = 759; 51.41% female) were primarily young adults (Mage = 26), with one study examining the effects of cTBS and iTBS in older adults. Results from individual studies were converted to Hedge's g and random-effects models were used to estimate the overall effect size for each protocol. Age, biological sex, and control methodology were examined as potential moderators of the cTBS effect on executive function test performance. Findings indicated a- reliable attentuating effect of cTBS on executive function task performance (g = -.244, Z = -5.920, p < .001); this effect was relatively uniform across included studies (Q= 24.178, p = .838, I2 = 0). Although no significant moderators of the cTBS effect were identified, laterality sub analyses indicated that the magnitude of the effect was significantly higher (Mdiff = .213, Zdiff = 2.546, p = .011) for left-sided (g = -.358, Z = -5.816, p < .001) relative to right-sided (g = -.145, Z = -2.552, p = .011) PFC stimulation. A systematic review of iTBS studies revealed variability in reliability of effects though most were in the theorized direction. TBS protocols appear to be effective in modulating prefrontal cortical excitability in previously theorized directions.
Collapse
Affiliation(s)
- Cassandra J Lowe
- Prevention Neuroscience Lab, School of Public Health and Health Systems, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| | - Felicia Manocchio
- Prevention Neuroscience Lab, School of Public Health and Health Systems, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| | - Adrian B Safati
- Prevention Neuroscience Lab, School of Public Health and Health Systems, University of Waterloo, Waterloo, ON, Canada N2L 3G1
| | - Peter A Hall
- Prevention Neuroscience Lab, School of Public Health and Health Systems, University of Waterloo, Waterloo, ON, Canada N2L 3G1.
| |
Collapse
|
26
|
Chung SW, Rogasch NC, Hoy KE, Sullivan CM, Cash RFH, Fitzgerald PB. Impact of different intensities of intermittent theta burst stimulation on the cortical properties during TMS-EEG and working memory performance. Hum Brain Mapp 2017; 39:783-802. [PMID: 29124791 DOI: 10.1002/hbm.23882] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/09/2017] [Accepted: 11/02/2017] [Indexed: 02/06/2023] Open
Abstract
Intermittent theta burst stimulation (iTBS) is a noninvasive brain stimulation technique capable of increasing cortical excitability beyond the stimulation period. Due to the rapid induction of modulatory effects, prefrontal application of iTBS is gaining popularity as a therapeutic tool for psychiatric disorders such as depression. In an attempt to increase efficacy, higher than conventional intensities are currently being applied. The assumption that this increases neuromodulatory may be mechanistically false for iTBS. This study examined the influence of intensity on the neurophysiological and behavioural effects of iTBS in the prefrontal cortex. Sixteen healthy participants received iTBS over prefrontal cortex at either 50, 75 or 100% resting motor threshold in separate sessions. Single-pulse TMS and concurrent electroencephalography (EEG) was used to assess changes in cortical reactivity measured as TMS-evoked potentials and oscillations. The n-back task was used to assess changes in working memory performance. The data can be summarised as an inverse U-shape relationship between intensity and iTBS plastic effects, where 75% iTBS yielded the largest neurophysiological changes. Improvement in reaction time in the 3-back task was supported by the change in alpha power, however, comparison between conditions revealed no significant differences. The assumption that higher intensity results in greater neuromodulatory effects may be false, at least in healthy individuals, and should be carefully considered for clinical populations. Neurophysiological changes associated with working memory following iTBS suggest functional relevance. However, the effects of different intensities on behavioural performance remain elusive in the present healthy sample.
Collapse
Affiliation(s)
- Sung Wook Chung
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Nigel C Rogasch
- Brain and Mental Health Laboratory, School of Psychological Sciences and Monash Biomedical Imaging, Monash Institute of Cognitive and Clinical Neuroscience, Monash University, Melbourne, Australia
| | - Kate E Hoy
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Caley M Sullivan
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Robin F H Cash
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia
| | - Paul B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Monash University, Central Clinical School and The Alfred, Melbourne, Australia.,Epworth Clinic, Epworth Healthcare, Camberwell, VIC, Australia
| |
Collapse
|