1
|
Amin A, Perera ND, Tomas D, Cuic B, Radwan M, Hatters DM, Turner BJ, Shabanpoor F. Systemic administration of a novel Beclin 1-derived peptide significantly upregulates autophagy in the spinal motor neurons of autophagy reporter mice. Int J Pharm 2024; 659:124198. [PMID: 38816263 DOI: 10.1016/j.ijpharm.2024.124198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/09/2024] [Accepted: 05/01/2024] [Indexed: 06/01/2024]
Abstract
Autophagy, an intracellular degradation system, plays a vital role in protecting cells by clearing damaged organelles, pathogens, and protein aggregates. Autophagy upregulation through pharmacological interventions has gained significant attention as a potential therapeutic avenue for proteinopathies. Here, we report the development of an autophagy-inducing peptide (BCN4) derived from the Beclin 1 protein, the master regulator of autophagy. To deliver the BCN4 into cells and the central nervous system (CNS), it was conjugated to our previously developed cell and blood-brain barrier-penetrating peptide (CPP). CPP-BCN4 significantly upregulated autophagy and reduced protein aggregates in motor neuron (MN)-like cells. Moreover, its systemic administration in a reporter mouse model of autophagy resulted in a significant increase in autophagy activity in the spinal MNs. Therefore, this novel autophagy-inducing peptide with a demonstrated ability to upregulate autophagy in the CNS has significant potential for the treatment of various neurodegenerative diseases with protein aggregates as a characteristic feature.
Collapse
Affiliation(s)
- Azin Amin
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, VIC, Australia
| | - Nirma D Perera
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, VIC, Australia
| | - Doris Tomas
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, VIC, Australia
| | - Brittany Cuic
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, VIC, Australia
| | - Mona Radwan
- Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Parkville 3010, VIC, Australia
| | - Danny M Hatters
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville 3010, VIC, Australia
| | - Bradley J Turner
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, VIC, Australia
| | - Fazel Shabanpoor
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, VIC, Australia; School of Chemistry, University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
2
|
Zhou F, Wang Z, Xiong K, Zhang M, Wang Q, Wang Y, Li X. Olfactory three needle regulates the proliferation of olfactory bulb neural stem cells and ameliorates brain injury after subarachnoid hemorrhage by regulating Wnt/β-catenin signaling. Heliyon 2024; 10:e28551. [PMID: 38596082 PMCID: PMC11002047 DOI: 10.1016/j.heliyon.2024.e28551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/11/2024] Open
Abstract
Background Subarachnoid hemorrhage (SAH) is a serious cerebrovascular emergency. The incidence of SAH and hazard ratio of death increase with age. Objective In this study, we aimed to observe the effects and potential mechanisms of olfactory three needle (OTN) on cognitive impairment, neuronal activity, and neural stem cell differentiation in SAH rats. Methods Sprague-Dawley (SD) rats were randomly divided into five groups: Sham, SAH group, SAH + Nimodipine (NMP) group, and SAH + OTN group. The rats in the SAH + OTN group received the OTN electroacupuncture treatment. For treatment with recombinant DKK1 (a Wnt/β-catenin inhibitor), mice were injected with DKK1. Results Our results found that OTN improved cognitive impairment and hippocampal neuron damage in SAH rats. Furthermore, OTN promoted the proliferation of neural stem cells in SAH rats. Mechanistically, OTN activated Wnt/β-catenin signaling in SAH rats, as indicated by the increased expression levels of Wnt1, β-Catenin, LMNB1, and p-GSK-3β. DKK1 reversed the improvement effect of OTN on cognitive impairment and neuronal damage in SAH rats. Meanwhile, DKK1 blocked the promoting effect of OTN on the proliferation of NSCs in SAH rats. Conclusions OTN electroacupuncture may be an effective therapeutic strategy for SAH.
Collapse
Affiliation(s)
- Feng Zhou
- Department of Neurosurgery, The Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712020, China
| | - Zhenzhi Wang
- Department of Chinese and Western Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Kang Xiong
- Department of Chinese and Western Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Meiling Zhang
- Department of Chinese and Western Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Qiang Wang
- Combination of Acupuncture and Medicine Innovation Research Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Yuan Wang
- Combination of Acupuncture and Medicine Innovation Research Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Xiong Li
- Department of Chinese and Western Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| |
Collapse
|
3
|
Zhang L, Gao M, Zhao Y, Yin Y, Zhang X, Zhou S, Wang X, Wang X, Zhao Y. N-Acetylserotonin Alleviates Retinal Autophagy via TrkB/AKT/Nrf2 Signaling Pathway in Retinal Ischemia-Reperfusion Injury Rats. Ophthalmic Res 2023; 67:125-136. [PMID: 38128509 DOI: 10.1159/000535786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
INTRODUCTION The objective of this study was to investigate the impact of N-acetylserotonin (NAS) on the autophagy of retinal cells in rats with retinal ischemia-reperfusion injury (RIRI) and to explore the mechanisms by which NAS administration can alleviate RIRI through the tropomyosin-related kinase receptor B (TrkB)/protein kinase B (Akt)/nuclear factor erythroid-derived factor 2-related factor (Nrf2) signaling pathway. METHODS Healthy adult male rats were randomly assigned to four groups: sham, RIRI, RIRI+NAS, and RIRI+NAS+ANA-12. The RIRI group was induced by elevating intraocular pressure, and changes in retinal structure and edema were assessed using H&E staining. The RIRI+NAS and RIRI+NAS+ANA-12 groups received intraperitoneal injections of NAS before and after modeling. The RIRI+NAS+ANA-12 group was also administered ANA-12, a TrkB antagonist. Immunohistochemical staining and Western blot analysis were used to evaluate phosphorylated TrkB (p-TrkB), phosphorylated Akt (p-Akt), Nrf2, sequestosome 1 (P62), and microtubule-associated protein 1 light chain 3 (LC3-II) levels in the retinas of each group. Electroretinogram was recorded to detect retinal function in each group of rats 24 h after modeling. RESULTS The RIRI+NAS group had a thinner retina and more retinal ganglion cells (RGCs) than RIRI and RIRI+NAS+ANA-12 groups (p < 0.05). Immunohistochemical staining and Western blot results showed that p-TrkB, p-Akt, n-Nrf2, and P62 levels in the RIRI+NAS group were higher compared with those in RIRI and RIRI+NAS+ANA-12 groups (p < 0.05). Also, lower LC3-II levels were observed in the RIRI+NAS group compared with that in RIRI and RIRI+NAS+ANA-12 groups (p < 0.05). Electroretinogram recording results showed that 24 h after retinal ischemia-reperfusion, the magnitude of b-wave changes was attenuated in the RIRI+NAS group compared with the RIRI group (p < 0.05). CONCLUSION The administration of NAS activates the TrkB/Akt/Nrf2 signaling pathway, reduces autophagy, alleviates retinal edema, promotes the survival of retinal ganglion cells (RGCs), and provides neuroprotection against retinal injury.
Collapse
Affiliation(s)
- Luming Zhang
- School of Medical Imaging, Weifang Medical University, Weifang, China
| | - Meng Gao
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yuze Zhao
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yi Yin
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Xuening Zhang
- School of Medical Imaging, Weifang Medical University, Weifang, China
| | - Shuanhu Zhou
- Harvard Medical School, Boston, Massachusetts, USA
| | - Xin Wang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaoli Wang
- School of Medical Imaging, Weifang Medical University, Weifang, China
- Medical Imaging Center, Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Yansong Zhao
- Department of Ophthalmology, Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
4
|
Li C, Lu P, Zhang L, He Y, Zhang L, Yang L, Zhang F, Kong X, Tao Q, Zhou J, Wu J, Peng T, Xie B, Jiang Y, Peng J. Apolipoprotein E Polymorphism Impacts White Matter Injury Through Microglial Phagocytosis After Experimental Subarachnoid Hemorrhage. Neuroscience 2023; 524:220-232. [PMID: 37290684 DOI: 10.1016/j.neuroscience.2023.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Apolipoprotein E (apoE, protein; APOE, gene), divided into three alleles of E2, E3 and E4 in humans, is associated with the progression of white matter lesion load. However, mechanism evidence has not been reported regarding the APOE genotype in early white matter injury (WMI) under subarachnoid hemorrhage (SAH) conditions. In the present study, we investigated the effects of APOE gene polymorphisms, by constructing microglial APOE3 and APOE4-specific overexpression, on WMI and underlying mechanisms of microglia phagocytosis in a mice model of SAH. A total of 167 male C57BL/6J mice (weight 22-26 g) were used. SAH and bleeding environment were induced by endovascular perforation in vivo and oxyHb in vitro, respectively. Multi-technology approaches, including immunohistochemistry, high throughput sequencing, gene editing for adeno-associated viruses, and several molecular biotechnologies were used to validate the effects of APOE polymorphisms on microglial phagocytosis and WMI after SAH. Our results revealed that APOE4 significantly aggravated the WMI and decreased neurobehavioral function by impairing microglial phagocytosis after SAH. Indicators negatively associated with microglial phagocytosis increased like CD16, CD86 and the ratio of CD16/CD206, while the indicators positively associated with microglial phagocytosis decreased like Arg-1 and CD206. The increased ROS and aggravating mitochondrial damage demonstrated that the damaging effects of APOE4 in SAH may be associated with microglial oxidative stress-dependent mitochondrial damage. Inhibiting mitochondrial oxidative stress by Mitoquinone (mitoQ) can enhance the phagocytic function of microglia. In conclusion, anti-oxidative stress and phagocytosis protection may serve as promising treatments in the management of SAH.
Collapse
Affiliation(s)
- Chaojie Li
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Peng Lu
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Lihan Zhang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Yijing He
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou 646000, China
| | - Lifang Zhang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Lei Yang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Fan Zhang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Xi Kong
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou 646000, China
| | - Qianke Tao
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jian Zhou
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Sichuan Clinical Research Center for Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Jinpeng Wu
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Tangming Peng
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Bingqing Xie
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou 646000, China
| | - Yong Jiang
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou 646000, China.
| | - Jianhua Peng
- Department of Neurosurgery, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China; Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou 646000, China; Academician (Expert) Workstation of Sichuan Province, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
5
|
Zhai J, Li N, Zhang X, Li Y, Ma K, Wang R, Qin X, Yin J, Wang S. Isoflurane Enhances Autophagy by Activating AMPK/ULK1, Inhibits NLRP3, and Reduces Cognitive Impairment After Cerebral Ischemia-Reperfusion Injury in Rats. J Mol Neurosci 2023; 73:549-562. [PMID: 37389765 DOI: 10.1007/s12031-023-02135-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/08/2023] [Indexed: 07/01/2023]
Abstract
Cerebral ischemic stroke (CIS) has become the second leading cause of death worldwide, which is largely related to cerebral ischemia reperfusion injury (CIRI). Surgical intervention is a reliable treatment for CIS, which predictably causes cerebral reperfusion. Therefore, the choice of anesthetic drugs has important clinical significance. Isoflurane (ISO), one of the most used anesthetics, attenuates cognitive impairment and has brain protective effects. However, the role of isoflurane in regulating autophagy and its regulatory mechanism on inflammation in CIRI are still unclear. The middle cerebral artery occlusion (MCAO) method was used to establish a rat model of CIRI. After 24 h of reperfusion, all rats were evaluated by mNSS scoring and dark avoidance experiment. Western blotting and immunofluorescence were used to examine the expression of key proteins. Compared with the sham group, the MCAO group showed increased neurobehavioral scores and decreased cognitive memory function (P < 0.05). As for the ISO-treated MCAO rats, the neurobehavioral score was significantly decreased, the expression of AMPK, ULK1, Beclin1, and LC3B was significantly increased, and the cognitive and memory functions were also significantly improved (P < 0.05). After inhibition of autophagy pathway or key protein AMPK in autophagy, neurobehavioral scores and protein expression of NLRP3, IL-1β, and IL-18 were significantly increased (P < 0.05). Isoflurane post-treatment may enhance autophagy by activating the AMPK/ULK1 signaling pathway and further inhibit the release of inflammatory factors from NLRP3 inflammasomes, thereby ameliorating neurological function and cognitive impairment and exerting a protective effect on the brain in CIRI rats.
Collapse
Affiliation(s)
- Jingwen Zhai
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Nian Li
- Department of Anesthesiology, Affiliated Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Xu Zhang
- Department of Anesthesiology, the First Hospital of Wuhan, Wuhan, China
| | - Yan Li
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Ketao Ma
- Department of Physiology, Key Laboratory of Xinjiang Endemic and Ethnic Diseases, School of Medicine, Shihezi University, Shihezi, China
| | - Ruixue Wang
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Xinlei Qin
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Jiangwen Yin
- Department of Anesthesiology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China.
| | - Sheng Wang
- Department of Anesthesiology, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
6
|
Zhang N, Shen H, Chen B, Hu H, Liu C, Chen Y, Cong W. The recent progress of peptide regulators for the Wnt/β-catenin signaling pathway. Front Med (Lausanne) 2023; 10:1164656. [PMID: 37396899 PMCID: PMC10311566 DOI: 10.3389/fmed.2023.1164656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/16/2023] [Indexed: 07/04/2023] Open
Abstract
Wnt signaling plays an important role in many biological processes such as stem cell self-renewal, cell proliferation, migration, and differentiation. The β-catenin-dependent signaling pathway mainly regulates cell proliferation, differentiation, and migration. In the Wnt/β-catenin signaling pathway, the Wnt family ligands transduce signals through LRP5/6 and Frizzled receptors to the Wnt/β-catenin signaling cascades. Wnt-targeted therapy has garnered extensive attention. The most commonly used approach in targeted therapy is small-molecule regulators. However, it is difficult for small-molecule regulators to make great progress due to their inherent defects. Therapeutic peptide regulators targeting the Wnt signaling pathway have become an alternative therapy, promising to fill the gaps in the clinical application of small-molecule regulators. In this review, we describe recent advances in peptide regulators for Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Nan Zhang
- School of Medicine or Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Huaxing Shen
- School of Medicine or Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Baobao Chen
- School of Medicine or Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Honggang Hu
- School of Medicine or Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Chao Liu
- School of Medicine or Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Yan Chen
- Department of Pharmacy, Medical Supplies Center of People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Wei Cong
- School of Medicine or Institute of Translational Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
7
|
Lauzier DC, Jayaraman K, Yuan JY, Diwan D, Vellimana AK, Osbun J, Chatterjee AR, Athiraman U, Dhar R, Zipfel GJ. Early Brain Injury After Subarachnoid Hemorrhage: Incidence and Mechanisms. Stroke 2023; 54:1426-1440. [PMID: 36866673 PMCID: PMC10243167 DOI: 10.1161/strokeaha.122.040072] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Aneurysmal subarachnoid hemorrhage is a devastating condition causing significant morbidity and mortality. While outcomes from subarachnoid hemorrhage have improved in recent years, there continues to be significant interest in identifying therapeutic targets for this disease. In particular, there has been a shift in emphasis toward secondary brain injury that develops in the first 72 hours after subarachnoid hemorrhage. This time period of interest is referred to as the early brain injury period and comprises processes including microcirculatory dysfunction, blood-brain-barrier breakdown, neuroinflammation, cerebral edema, oxidative cascades, and neuronal death. Advances in our understanding of the mechanisms defining the early brain injury period have been accompanied by improved imaging and nonimaging biomarkers for identifying early brain injury, leading to the recognition of an elevated clinical incidence of early brain injury compared with prior estimates. With the frequency, impact, and mechanisms of early brain injury better defined, there is a need to review the literature in this area to guide preclinical and clinical study.
Collapse
Affiliation(s)
- David C. Lauzier
- Department of Neurological Surgery, Washington University School of Medicine
| | - Keshav Jayaraman
- Department of Neurological Surgery, Washington University School of Medicine
| | - Jane Y. Yuan
- Department of Neurological Surgery, Washington University School of Medicine
| | - Deepti Diwan
- Department of Neurological Surgery, Washington University School of Medicine
| | - Ananth K. Vellimana
- Department of Neurological Surgery, Washington University School of Medicine
- Department of Neurology, Washington University School of Medicine
- Mallinckrodt Institute of Radiology, Washington University School of Medicine
| | - Joshua Osbun
- Department of Neurological Surgery, Washington University School of Medicine
- Department of Neurology, Washington University School of Medicine
- Mallinckrodt Institute of Radiology, Washington University School of Medicine
| | - Arindam R. Chatterjee
- Department of Neurological Surgery, Washington University School of Medicine
- Department of Neurology, Washington University School of Medicine
- Mallinckrodt Institute of Radiology, Washington University School of Medicine
| | | | - Rajat Dhar
- Department of Neurology, Washington University School of Medicine
| | - Gregory J. Zipfel
- Department of Neurological Surgery, Washington University School of Medicine
- Department of Neurology, Washington University School of Medicine
| |
Collapse
|
8
|
Oriá RB, Freitas RS, Roque CR, Nascimento JCR, Silva AP, Malva JO, Guerrant RL, Vitek MP. ApoE Mimetic Peptides to Improve the Vicious Cycle of Malnutrition and Enteric Infections by Targeting the Intestinal and Blood-Brain Barriers. Pharmaceutics 2023; 15:pharmaceutics15041086. [PMID: 37111572 PMCID: PMC10141726 DOI: 10.3390/pharmaceutics15041086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Apolipoprotein E (apoE) mimetic peptides are engineered fragments of the native apoE protein’s LDL-receptor binding site that improve the outcomes following a brain injury and intestinal inflammation in a variety of models. The vicious cycle of enteric infections and malnutrition is closely related to environmental-driven enteric dysfunction early in life, and such chronic inflammatory conditions may blunt the developmental trajectories of children with worrisome and often irreversible physical and cognitive faltering. This window of time for microbiota maturation and brain plasticity is key to protecting cognitive domains, brain health, and achieving optimal/full developmental potential. This review summarizes the potential role of promising apoE mimetic peptides to improve the function of the gut-brain axis, including targeting the blood-brain barrier in children afflicted with malnutrition and enteric infections.
Collapse
Affiliation(s)
- Reinaldo B. Oriá
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza 60430-270, Brazil
- Correspondence: ; Tel.: +55-85-3366-8239
| | - Raul S. Freitas
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza 60430-270, Brazil
| | - Cássia R. Roque
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza 60430-270, Brazil
| | - José Carlos R. Nascimento
- Laboratory of Tissue Healing, Ontogeny and Nutrition, Department of Morphology, School of Medicine, Institute of Biomedicine, Federal University of Ceara, Fortaleza 60430-270, Brazil
- Institute of Health Sciences, Medicine, University of International Integration of Afro-Brazilian Lusofonia, Redenção 62790-970, Brazil
| | - Ana Paula Silva
- Institute of Pharmacology and Experimental Therapeutics and Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - João O. Malva
- Institute of Pharmacology and Experimental Therapeutics and Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine and Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Richard L. Guerrant
- Division of Infectious Diseases and International Health, Department of Medicine, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Michael P. Vitek
- Division of Neurology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
9
|
Emerging role of HDL in brain cholesterol metabolism and neurodegenerative disorders. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159123. [PMID: 35151900 DOI: 10.1016/j.bbalip.2022.159123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 01/07/2023]
Abstract
High-density lipoproteins (HDLs play a key role in cholesterol homeostasis maintenance in the central nervous system (CNS), by carrying newly synthesized cholesterol from astrocytes to neurons, to support their lipid-related physiological functions. As occurs for plasma HDLs, brain lipoproteins are assembled through the activity of membrane cholesterol transporters, undergo remodeling mediated by specific enzymes and transport proteins, and finally deliver cholesterol to neurons by a receptor-mediated internalization process. A growing number of evidences indicates a strong association between alterations of CNS cholesterol homeostasis and neurodegenerative disorders, in particular Alzheimer's disease (AD), and a possible role in this relationship may be played by defects in brain HDL metabolism. In the present review, we summarize and critically examine the current state of knowledge on major modifications of HDL and HDL-mediated brain cholesterol transport in AD, by taking into consideration the individual steps of this process. We also describe potential and encouraging HDL-based therapies that could represent new therapeutic strategies for AD treatment. Finally, we revise the main plasma and brain HDL modifications in other neurodegenerative disorders including Parkinson's disease (PD), Huntington's disease (HD), and frontotemporal dementia (FTD).
Collapse
|
10
|
HDL, ApoA-I and ApoE-Mimetic Peptides: Potential Broad Spectrum Agent for Clinical Use? Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-021-10352-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Solodovnikova Y, Ivaniuk A, Marusich T, Son A. Meta-analysis of associations of genetic polymorphisms with cerebral vasospasm and delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Acta Neurol Belg 2021; 122:1547-1556. [PMID: 34725794 DOI: 10.1007/s13760-021-01829-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 10/21/2021] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Cerebral vasospasm (CV) and delayed cerebral ischemia (DCI) are among the most hazardous complications of aneurysmal subarachnoid hemorrhage (aSAH). Genetic factors are thought to play a significant role in the development of both complications. AIM To perform a comprehensive meta-analysis of studies that study the association between different genetic polymorphisms and development of DCI and/or CV. METHODS We searched MEDLINE and Science Direct databases on May 29, 2021, using iterations of the keywords "subarachnoid hemorrhage", "vasospasm", "delayed cerebral ischemia", and "gene". After duplicates were removed, the two reviewers screened the titles of the articles and abstracts independently. A random-effect model was used to calculate the relative risk with 95% CI; a fixed-effect model was additionally explored. RESULTS We pooled data from 16 articles that reported an association between eNOS, apolipoprotein E4 (ApoE4), haptoglobin (Hp), or ryanodine-1 (RYR-1) and CV, DCI, or both. Presence of Hp 2-2 was associated both with CV (RR 2.10, 95% CI 1.33-3.31, p = 0.0014) and DCI (RR 1.57, 95%CI 1.06-2.34, p = 0.026). ApoE4 allele had a borderline association with CV (RR 1.48, 95%CI 0.99-2.21, p = 0.054). CONCLUSION Our meta-analysis supports the association between the presence of the Hp2-2 allele and the occurrence of CV and DCI after aSAH. Further studies investigating this association are needed to reinforce this finding.
Collapse
Affiliation(s)
- Yuliia Solodovnikova
- Department of Neurology and Neurosurgery, Odessa National Medical University, Odessa, Ukraine
| | - Alina Ivaniuk
- Department of Neurology and Neurosurgery, Odessa National Medical University, Odessa, Ukraine.
| | - Tetiana Marusich
- Department of Neurology and Neurosurgery, Odessa National Medical University, Odessa, Ukraine
| | - Anatoliy Son
- Department of Neurology and Neurosurgery, Odessa National Medical University, Odessa, Ukraine
| |
Collapse
|
12
|
Hao H, Bai Y, Liu Y, Liang J, Guo S. Protective mechanism of FoxO1 against early brain injury after subarachnoid hemorrhage by regulating autophagy. Brain Behav 2021; 11:e2376. [PMID: 34661985 PMCID: PMC8613423 DOI: 10.1002/brb3.2376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 09/02/2021] [Accepted: 09/13/2021] [Indexed: 11/11/2022] Open
Abstract
INTRODUCTION Early brain injury (EBI) plays a key role in the devastating outcomes after subarachnoid hemorrhage (SAH). Autophagy and apoptosis may share a common molecular inducer that regulates the process of cell death. FoxO1, as a key regulator of neuronal autophagy which is involved in apoptosis, has not been reported in SAH rats. This work was to investigate the protective and anti-inflammatory effects of FoxO1 on EBI after SAH by regulating autophagy. METHODS In this study, we constructed the SAH model. In experiment I, low dose (50 μl of 1 × 108 IU/ml) or high dose (50 μl of 1 × 1010 IU/ml) of FoxO1 gene overexpressed adenovirus vector was injected into the lateral ventricle of rats before SAH. In experiment II, we reported the effect of FoxO1 overexpress on nerve function recovery, oedema, BBB leakage, neuronal death in rats after SAH through autophagy regulation. Post-SAH evaluation included neurological function score, brain water content, evans blue exosmosis, pathological changes, inflammatory response and apoptosis. RESULTS The experiment I showed that either low or high dose of ad-FoxO1 could significantly improve nerve function, reduce cerebral water content and reduce blood-brain barrier (BBB) destruction in rats, indicating that ad-FoxO1 had a protective effect on brain injury in rats EBI after SAH. In addition, ad-FoxO1 promoted autophagy in rat hippocampal tissue, as evidenced by accumulation of LC3II/I and Beclin-1 and degradation of p62. Furthermore, ad-FoxO1 inhibited the inflammatory response and apoptosis of rat hippocampal neurons after SAH. The experiment II showed that both ad-FoxO1 and rapamycin attenuated the injury of nerve function in rats after SAH, and this synergistic effect further reduced cerebral edema and evansblue extravasation, decreased hippocampus neuronal cell apoptosis, and declined inflammatory response. However, this was contrary to the results of chloroquine. These findings suggested that FoxO1 regulated the neural function of EBI after SAH through the autophagy pathway. CONCLUSIONS The findings in this study was beneficial for identifying the novel therapeutic target for the treatment of SAH.
Collapse
Affiliation(s)
- Haitao Hao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China.,Henan Key Laboratory of Neurorestoratology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, Henan, P. R. China
| | - Yahui Bai
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Yu Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Junxin Liang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| | - Shichao Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P. R. China
| |
Collapse
|
13
|
Chen H, Chen F, Zhang M, Chen Y, Cui L, Liang C. A Review of APOE Genotype-Dependent Autophagic Flux Regulation in Alzheimer's Disease. J Alzheimers Dis 2021; 84:535-555. [PMID: 34569952 DOI: 10.3233/jad-210602] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Autophagy is a basic physiological process maintaining cell renewal, the degradation of dysfunctional organelles, and the clearance of abnormal proteins and has recently been identified as a main mechanism underlying the onset and progression of Alzheimer's disease (AD). The APOE ɛ4 genotype is the strongest genetic determinant of AD pathogenesis and initiates autophagic flux at different times. This review synthesizes the current knowledge about the potential pathogenic effects of ApoE4 on autophagy and describes its associations with the biological hallmarks of autophagy and AD from a novel perspective. Via a remarkable variety of widely accepted signaling pathway markers, such as mTOR, TFEB, SIRT1, LC3, p62, LAMP1, LAMP2, CTSD, Rabs, and V-ATPase, ApoE isoforms differentially modulate autophagy initiation; membrane expansion, recruitment, and enclosure; autophagosome and lysosome fusion; and lysosomal degradation. Although the precise pathogenic mechanism varies for different genes and proteins, the dysregulation of autophagic flux is a key mechanism on which multiple pathogenic processes converge.
Collapse
Affiliation(s)
- Huiyi Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Yuebei People's Hospital, Affiliated Hospital of Shantou University Medical College, Shaoguan, China
| | - Feng Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Miaoping Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yanting Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Chunmei Liang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
14
|
The Role of HDL and HDL Mimetic Peptides as Potential Therapeutics for Alzheimer's Disease. Biomolecules 2020; 10:biom10091276. [PMID: 32899606 PMCID: PMC7563116 DOI: 10.3390/biom10091276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 12/11/2022] Open
Abstract
The role of high-density lipoproteins (HDL) in the cardiovascular system has been extensively studied and the cardioprotective effects of HDL are well established. As HDL particles are formed both in the systemic circulation and in the central nervous system, the role of HDL and its associated apolipoproteins in the brain has attracted much research interest in recent years. Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder and the leading cause of dementia worldwide, for which there currently exists no approved disease modifying treatment. Multiple lines of evidence, including a number of large-scale human clinical studies, have shown a robust connection between HDL levels and AD. Low levels of HDL are associated with increased risk and severity of AD, whereas high levels of HDL are correlated with superior cognitive function. Although the mechanisms underlying the protective effects of HDL in the brain are not fully understood, many of the functions of HDL, including reverse lipid/cholesterol transport, anti-inflammation/immune modulation, anti-oxidation, microvessel endothelial protection, and proteopathy modification, are thought to be critical for its beneficial effects. This review describes the current evidence for the role of HDL in AD and the potential of using small peptides mimicking HDL or its associated apolipoproteins (HDL-mimetic peptides) as therapeutics to treat AD.
Collapse
|
15
|
Nankar SA, Bulani Y, Sharma SS, Pande AH. ApoE-Derived Peptides Attenuated Diabetes-Induced Oxidative Stress and Inflammation. Protein Pept Lett 2020; 27:193-200. [PMID: 31577194 DOI: 10.2174/0929866526666191002112655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Peptides derived from the apolipoproteins (apo-mimetic peptides) have emerged as a potential candidate for the treatment of various inflammatory conditions. Our previous results have shown that peptides derived from human apolipoprotein-E interact with various pro-inflammatory lipids and inhibit their inflammatory functions in cellular assays. OBJECTIVE In this study, two apoE-derived peptides were selected to investigate their antiinflammatory and anti-oxidative effects in streptozotocin-induced diabetic model of inflammation and oxidative stress. METHODS The peptides were injected intraperitoneally into the streptozotocin-induced diabetic rats and their anti-inflammatory and anti-oxidative effects were evaluated by monitoring various oxidative and inflammatory markers. RESULTS Administration of 4F, E5 and E8 peptides decreased the oxidative and inflammatory markers in STZ-induced diabetic rats to different extent, while had no significant effect on the other diabetic parameters (viz. total body weight of animals and increased blood glucose level). E5 peptide was found to be relatively more effective than 4F and E8 peptides in decreasing inflammation and oxidative stress. CONCLUSION E5 peptide can be developed as a potential candidate for inflammatory conditions.
Collapse
Affiliation(s)
- Sunil A Nankar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali - 160 062, Punjab, India
| | - Yogesh Bulani
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali - 160062, Punjab, India
| | - Shyam S Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali - 160062, Punjab, India
| | - Abhay H Pande
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Mohali - 160 062, Punjab, India
| |
Collapse
|
16
|
Luo X, Li L, Xu W, Cheng Y, Xie Z. HLY78 Attenuates Neuronal Apoptosis via the LRP6/GSK3β/β-Catenin Signaling Pathway After Subarachnoid Hemorrhage in Rats. Neurosci Bull 2020; 36:1171-1181. [PMID: 32562163 DOI: 10.1007/s12264-020-00532-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/26/2020] [Indexed: 12/21/2022] Open
Abstract
Neuronal apoptosis is one of the essential mechanisms of early brain injury after subarachnoid hemorrhage (SAH). Recently, HLY78 has been shown to inhibit apoptosis in tumor cells and embryonic cells caused by carbon ion radiation through activation of the Wnt/β-catenin pathway. This study was designed to explore the anti-apoptotic role of HLY78 in experimental SAH. The results demonstrated that HLY78 attenuated neuronal apoptosis and the neurological deficits after SAH through the activation of low-density lipoprotein receptor-related protein 6 (LRP6), which subsequently increased the level of phosphorylated glycogen synthesis kinase 3 beta (p-GSK3β) (Ser9), β-catenin, and Bcl-2, accompanied by a decrease of p-β-catenin, Bax, and cleaved caspase 3. An LRP6 small-interfering ribonucleic acid reversed the effects of HLY78. In conclusion, HLY78 attenuates neuronal apoptosis and improves neurological deficits through the LRP6/GSK3β/β-catenin signaling pathway after SAH in rats. HLY78 is a promising therapeutic agent to attenuate early brain injury after SAH.
Collapse
Affiliation(s)
- Xu Luo
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Lina Li
- Department of Nephrology, The Third Affiliated Hospital, Chongqing Medical University, Chongqing, 401120, China
| | - Weilin Xu
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Yuan Cheng
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China.
| | - Zongyi Xie
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
17
|
Islam Y, Leach AG, Smith J, Pluchino S, Coxonl CR, Sivakumaran M, Downing J, Fatokun AA, Teixidò M, Ehtezazi T. Peptide based drug delivery systems to the brain. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/ab9008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Tu T, Peng J, Jiang Y. FNDC5/Irisin: A New Protagonist in Acute Brain Injury. Stem Cells Dev 2020; 29:533-543. [PMID: 31914844 DOI: 10.1089/scd.2019.0232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Tianqi Tu
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, China
- Academician (Expert) Workstation of Sichuan Province, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Neurosurgical Clinical Research Center of Sichuan Province, Luzhou, China
- Laboratory of Neurological Diseases and Brain Functions, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
19
|
Wang Y, Wang L, Hu T, Wang F, Han Z, Yin Z, Ge X, Xie K, Lei P. Hydrogen improves cell viability partly through inhibition of autophagy and activation of PI3K/Akt/GSK3β signal pathway in a microvascular endothelial cell model of traumatic brain injury. Neurol Res 2020; 42:487-496. [PMID: 32292127 DOI: 10.1080/01616412.2020.1747717] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Objective:Traumatic brain injury (TBI) is one of the most serious public health problems in the world. Hydrogen (H2), a flammable, colorless, and odorless gas, has been observed to have preventive and therapeutic effects on brain trauma and other neurological disorders, but its exact mechanism has not been fully clarified.Methods: To further study the mechanism underlying the role of hydrogen gas in alleviating BBB damage after TBI, we performed the scratch injury model on cultured brain microvascular endothelial cells (bEnd.3), which formed the microvascular endothelial barrier - an integral part of the highly specialized BBB.Results: In the case of TBI, hydrogen was able to improve the decline of cell viability induced by TBI. More importantly, inhibition of PI3 K/Akt/GSK3β signal pathway or activation of autophagy reduced the protective effect of hydrogen on cell viability, indicating that such protective effect was regulated by PI3 K/Akt/GSK3β signal pathway and was related to the inhibition of autophagy.Conclusion: So we concluded that hydrogen improved the cell viability in a microvascular endothelial cell model of TBI partly through inhibition of autophagy, and inhibitory effect of hydrogen on autophagy was exerted by activating PI3 K/Akt/GSK3β signal pathway. These findings enriched our knowledge about the mechanism of hydrogen therapy against TBI.
Collapse
Affiliation(s)
- Yifeng Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Lu Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Tianpeng Hu
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Feng Wang
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhaoli Han
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenyu Yin
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xintong Ge
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Keliang Xie
- Department of Anesthesiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ping Lei
- Department of Geriatrics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
20
|
Kuai L, Peng J, Jiang Y, Zheng Z, Zhou X. Apolipoprotein E-Mimetic Peptide COG1410 Enhances Retinal Ganglion Cell Survival by Attenuating Inflammation and Apoptosis Following TONI. Front Neurosci 2019; 13:980. [PMID: 31607842 PMCID: PMC6755331 DOI: 10.3389/fnins.2019.00980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/30/2019] [Indexed: 12/19/2022] Open
Abstract
Vision loss after traumatic optic nerve injury (TONI) is considered irreversible because of the retrograde loss of retinal ganglion cells (RGCs), which undergo inflammation and apoptosis. Previous studies have shown that COG1410, a mimic peptide derived from the apolipoprotein E (apoE) receptor binding region, shows neuroprotective activity in acute brain injury. However, the detailed role and mechanisms of COG1410 in RGC survival and vision restoration after TONI are poorly understood. The current study aimed to investigate the effects of COG1410 on inflammation and apoptosis in a mouse model of TONI. The results showed that TONI-induced visual impairment was accompanied by optic nerve inflammation, apoptosis, edema, and RGC apoptosis. COG1410 significantly prevented the decrease in visual from ever occurring, attenuated inflammation and apoptosis, and reduced optic nerve edema and RGC apoptosis compared with vehicle treatment. These data identify protective roles of COG1410 in the inflammatory and apoptotic processes of TONI, as well as strategies for its treatment.
Collapse
Affiliation(s)
- Li Kuai
- Department of Ophthalmology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Ophthalmology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Neurosurgery Clinical Medical Research Center of Sichuan Province, Luzhou, China
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Academician Expert Workstation, The Affiliated Hospital of Southwest Medical University, Luzhou, China.,Laboratory of Neurological Diseases and Brain Functions, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zheng Zheng
- Department of Ophthalmology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiyuan Zhou
- Department of Ophthalmology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
21
|
Marais AD. Apolipoprotein E in lipoprotein metabolism, health and cardiovascular disease. Pathology 2018; 51:165-176. [PMID: 30598326 DOI: 10.1016/j.pathol.2018.11.002] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 10/31/2018] [Accepted: 11/01/2018] [Indexed: 12/16/2022]
Abstract
Apolipoprotein E (apoE), a 34 kDa circulating glycoprotein of 299 amino acids, predominantly synthesised in the liver, associates with triglyceride-rich lipoproteins to mediate the clearance of their remnants after enzymatic lipolysis in the circulation. Its synthesis in macrophages initiates the formation of high density-like lipoproteins to effect reverse cholesterol transport to the liver. In the nervous system apoE forms similar lipoproteins which perform the function of distributing lipids amongst cells. ApoE accounts for much of the variation in plasma lipoproteins by three common variants (isoforms) that influence low-density lipoprotein concentration and the risk of atherosclerosis. ApoE2 generally is most favourable and apoE4 least favourable for cardiovascular and neurological health. The apoE variants relate to different amino acids at positions 112 and 158: cysteine in both for apoE2, arginine at both sites for apoE4, and respectively cysteine and arginine for apoE3 that is viewed as the wild type. Paradoxically, under metabolic stress, homozygosity for apoE2 may result in dysbetalipoproteinaemia in adults owing to impaired binding of remnant lipoproteins to the LDL receptor and related proteins as well as heparan sulphate proteoglycans. This highly atherogenic condition is also seen with other mutations in apoE, but with autosomal dominant inheritance. Mutations in apoE may also cause lipoprotein glomerulopathy. In the central nervous system apoE binds amyloid β-protein and tau protein and fragments may incur cellular damage. ApoE4 is a strong risk factor for the development of Alzheimer's disease. ApoE has several other physiological effects that may influence health and disease, including supply of docosahexaenoic acid for the brain and modulating immune and inflammatory responses. Genotyping of apoE may have application in disorders of lipoprotein metabolism as well as glomerulopathy and may be relevant to personalised medicine in understanding cardiovascular risk, and the outcome of nutritional and therapeutic interventions. Quantitation of apoE will probably not be clinically useful. ApoE is also of interest as it may generate peptides with biological function and could be employed in nanoparticles that may allow crossing of the blood-brain barrier. Therapeutic options may emerge from these newer insights.
Collapse
Affiliation(s)
- A David Marais
- Chemical Pathology Division, Pathology Department, University of Cape Town Health Science Faculty and National Health Laboratory Service, Cape Town, South Africa.
| |
Collapse
|
22
|
Ocak U, Ocak PE, Wang A, Zhang JH, Boling W, Wu P, Mo J, Zhang T, Huang L. Targeting mast cell as a neuroprotective strategy. Brain Inj 2018; 33:723-733. [PMID: 30554528 DOI: 10.1080/02699052.2018.1556807] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background: Mast cells (MCs) are perivascularly located immune cells of haematopoietic origin. Emerging evidences suggest that the activation of MCs play important roles in the pathogenesis of blood brain barrier disruption, neuroinflammation, and neurodegeneration. Objectives: In this review, we aimed to discuss the detrimental effects of MCs in response to various types of brain injury, as well as the therapeutic potential and neuroprotective effects of targeting the activation and degranulation of MCs, particularly in the management of the acute phase. Methods: An extensive online literature search was conducted through Pubmed/Central on March 2018. Then, we comprehensively summarized the effects of the activation of brain MCs in acute brain injury along with current pharmacological strategies targeting at the activation of MCs. Results: The review of the current literature indicated that the activation and degranulation of brain MCs significantly contribute to the acute pathological process following different types of brain injury including focal and global cerebral ischaemia, intracerebral haemorrhage, subarachnoid haemorrhage, and traumatic brain injury. Conclusions: Brain MCs significantly contribute to the acute pathological processes following brain injury. In that regard, targeting brain MCs may provide a novel strategy for neuroprotection.
Collapse
Affiliation(s)
- Umut Ocak
- a Department of Basic Sciences, Division of Physiology , Loma Linda University School of Medicine , Loma Linda , CA , USA
| | - Pinar Eser Ocak
- a Department of Basic Sciences, Division of Physiology , Loma Linda University School of Medicine , Loma Linda , CA , USA
| | - Annie Wang
- b Department of Anesthesiology , Loma Linda University School of Medicine , Loma Linda , CA , USA
| | - John H Zhang
- a Department of Basic Sciences, Division of Physiology , Loma Linda University School of Medicine , Loma Linda , CA , USA.,b Department of Anesthesiology , Loma Linda University School of Medicine , Loma Linda , CA , USA.,c Department of Neurosurgery , Loma Linda University School of Medicine , Loma Linda , CA , USA
| | - Warren Boling
- c Department of Neurosurgery , Loma Linda University School of Medicine , Loma Linda , CA , USA
| | - Pei Wu
- a Department of Basic Sciences, Division of Physiology , Loma Linda University School of Medicine , Loma Linda , CA , USA.,d Department of Neurosurgery , The First Affiliated Hospital of Harbin Medical University , Harbin , Heilongjiang , China
| | - Jun Mo
- a Department of Basic Sciences, Division of Physiology , Loma Linda University School of Medicine , Loma Linda , CA , USA.,e Department of Neurosurgery, The Fourth Affiliated Hospital , School of Medicine, Zhejiang University , Yiwu , Zhejiang , China
| | - Tongyu Zhang
- a Department of Basic Sciences, Division of Physiology , Loma Linda University School of Medicine , Loma Linda , CA , USA.,d Department of Neurosurgery , The First Affiliated Hospital of Harbin Medical University , Harbin , Heilongjiang , China
| | - Lei Huang
- a Department of Basic Sciences, Division of Physiology , Loma Linda University School of Medicine , Loma Linda , CA , USA.,c Department of Neurosurgery , Loma Linda University School of Medicine , Loma Linda , CA , USA
| |
Collapse
|