1
|
Karlsson EM, Carey DP. Hemispheric asymmetry of hand and tool perception in left- and right-handers with known language dominance. Neuropsychologia 2024; 196:108837. [PMID: 38428518 DOI: 10.1016/j.neuropsychologia.2024.108837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/20/2023] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Regions in the brain that are selective for images of hands and tools have been suggested to be lateralised to the left hemisphere of right-handed individuals. In left-handers, many functions related to tool use or tool pantomime may also depend more on the left hemisphere. This result seems surprising, given that the dominant hand of these individuals is controlled by the right hemisphere. One explanation is that the left hemisphere is dominant for speech and language in the majority of left-handers, suggesting a supraordinate control system for complex motor sequencing that is required for skilled tool use, as well as for speech. In the present study, we examine if this left-hemispheric specialisation extends to perception of hands and tools in left- and right-handed individuals. We, crucially, also include a group of left-handers with right-hemispheric language dominance to examine their asymmetry biases. The results suggest that tools lateralise to the left hemisphere in most right-handed individuals with left-hemispheric language dominance. Tools also lateralise to the language dominant hemisphere in right-hemispheric language dominant left-handers, but the result for left-hemispheric language dominant left-handers are more varied, and no clear bias towards one hemisphere is found. Hands did not show a group-level asymmetry pattern in any of the groups. These results suggest a more complex picture regarding hemispheric overlap of hand and tool representations, and that visual appearance of tools may be driven in part by both language dominance and the hemisphere which controls the motor-dominant hand.
Collapse
Affiliation(s)
- Emma M Karlsson
- Institute of Cognitive Neuroscience, School of Psychology and Sport Science, Bangor University, Bangor, UK; Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium.
| | - David P Carey
- Institute of Cognitive Neuroscience, School of Psychology and Sport Science, Bangor University, Bangor, UK
| |
Collapse
|
2
|
Daniel E, Deng F, Patel SK, Sedrak MS, Kim H, Razavi M, Sun C, Root JC, Ahles TA, Dale W, Chen BT. Brain white matter microstructural changes in chemotherapy-treated older long-term breast cancer survivors. Cancer Med 2024; 13:e6881. [PMID: 38152038 PMCID: PMC10807556 DOI: 10.1002/cam4.6881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/11/2023] [Accepted: 12/17/2023] [Indexed: 12/29/2023] Open
Abstract
PURPOSE To assess white matter microstructural changes in older long-term breast cancer survivors 5-15 years post-chemotherapy treatment. METHODS Breast cancer survivors aged 65 years or older who underwent chemotherapy (C+) and who did not undergo chemotherapy (C-) and age- and sex-matched healthy controls (HC) were enrolled at time point 1 (TP1) and followed for 2 years for time point 2 (TP2). All participants underwent brain MRI with diffusion tensor images and neuropsychological (NP) testing with the NIH Toolbox Cognition Battery. Tract-based spatial statistics (TBSS) analysis was performed on the diffusion tensor images to assess white matter microstructural changes with the fractional anisotropy (FA) parameter. RESULTS There were significant longitudinal alterations in FA within the C+ group over time. The C+ group showed diminished FA in the body and genu of corpus callosum, anterior corona radiate, and external capsule on both the whole brain and region of interest (ROI) based analyses after p < 0.05 family-wise error (FWE) correction. However, there were no significant group differences between the groups at TP1. Additionally, at TP1, a positive correlation (R = 0.58, p = 0.04) was observed between the FA value of the anterior corona radiata and the crystallized composite score in the C+ group. CONCLUSIONS Brain white matter microstructural alterations may be the underlying neural correlates of cognitive changes in older breast cancer survivors who had chemotherapy treatment years ago.
Collapse
Affiliation(s)
- Ebenezer Daniel
- Department of Diagnostic RadiologyCity of Hope National Medical CenterDuarteCAUSA
| | - Frank Deng
- Department of Diagnostic RadiologyCity of Hope National Medical CenterDuarteCAUSA
| | - Sunita K. Patel
- Department of Population ScienceCity of Hope National Medical CenterDuarteCAUSA
| | - Mina S. Sedrak
- Department of Medical OncologyCity of Hope National Medical CenterDuarteCAUSA
| | - Heeyoung Kim
- Center for Cancer and AgingCity of Hope National Medical CenterDuarteCAUSA
| | - Marianne Razavi
- Department of Supportive Care MedicineCity of Hope National Medical CenterDuarteCAUSA
| | - Can‐Lan Sun
- Center for Cancer and AgingCity of Hope National Medical CenterDuarteCAUSA
| | - James C. Root
- Neurocognitive Research LabMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - Tim A. Ahles
- Neurocognitive Research LabMemorial Sloan Kettering Cancer CenterNew YorkNYUSA
| | - William Dale
- Center for Cancer and AgingCity of Hope National Medical CenterDuarteCAUSA
- Department of Supportive Care MedicineCity of Hope National Medical CenterDuarteCAUSA
| | - Bihong T. Chen
- Department of Diagnostic RadiologyCity of Hope National Medical CenterDuarteCAUSA
- Center for Cancer and AgingCity of Hope National Medical CenterDuarteCAUSA
| |
Collapse
|
3
|
Przybylski L, Kroliczak G. The functional organization of skilled actions in the adextral and atypical brain. Neuropsychologia 2023; 191:108735. [PMID: 37984793 DOI: 10.1016/j.neuropsychologia.2023.108735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/21/2023] [Accepted: 11/15/2023] [Indexed: 11/22/2023]
Abstract
When planning functional grasps of tools, right-handed individuals (dextrals) show mostly left-lateralized neural activity in the praxis representation network (PRN), regardless of the used hand. Here we studied whether or not similar cerebral asymmetries are evident in non-righthanded individuals (adextrals). Sixty two participants, 28 righthanders and 34 non-righthanders (21 lefthanders, 13 mixedhanders), planned functional grasps of tools vs. grasps of control objects, and subsequently performed their pantomimed executions, in an event-related functional magnetic resonance imaging (fMRI) project. Both hands were tested, separately in two different sessions, counterbalanced across participants. After accounting for non-functional components of the prospective grasp, planning functional grasps of tools was associated with greater engagement of the same, left-hemisphere occipito-temporal, parietal and frontal areas of PRN, regardless of hand and handedness. Only when the analyses involved signal changes referenced to resting baseline intervals, differences between adextrals and dextrals emerged. Whereas in the left hemisphere the neural activity was equivalent in both groups (except for the occipito-temporo-parietal junction), its increases in the right occipito-temporal cortex, medial intraparietal sulcus (area MIP), the supramarginal gyrus (area PFt/PF), and middle frontal gyrus (area p9-46v) were significantly greater in adextrals. The inverse contrast was empty. Notably, when individuals with atypical and typical hemispheric phenotypes were directly compared, planning functional (vs. control) grasps invoked, instead, significant clusters located nearly exclusively in the left hemisphere of the typical phenotype. Previous studies interpret similar right-sided vs. left-sided increases in neural activity for skilled actions as handedness dependent, i.e., located in the hemisphere dominant for manual skills. Yet, none of the effects observed here can be purely handedness dependent because there were mixed-handed individuals among adextrals, and numerous mixed-handed and left-handed individuals possess the typical phenotype. Thus, our results clearly show that hand dominance has limited power in driving the cerebral organization of motor cognitive functions.
Collapse
Affiliation(s)
- Lukasz Przybylski
- Action & Cognition Laboratory, Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Poznan, Poland
| | - Gregory Kroliczak
- Action & Cognition Laboratory, Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Poznan, Poland; Cognitive Neuroscience Center, Adam Mickiewicz University, Poznan, Poland.
| |
Collapse
|
4
|
Ahmed SR, Jenabi M, Gene M, Moreno R, Peck KK, Holodny A. Power spectral analysis can determine language laterality from resting-state functional MRI data in healthy controls. J Neuroimaging 2023; 33:661-670. [PMID: 37032593 PMCID: PMC10523910 DOI: 10.1111/jon.13105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND AND PURPOSE Resting-state functional magnetic resonance imaging (rsfMRI) has been proposed as an alternative to task-based fMRI including clinical situations such as preoperative brain tumor planning, due to advantages including ease of performance and time savings. However, one of its drawbacks is the limited ability to accurately lateralize language function. METHODS Using the rsfMRI data of healthy controls, we carried out a power spectra analysis on three regions of interest (ROIs): Broca's area (BA) in the frontal cortex for language, hand motor (HM) area in the primary motor cortex, and the primary visual cortex (V1). Spike removal, motion correction, linear trend removal, and spatial smoothing were applied. Spontaneous low-frequency fluctuations (0.01-0.1 Hz) were filtered to enable functional integration. RESULTS BA showed greater power on the left hemisphere relative to the right (p = .0055), while HM (p = .1563) and V1 (p = .4681) were not statistically significant. A novel index, termed the power laterality index (PLI), computed to estimate the degree of power lateralization for each brain region, revealed a statistically significant difference between BA and V1 (p < .00001), where V1 was used as a control since the primary visual cortex does not lateralize. Validation studies used to compare PLI to a laterality index computed using phonemic fluency, a task-based, language fMRI paradigm, demonstrated good correlation. CONCLUSIONS The power spectra for BA revealed left language lateralization, which was not replicated in HM or V1. This work demonstrates the feasibility and validity of an ROI-based power spectra analysis on rsfMRI data for language lateralization.
Collapse
Affiliation(s)
- Syed Rakin Ahmed
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, US
- Harvard Graduate Program in Biophysics, Harvard Medical School, Harvard University, Cambridge, MA, US
- Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, US
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, US
- Broad Institute of MIT and Harvard, Cambridge, MA, US
| | - Mehrnaz Jenabi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, US
| | - Madeleine Gene
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, US
| | - Raquel Moreno
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, US
| | - Kyung K. Peck
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, US
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, US
| | - Andrei Holodny
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, US
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY, US
- Department of Radiology, Weill Medical College of Cornell University, New York, NY, US
- Department of Neuroscience, Weill-Cornell Graduate School of the Medical Sciences, New York, NY, US
| |
Collapse
|
5
|
James CE, Stucker C, Junker-Tschopp C, Fernandes AM, Revol A, Mili ID, Kliegel M, Frisoni GB, Brioschi Guevara A, Marie D. Musical and psychomotor interventions for cognitive, sensorimotor, and cerebral decline in patients with Mild Cognitive Impairment (COPE): a study protocol for a multicentric randomized controlled study. BMC Geriatr 2023; 23:76. [PMID: 36747142 PMCID: PMC9900212 DOI: 10.1186/s12877-022-03678-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/03/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Regular cognitive training can boost or maintain cognitive and brain functions known to decline with age. Most studies administered such cognitive training on a computer and in a lab setting. However, everyday life activities, like musical practice or physical exercise that are complex and variable, might be more successful at inducing transfer effects to different cognitive domains and maintaining motivation. "Body-mind exercises", like Tai Chi or psychomotor exercise, may also positively affect cognitive functioning in the elderly. We will compare the influence of active music practice and psychomotor training over 6 months in Mild Cognitive Impairment patients from university hospital memory clinics on cognitive and sensorimotor performance and brain plasticity. The acronym of the study is COPE (Countervail cOgnitive imPairmEnt), illustrating the aim of the study: learning to better "cope" with cognitive decline. METHODS We aim to conduct a randomized controlled multicenter intervention study on 32 Mild Cognitive Impairment (MCI) patients (60-80 years), divided over 2 experimental groups: 1) Music practice; 2) Psychomotor treatment. Controls will consist of a passive test-retest group of 16 age, gender and education level matched healthy volunteers. The training regimens take place twice a week for 45 min over 6 months in small groups, provided by professionals, and patients should exercise daily at home. Data collection takes place at baseline (before the interventions), 3, and 6 months after training onset, on cognitive and sensorimotor capacities, subjective well-being, daily living activities, and via functional and structural neuroimaging. Considering the current constraints of the COVID-19 pandemic, recruitment and data collection takes place in 3 waves. DISCUSSION We will investigate whether musical practice contrasted to psychomotor exercise in small groups can improve cognitive, sensorimotor and brain functioning in MCI patients, and therefore provoke specific benefits for their daily life functioning and well-being. TRIAL REGISTRATION The full protocol was approved by the Commission cantonale d'éthique de la recherche sur l'être humain de Genève (CCER, no. 2020-00510) on 04.05.2020, and an amendment by the CCER and the Commission cantonale d'éthique de la recherche sur l'être humain de Vaud (CER-VD) on 03.08.2021. The protocol was registered at clinicaltrials.gov (20.09.2020, no. NCT04546451).
Collapse
Affiliation(s)
- C E James
- Geneva School of Health Sciences, Geneva Musical Minds Lab (GEMMI lab), University of Applied Sciences and Arts Western Switzerland HES-SO, Avenue de Champel 47, 1206, Geneva, Switzerland.
- Faculty of Psychology and Educational Sciences, University of Geneva, Boulevard Carl-Vogt 101, 1205, Geneva, Switzerland.
| | - C Stucker
- Geneva School of Health Sciences, Geneva Musical Minds Lab (GEMMI lab), University of Applied Sciences and Arts Western Switzerland HES-SO, Avenue de Champel 47, 1206, Geneva, Switzerland
| | - C Junker-Tschopp
- Geneva School of Social Work, Department of Psychomotricity, University of Applied Sciences and Arts Western Switzerland HES-SO, Rue Prévost-Martin 28, 1205, Geneva, Switzerland
| | - A M Fernandes
- Geneva School of Health Sciences, Geneva Musical Minds Lab (GEMMI lab), University of Applied Sciences and Arts Western Switzerland HES-SO, Avenue de Champel 47, 1206, Geneva, Switzerland
| | - A Revol
- Geneva School of Social Work, Department of Psychomotricity, University of Applied Sciences and Arts Western Switzerland HES-SO, Rue Prévost-Martin 28, 1205, Geneva, Switzerland
| | - I D Mili
- Faculty of Psychology and Educational Sciences, Didactics of Arts and Movement Laboratory, University of Geneva, Switzerland. Boulevard Carl-Vogt 101, 1205, Geneva, Switzerland
| | - M Kliegel
- Faculty of Psychology and Educational Sciences, Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, Switzerland, Boulevard du Pont d'Arve 28, 1205, Geneva, Switzerland
| | - G B Frisoni
- University Hospitals and University of Geneva, Memory Center, Rue Gabrielle-Perret-Gentil 6, 1205, Geneva, Switzerland
| | - A Brioschi Guevara
- Leenaards Memory Center, Lausanne University Hospital, Chemin de Mont-Paisible 16, 1011, Lausanne, Switzerland
| | - D Marie
- Geneva School of Health Sciences, Geneva Musical Minds Lab (GEMMI lab), University of Applied Sciences and Arts Western Switzerland HES-SO, Avenue de Champel 47, 1206, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, MRI HUG-UNIGE, University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Daniel E, Deng F, Patel SK, Sedrak MS, Kim H, Razavi M, Sun CL, Root JC, Ahles TA, Dale W, Chen BT. Cortical thinning in chemotherapy-treated older long-term breast cancer survivors. Brain Imaging Behav 2023; 17:66-76. [PMID: 36369620 PMCID: PMC10156471 DOI: 10.1007/s11682-022-00743-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2022] [Indexed: 11/13/2022]
Abstract
Cognitive decline is an increasing issue for cancer survivors, especially for older adults, as chemotherapy affects brain structure and function. The purpose of this single center study was to evaluate alterations in cortical thickness and cognition in older long-term survivors of breast cancer who had been treated with chemotherapy years ago. In this prospective cohort study, we enrolled 3 groups of women aged ≥ 65 years with a history of stage I-III breast cancer who had received adjuvant chemotherapy 5 to 15 years ago (chemotherapy group, C +), age-matched women with breast cancer but no chemotherapy (no-chemotherapy group, C-) and healthy controls (HC). All participants underwent brain magnetic resonance imaging and neuropsychological testing with the NIH Toolbox Cognition Battery at time point 1 (TP1) and again at 2 years after enrollment (time point 2 (TP2)). At TP1, there were no significant differences in cortical thickness among the 3 groups. Longitudinally, the C + group showed cortical thinning in the fusiform gyrus (p = 0.006, effect size (d) = -0.60 [ -1.86, -0.66]), pars triangularis (p = 0.026, effect size (d) = -0.43 [-1.68, -0.82]), and inferior temporal lobe (p = 0.026, effect size (d) = -0.38 [-1.62, -0.31]) of the left hemisphere. The C + group also showed decreases in neuropsychological scores such as the total composite score (p = 0.01, effect size (d) = -3.9726 [-0.9656, -6.9796], fluid composite score (p = 0.03, effect size (d) = -4.438 [-0.406, -8.47], and picture vocabulary score (p = 0.04, effect size (d) = -3.7499 [-0.0617, -7.438]. Our results showed that cortical thickness could be a candidate neuroimaging biomarker for cancer-related cognitive impairment and accelerated aging in older long-term cancer survivors.
Collapse
Affiliation(s)
- Ebenezer Daniel
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Frank Deng
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Sunita K Patel
- Department of Population Science, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Mina S Sedrak
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Heeyoung Kim
- Center for Cancer and Aging, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - Marianne Razavi
- Department of Supportive Care Medicine, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Can-Lan Sun
- Center for Cancer and Aging, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, 91010, USA
| | - James C Root
- Neurocognitive Research Lab, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tim A Ahles
- Neurocognitive Research Lab, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - William Dale
- Center for Cancer and Aging, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, 91010, USA.,Department of Supportive Care Medicine, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Bihong T Chen
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA, 91010, USA. .,Center for Cancer and Aging, City of Hope National Medical Center, 1500 East Duarte Road, Duarte, CA, 91010, USA.
| |
Collapse
|
7
|
Haghshomar M, Shobeiri P, Seyedi SA, Abbasi-Feijani F, Poopak A, Sotoudeh H, Kamali A, Aarabi MH. Cerebellar Microstructural Abnormalities in Parkinson's Disease: a Systematic Review of Diffusion Tensor Imaging Studies. CEREBELLUM (LONDON, ENGLAND) 2022; 21:545-571. [PMID: 35001330 DOI: 10.1007/s12311-021-01355-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Diffusion tensor imaging (DTI) is now having a strong momentum in research to evaluate the neural fibers of the CNS. This technique can study white matter (WM) microstructure in neurodegenerative disorders, including Parkinson's disease (PD). Previous neuroimaging studies have suggested cerebellar involvement in the pathogenesis of PD, and these cerebellum alterations can correlate with PD symptoms and stages. Using the PRISMA 2020 framework, PubMed and EMBASE were searched to retrieve relevant articles. Our search revealed 472 articles. After screening titles and abstracts, and full-text review, and implementing the inclusion criteria, 68 papers were selected for synthesis. Reviewing the selected studies revealed that the patterns of reduction in cerebellum WM integrity, assessed by fractional anisotropy, mean diffusivity, radial diffusivity, and axial diffusivity measures can differ symptoms and stages of PD. Cerebellar diffusion tensor imaging (DTI) changes in PD patients with "postural instability and gait difficulty" are significantly different from "tremor dominant" PD patients. Freezing of the gate is strongly related to cerebellar involvement depicted by DTI. The "reduced cognition," "visual disturbances," "sleep disorders," "depression," and "olfactory dysfunction" are not related to cerebellum microstructural changes on DTI, while "impulsive-compulsive behavior" can be linked to cerebellar WM alteration. Finally, higher PD stages and longer disease duration are associated with cerebellum white matter alteration depicted by DTI. Depiction of cerebellar white matter involvement in PD is feasible by DTI. There is an association with disease duration and severity and several clinical presentations with DTI findings. This clinical-imaging association may eventually improve disease management.
Collapse
Affiliation(s)
- Maryam Haghshomar
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Parnian Shobeiri
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, No. 10, Al-e-Ahmad and Chamran Highway intersection, Tehran, 1411713137, Iran.
| | | | | | - Amirhossein Poopak
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Houman Sotoudeh
- Department of Radiology and Neurology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Arash Kamali
- Department of Diagnostic and Interventional Radiology, University of Texas McGovern Medical School, Houston, TX, USA
| | - Mohammad Hadi Aarabi
- Department of Neuroscience (DNS), Padova Neuroscience Center-PNC, University of Padova, Padua, Italy
| |
Collapse
|
8
|
de Wit MM, Matheson HE. Context-sensitive computational mechanistic explanation in cognitive neuroscience. Front Psychol 2022; 13:903960. [PMID: 35936251 PMCID: PMC9355036 DOI: 10.3389/fpsyg.2022.903960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
Mainstream cognitive neuroscience aims to build mechanistic explanations of behavior by mapping abilities described at the organismal level via the subpersonal level of computation onto specific brain networks. We provide an integrative review of these commitments and their mismatch with empirical research findings. Context-dependent neural tuning, neural reuse, degeneracy, plasticity, functional recovery, and the neural correlates of enculturated skills each show that there is a lack of stable mappings between organismal, computational, and neural levels of analysis. We furthermore highlight recent research suggesting that task context at the organismal level determines the dynamic parcellation of functional components at the neural level. Such instability prevents the establishment of specific computational descriptions of neural function, which remains a central goal of many brain mappers - including those who are sympathetic to the notion of many-to-many mappings between organismal and neural levels. This between-level instability presents a deep epistemological challenge and requires a reorientation of methodological and theoretical commitments within cognitive neuroscience. We demonstrate the need for change to brain mapping efforts in the face of instability if cognitive neuroscience is to maintain its central goal of constructing computational mechanistic explanations of behavior; we show that such explanations must be contextual at all levels.
Collapse
Affiliation(s)
- Matthieu M. de Wit
- Department of Neuroscience, Muhlenberg College, Allentown, PA, United States
| | - Heath E. Matheson
- Department of Psychology, University of Northern British Columbia, Prince George, BC, Canada
| |
Collapse
|
9
|
Cichy I, Kruszwicka A, Palus P, Przybyla T, Schliermann R, Wawrzyniak S, Klichowski M, Rokita A. Physical Education with Eduball Stimulates Non-Native Language Learning in Primary School Students. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138192. [PMID: 35805848 PMCID: PMC9266005 DOI: 10.3390/ijerph19138192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 12/04/2022]
Abstract
Although the neuronal mechanisms of action and cognition are related, the division of intellectual and physical lessons is standard in schools. This is surprising, because numerous studies show that integrating physical education (PE) with teaching content stimulates critical skills. For example, several experiments indicate that Eduball-based PE (i.e., lessons in a sports hall during which students play team mini-games with educational balls with printed letters, numbers, and other signs) develops mathematical and language competencies. At the same time, the Eduball method does not slow down learners’ physical development. However, we have little knowledge about the effects of such techniques on non-native language learning. Consequently, the absence of incorporating core academic subjects into PE in dual-language schools or during foreign language education is exceptionally high. Here, we replicated the Eduball experiment, but with the goal of testing this method for non-native language learning. Thus, the intervention occurred in a dual-language primary school and we evaluated second language (L2) learning. As before, we used the technique of parallel groups (experimental and control); in both groups, there were three 45-min PE classes per week. In the experimental class, two of them were held using Eduball. After a half-year experiment, children from the experimental group (one second-grade, N = 14) improved their non-native language skills significantly more than their peers from the control group (one second-grade, N = 12). These findings demonstrate that Eduball-type intervention stimulates non-native language learning in children. Hence, our report suggests that specific body training forms can support L2 learning.
Collapse
Affiliation(s)
- Ireneusz Cichy
- Department of Team Sports Games, Wroclaw University of Health and Sport Sciences, Mickiewicza 58, 51-684 Wroclaw, Poland; (P.P.); (S.W.); (A.R.)
- Correspondence: (I.C.); (M.K.)
| | - Agnieszka Kruszwicka
- Learning Laboratory, Adam Mickiewicz University, Szamarzewskiego 89, 60-568 Poznan, Poland; (A.K.); (T.P.)
| | - Patrycja Palus
- Department of Team Sports Games, Wroclaw University of Health and Sport Sciences, Mickiewicza 58, 51-684 Wroclaw, Poland; (P.P.); (S.W.); (A.R.)
| | - Tomasz Przybyla
- Learning Laboratory, Adam Mickiewicz University, Szamarzewskiego 89, 60-568 Poznan, Poland; (A.K.); (T.P.)
| | - Rainer Schliermann
- Faculty Social and Health Care Sciences, Regensburg University of Applied Sciences, Seybothstraße 2, 93053 Regensburg, Germany;
| | - Sara Wawrzyniak
- Department of Team Sports Games, Wroclaw University of Health and Sport Sciences, Mickiewicza 58, 51-684 Wroclaw, Poland; (P.P.); (S.W.); (A.R.)
| | - Michal Klichowski
- Learning Laboratory, Adam Mickiewicz University, Szamarzewskiego 89, 60-568 Poznan, Poland; (A.K.); (T.P.)
- Correspondence: (I.C.); (M.K.)
| | - Andrzej Rokita
- Department of Team Sports Games, Wroclaw University of Health and Sport Sciences, Mickiewicza 58, 51-684 Wroclaw, Poland; (P.P.); (S.W.); (A.R.)
| |
Collapse
|
10
|
Kroliczak G, Buchwald M, Kleka P, Klichowski M, Potok W, Nowik AM, Randerath J, Piper BJ. Manual praxis and language-production networks, and their links to handedness. Cortex 2021; 140:110-127. [PMID: 33975084 DOI: 10.1016/j.cortex.2021.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 02/05/2021] [Accepted: 03/19/2021] [Indexed: 10/21/2022]
Abstract
While Liepmann was one of the first researchers to consider a relationship between skilled manual actions (praxis) and language for tasks performed "freely from memory", his primary focus was on the relations between the organization of praxis and left-hemisphere dominance. Subsequent attempts to apply his apraxia model to all cases he studied - including his first patient, a "non-pure right-hander" treated as an exception - left the praxis-handedness issue unresolved. Modern neuropsychological and recent neuroimaging evidence either showed closer associations of praxis and language, than between handedness and any of these two functions, or focused on their dissociations. Yet, present-day developments in neuroimaging and statistics allow us to overcome the limitations of the earlier work on praxis-language-handedness links, and to better quantify their interrelationships. Using functional magnetic resonance imaging (fMRI), we studied tool use pantomimes and subvocal word generation in 125 participants, including righthanders (NRH = 52), ambidextrous individuals (mixedhanders; NMH = 31), and lefthanders (NLH = 42). Laterality indices were calculated both in two critical cytoarchitectonic maps, and 180 multi-modal parcellations of the human cerebral cortex, using voxel count and signal intensity, and the most relevant regions of interest and their networks were further analyzed. We found that atypical organization of praxis was present in all handedness groups (RH = 25.0%, MH = 22.6%; LH = 45.2%), and was about two and a half times as common as atypical organization of language (RH = 3.8%; MH = 6.5%; LH = 26.2%), contingent on ROI selection/LI-calculation method. Despite strong associations of praxis and language, regardless of handedness and typicality, dissociations of atypically represented praxis from typical left-lateralized language were common (~20% of cases), whereas the inverse dissociations of atypically represented language from typical left-lateralized praxis were very rare (in ~2.5% of all cases). The consequences of the existence of such different phenotypes for theoretical accounts of manual praxis, and its links to language and handedness are modeled and discussed.
Collapse
Affiliation(s)
- Gregory Kroliczak
- Action and Cognition Laboratory, Adam Mickiewicz University, Poznan, Poland; Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Poznan, Poland.
| | - Mikolaj Buchwald
- Action and Cognition Laboratory, Adam Mickiewicz University, Poznan, Poland
| | - Pawel Kleka
- Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Poznan, Poland
| | - Michal Klichowski
- Action and Cognition Laboratory, Adam Mickiewicz University, Poznan, Poland; Faculty of Educational Studies, Adam Mickiewicz University, Poznan, Poland
| | - Weronika Potok
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Agnieszka M Nowik
- Action and Cognition Laboratory, Adam Mickiewicz University, Poznan, Poland; Faculty of Psychology and Cognitive Science, Adam Mickiewicz University, Poznan, Poland
| | - Jennifer Randerath
- University of Konstanz, Konstanz, Germany; Lurija Institute for Rehabilitation Sciences and Health Research at the University of Konstanz, Konstanz, Germany
| | - Brian J Piper
- Department of Medical Education, Geisinger Commonwealth School of Medicine, Scranton, PA, USA
| |
Collapse
|
11
|
Wawrzyniak S, Cichy I, Matias AR, Pawlik D, Kruszwicka A, Klichowski M, Rokita A. Physical Activity With Eduball Stimulates Graphomotor Skills in Primary School Students. Front Psychol 2021; 12:614138. [PMID: 33746835 PMCID: PMC7969879 DOI: 10.3389/fpsyg.2021.614138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/11/2021] [Indexed: 11/25/2022] Open
Abstract
Despite the general agreement that the interdisciplinary model of physical education (PE), based on the incorporation of core academic subjects into the PE curriculum, stimulates the holistic development of students, there is still a lack of methods for its implementation. Therefore, Eduball was created, i.e., a method that uses educational balls with printed letters, numbers, and other signs. Numerous studies have shown that children participating in activities with Eduballs can develop their physical fitness while simultaneously improving their academic performance, particularly in math and language, including some writing skills. However, little is known about the effects of Eduball on children's graphomotor skills, which are key for the academic performance of students throughout the entire schooling process. Here, we investigate whether 6-month participation in PE with Eduball stimulates graphomotor skills in primary school students, such as drawing prehandwriting letter patterns on unlined or lined paper and rewriting text on unlined or lined paper. Our results show that the Eduball class (N = 28) significantly improved these skills compared to the control class (N = 26) participating in traditional PE. For example, students from the experimental group wrote with a lower pen pressure and better stability of the line, in contrast to those from the control group. Therefore, this study demonstrates that the Eduball method successfully supports teachers in developing graphomotor skills in children. More broadly, our findings make clear once again that there is the need to integrate physical and cognitive development in education, which can be achieved by using an interdisciplinary model of PE.
Collapse
Affiliation(s)
- Sara Wawrzyniak
- Department of Team Sports Games, University School of Physical Education in Wroclaw, Wroclaw, Poland
| | - Ireneusz Cichy
- Department of Team Sports Games, University School of Physical Education in Wroclaw, Wroclaw, Poland
| | - Ana Rita Matias
- Department of Sports and Health, University of Évora, Évora, Portugal
| | - Damian Pawlik
- Department of Biology and Motor Sports Fundamentals, University School of Physical Education in Wroclaw, Wroclaw, Poland
| | | | - Michal Klichowski
- Faculty of Educational Studies, Adam Mickiewicz University, Poznań, Poland
| | - Andrzej Rokita
- Department of Team Sports Games, University School of Physical Education in Wroclaw, Wroclaw, Poland
| |
Collapse
|
12
|
Woodhead ZVJ, Thompson PA, Karlsson EM, Bishop DVM. An updated investigation of the multidimensional structure of language lateralization in left- and right-handed adults: a test-retest functional transcranial Doppler sonography study with six language tasks. ROYAL SOCIETY OPEN SCIENCE 2021; 8:200696. [PMID: 33972838 PMCID: PMC8074662 DOI: 10.1098/rsos.200696] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 01/04/2021] [Indexed: 05/11/2023]
Abstract
A previous study we reported in this journal suggested that left and right-handers may differ in their patterns of lateralization for different language tasks (Woodhead et al. 2019 R. Soc. Open Sci. 6, 181801. (doi:10.1098/rsos.181801)). However, it had too few left-handers (N = 7) to reach firm conclusions. For this update paper, further participants were added to the sample to create separate groups of left- (N = 31) and right-handers (N = 43). Two hypotheses were tested: (1) that lateralization would be weaker at the group level in left-than right-handers; and (2) that left-handers would show weaker covariance in lateralization between tasks, supporting a two-factor model. All participants performed the same protocol as in our previous paper: lateralization was measured using functional transcranial Doppler sonography during six different language tasks, on two separate testing sessions. The results supported hypothesis 1, with significant differences in laterality between groups for four out of six tasks. For hypothesis 2, structural equation modelling showed that there was stronger evidence for a two-factor model in left than right-handers; furthermore, examination of the factor loadings suggested that the pattern of laterality across tasks may also differ between handedness groups. These results expand on what is known about the differences in laterality between left- and right-handers.
Collapse
Affiliation(s)
- Z. V. J. Woodhead
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - P. A. Thompson
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | | | - D. V. M. Bishop
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
13
|
Berthier ML, Dávila G, Torres-Prioris MJ, Moreno-Torres I, Clarimón J, Dols-Icardo O, Postigo MJ, Fernández V, Edelkraut L, Moreno-Campos L, Molina-Sánchez D, de Zaldivar PS, López-Barroso D. Developmental Dynamic Dysphasia: Are Bilateral Brain Abnormalities a Signature of Inefficient Neural Plasticity? Front Hum Neurosci 2020; 14:73. [PMID: 32265672 DOI: 10.3389/fnhum.2020.00073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 02/19/2020] [Indexed: 12/30/2022] Open
Abstract
The acquisition and evolution of speech production, discourse and communication can be negatively impacted by brain malformations. We describe, for the first time, a case of developmental dynamic dysphasia (DDD) in a right-handed adolescent boy (subject D) with cortical malformations involving language-eloquent regions (inferior frontal gyrus) in both the left and the right hemispheres. Language evaluation revealed a markedly reduced verbal output affecting phonemic and semantic fluency, phrase and sentence generation and verbal communication in everyday life. Auditory comprehension, repetition, naming, reading and spelling were relatively preserved, but executive function was impaired. Multimodal neuroimaging showed a malformed cerebral cortex with atypical configuration and placement of white matter tracts bilaterally and abnormal callosal fibers. Dichotic listening showed right hemisphere dominance for language, and functional magnetic resonance imaging (fMRI) additionally revealed dissociated hemispheric language representation with right frontal activation for phonology and bilateral dominance for semantic processing. Moreover, subject D also had congenital mirror movements (CMM), defined as involuntary movements of one side of the body that mirror intentional movements of the other side. Transcranial magnetic stimulation and fMRI during voluntary unimanual (left and right) hand movements showed bilateral motor cortex recruitment and tractography revealed a lack of decussation of bilateral corticospinal tracts. Genetic testing aimed to detect mutations that disrupt the development of commissural tracts correlating with CMM (e.g., Germline DCC mutations) was negative. Overall, our findings suggest that DDD in subject D resulted from the underdevelopment of the left inferior frontal gyrus with limited capacity for plastic reorganization by its homologous counterpart in the right hemisphere. Corpus callosum anomalies probably contributed to hinder interhemispheric connectivity necessary to compensate language and communication deficits after left frontal involvement.
Collapse
Affiliation(s)
- Marcelo L Berthier
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, Málaga, Spain
| | - Guadalupe Dávila
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, Málaga, Spain.,Department of Psychobiology and Methodology of Behavioral Sciences, Faculty of Psychology, University of Malaga, Málaga, Spain
| | - María José Torres-Prioris
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, Málaga, Spain.,Department of Psychobiology and Methodology of Behavioral Sciences, Faculty of Psychology, University of Malaga, Málaga, Spain
| | | | - Jordi Clarimón
- Department of Neurology and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Center for Networked Biomedical Research into Neurodegenerative Diseases, Madrid, Spain
| | - Oriol Dols-Icardo
- Department of Neurology and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Center for Networked Biomedical Research into Neurodegenerative Diseases, Madrid, Spain
| | - María J Postigo
- Neurophysiology Unit, Regional University Hospital Carlos Haya, Málaga, Spain
| | - Victoria Fernández
- Neurophysiology Unit, Regional University Hospital Carlos Haya, Málaga, Spain
| | - Lisa Edelkraut
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, Málaga, Spain.,Department of Psychobiology and Methodology of Behavioral Sciences, Faculty of Psychology, University of Malaga, Málaga, Spain
| | - Lorena Moreno-Campos
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, Málaga, Spain
| | - Diana Molina-Sánchez
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, Málaga, Spain
| | - Paloma Solo de Zaldivar
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, Málaga, Spain
| | - Diana López-Barroso
- Cognitive Neurology and Aphasia Unit, Centro de Investigaciones Médico-Sanitarias, Instituto de Investigación Biomédica de Málaga (IBIMA), University of Malaga, Málaga, Spain.,Department of Psychobiology and Methodology of Behavioral Sciences, Faculty of Psychology, University of Malaga, Málaga, Spain
| |
Collapse
|
14
|
Johnstone LT, Karlsson EM, Carey DP. The validity and reliability of quantifying hemispheric specialisation using fMRI: Evidence from left and right handers on three different cerebral asymmetries. Neuropsychologia 2020; 138:107331. [DOI: 10.1016/j.neuropsychologia.2020.107331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/16/2019] [Accepted: 01/05/2020] [Indexed: 12/21/2022]
|
15
|
Functional lateralization of tool-sound and action-word processing in a bilingual brain. HEALTH PSYCHOLOGY REPORT 2020. [DOI: 10.5114/hpr.2020.92718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
16
|
Cinciute S, Daktariunas A, Ruksenas O. Hemodynamic effects of sex and handedness on the Wisconsin Card Sorting Test: the contradiction between neuroimaging and behavioural results. PeerJ 2018; 6:e5890. [PMID: 30498629 PMCID: PMC6252064 DOI: 10.7717/peerj.5890] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/08/2018] [Indexed: 02/03/2023] Open
Abstract
This study investigated the potential role of sex and handedness on the performance of a computerised Wisconsin Card Sorting Test (WCST) in healthy participants by applying functional near-infrared spectroscopy (fNIRS). We demonstrated significant (p < 0.05) sex-related differences of hemodynamic response in the prefrontal cortex of 70 healthy participants (female, n = 35 and male, n = 35; right-handed, n = 40 and left-handed, n = 30). In contrast, behavioural results of the WCST do not show sex bias, which is consistent with previous literature. Because of this, we compared ours and sparse previous fNIRS studies on the WCST. We propose that, according to recent studies of neurovascular coupling, this contradiction between neuroimaging and behavioural results may be explained by normal variability in neurovascular dynamics.
Collapse
Affiliation(s)
- Sigita Cinciute
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Algis Daktariunas
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Osvaldas Ruksenas
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
17
|
Decoding Brain States for Planning Functional Grasps of Tools: A Functional Magnetic Resonance Imaging Multivoxel Pattern Analysis Study. J Int Neuropsychol Soc 2018; 24:1013-1025. [PMID: 30196800 DOI: 10.1017/s1355617718000590] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
OBJECTIVES We used multivoxel pattern analysis (MVPA) to investigate neural selectivity for grasp planning within the left-lateralized temporo-parieto-frontal network of areas (praxis representation network, PRN) typically associated with tool-related actions, as studied with traditional neuroimaging contrasts. METHODS We used data from 20 participants whose task was to plan functional grasps of tools, with either right or left hands. Region of interest and whole-brain searchlight analyses were performed to show task-related neural patterns. RESULTS MVPA revealed significant contributions to functional grasp planning from the anterior intraparietal sulcus (aIPS) and its immediate vicinities, supplemented by inputs from posterior subdivisions of IPS, and the ventral lateral occipital complex (vLOC). Moreover, greater local selectivity was demonstrated in areas near the superior parieto-occipital cortex and dorsal premotor cortex, putatively forming the dorso-dorsal stream. CONCLUSIONS A contribution from aIPS, consistent with its role in prospective grasp formation and/or encoding of relevant tool properties (e.g., potential graspable parts), is likely to accompany the retrieval of manipulation and/or mechanical knowledge subserved by the supramarginal gyrus for achieving action goals. An involvement of vLOC indicates that MVPA is particularly sensitive to coding of object properties, their identities and even functions, for a support of grip formation. Finally, the engagement of the superior parieto-frontal regions as revealed by MVPA is consistent with their selectivity for transient features of tools (i.e., variable affordances) for anticipatory hand postures. These outcomes support the notion that, compared to traditional approaches, MVPA can reveal more fine-grained patterns of neural activity. (JINS, 2018, 24, 1013-1025).
Collapse
|
18
|
Constant M, Mellet E. The Impact of Handedness, Sex, and Cognitive Abilities on Left-Right Discrimination: A Behavioral Study. Front Psychol 2018; 9:405. [PMID: 29636718 PMCID: PMC5881360 DOI: 10.3389/fpsyg.2018.00405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/12/2018] [Indexed: 11/13/2022] Open
Abstract
The present study examined the relationship between left–right discrimination (LRD) performance and handedness, sex and cognitive abilities. In total, 31 men and 35 women – with a balanced ratio of left-and right-handers – completed the Bergen Left–Right Discrimination Test. We found an advantage of left-handers in both identifying left hands and in verifying “left” propositions. A sex effect was also found, as women had an overall higher error rate than men, and increasing difficulty impacted their reaction time more than it did for men. Moreover, sex interacted with handedness and manual preference strength. A negative correlation of LRD reaction time with visuo-spatial and verbal long-term memory was found independently of sex, providing new insights into the relationship between cognitive skills and performance on LRD.
Collapse
Affiliation(s)
- Martin Constant
- Institut des Maladies Neurodégénératives (IMN), UMR 5293, University of Bordeaux, Bordeaux, France.,Centre National de la Recherche Scientifique (CNRS), Institut des Maladies Neurodégénératives (IMN), UMR 5293, University of Bordeaux, Bordeaux, France.,CEA, Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives (IMN), UMR 5293, University of Bordeaux, Bordeaux, France.,Institut des Maladies Neurodégénératives (IMN), UMR 5293, Team 5: GIN Groupe d'Imagerie Neurofonctionnelle, Centre Broca Nouvelle-Aquitaine, Bordeaux, France
| | - Emmanuel Mellet
- Institut des Maladies Neurodégénératives (IMN), UMR 5293, University of Bordeaux, Bordeaux, France.,Centre National de la Recherche Scientifique (CNRS), Institut des Maladies Neurodégénératives (IMN), UMR 5293, University of Bordeaux, Bordeaux, France.,CEA, Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives (IMN), UMR 5293, University of Bordeaux, Bordeaux, France.,Institut des Maladies Neurodégénératives (IMN), UMR 5293, Team 5: GIN Groupe d'Imagerie Neurofonctionnelle, Centre Broca Nouvelle-Aquitaine, Bordeaux, France
| |
Collapse
|