1
|
He Z, Lu R, Ge J, Guan Y, Chen Y, Liu G, Xie H, Bai Y, Wu Y, Wu J, Jia J. Disorder of consciousness related pattern could distinguish minimally conscious state from unresponsive wakefulness syndrome: A F-18-FDG-PET study. Brain Res Bull 2024; 215:111023. [PMID: 38964662 DOI: 10.1016/j.brainresbull.2024.111023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Accurate evaluation of level of disorder of consciousness (DOC) is clinically challenging. OBJECTIVE This study aimed to establish a distinctive DOC-related pattern (DOCRP) for assessing disease severity and distinguishing unresponsive wakefulness syndrome (UWS) from minimally conscious state (MCS). METHODS Fifteen patients with DOC and eighteen health subjects with F-18-fluorodeoxyglucose (F-18-FDG) positron emission tomography (PET) were enrolled in this study. All patients were assessed by Coma Recovery Scale-Revised (CRS-R) and all individuals were randomly divided into two cohorts (Cohort A and B). DOCRP was identified in Cohort A and subsequently validated in Cohort B and A+B. We also assessed the discriminatory power of DOCRP between MCS and UWS. RESULTS The DOCRP was characterized bilaterally by relatively decreased metabolism in the medial and lateral frontal lobes, parieto-temporal lobes, cingulate gyrus and caudate, associated with relatively increased metabolism in the cerebellum and brainstem. DOCRP expression exhibited high accuracy in differentiating DOC patients from controls (P<0.0001, AUC=1.000), and furthermore could effectively distinguish MCS from UWS (P=0.037, AUC=0.821, sensitivity: 85.7 %, specificity: 75.0 %). Particularly in the subgroup of DOC patients survived global hypoxic-ischemic brain injury, DOCRP expression exhibited even better discriminatory power between MCS and UWS (P=0.046, AUC=1.000). CONCLUSIONS DOCRP might serve as an objective biomarker in distinguishing between UWS and MCS, especially in patients survived global hypoxic-ischemic brain injury. TRIAL REGISTRATION NUMBER ChiCTR2300073717 (Chinese clinical trial registry site, http://www.chictr.org).
Collapse
Affiliation(s)
- Zhijie He
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Rongrong Lu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingjie Ge
- Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Yihui Guan
- Department of Nuclear Medicine/PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ying Chen
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Gang Liu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Hongyu Xie
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yulong Bai
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Junfa Wu
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China.
| | - Jie Jia
- Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China.
| |
Collapse
|
2
|
Okahara Y, Takano K, Odaka K, Uchino Y, Kansaku K. Detecting passive and active response in patients with behaviourally diagnosed unresponsive wakefulness syndrome. Neurosci Res 2023; 196:23-31. [PMID: 37302715 DOI: 10.1016/j.neures.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 05/29/2023] [Accepted: 06/08/2023] [Indexed: 06/13/2023]
Abstract
The diagnosis of unresponsive wakefulness syndrome depends mostly on the motor response following verbal commands. However, there is a potential for misdiagnosis in patients who understand verbal commands (passive response) but cannot perform voluntary movements (active response). To evaluate passive and active responses in such patients, this study used an approach combining functional magnetic resonance imaging and passive listening tasks to evaluate the level of speech comprehension, with portable brain-computer interface modalities that were applied to elicit an active response to attentional modulation tasks at the bedside. We included ten patients who were clinically diagnosed as unresponsive wakefulness syndrome. Two of ten patients showed no significant activation, while limited activation in the auditory cortex was found in six patients. The remaining two patients showed significant activation in language areas, and were able to control the brain-computer interface with reliable accuracy. Using a combined passive/active approach, we identified unresponsive wakefulness syndrome patients who showed both active and passive neural responses. This suggests that some patients with unresponsive wakefulness syndrome diagnosed behaviourally are both wakeful and responsive, and the combined approach is useful for distinguishing a minimally conscious state from unresponsive wakefulness syndrome physiologically.
Collapse
Affiliation(s)
- Yoji Okahara
- Department of Neurological Surgery, Chiba Cerebral and Cardiovascular Center, Chiba, Japan; Systems Neuroscience Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation for Persons with Disabilities, Saitama, Japan
| | - Kouji Takano
- Systems Neuroscience Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation for Persons with Disabilities, Saitama, Japan
| | | | | | - Kenji Kansaku
- Systems Neuroscience Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation for Persons with Disabilities, Saitama, Japan; Department of Physiology, Dokkyo Medical University School of Medicine, Tochigi, Japan; Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Tokyo, Japan.
| |
Collapse
|
3
|
Galiotta V, Quattrociocchi I, D'Ippolito M, Schettini F, Aricò P, Sdoia S, Formisano R, Cincotti F, Mattia D, Riccio A. EEG-based Brain-Computer Interfaces for people with Disorders of Consciousness: Features and applications. A systematic review. Front Hum Neurosci 2022; 16:1040816. [PMID: 36545350 PMCID: PMC9760911 DOI: 10.3389/fnhum.2022.1040816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/17/2022] [Indexed: 12/11/2022] Open
Abstract
Background Disorders of Consciousness (DoC) are clinical conditions following a severe acquired brain injury (ABI) characterized by absent or reduced awareness, known as coma, Vegetative State (VS)/Unresponsive Wakefulness Syndrome (VS/UWS), and Minimally Conscious State (MCS). Misdiagnosis rate between VS/UWS and MCS is attested around 40% due to the clinical and behavioral fluctuations of the patients during bedside consciousness assessments. Given the large body of evidence that some patients with DoC possess "covert" awareness, revealed by neuroimaging and neurophysiological techniques, they are candidates for intervention with brain-computer interfaces (BCIs). Objectives The aims of the present work are (i) to describe the characteristics of BCI systems based on electroencephalography (EEG) performed on DoC patients, in terms of control signals adopted to control the system, characteristics of the paradigm implemented, classification algorithms and applications (ii) to evaluate the performance of DoC patients with BCI. Methods The search was conducted on Pubmed, Web of Science, Scopus and Google Scholar. The PRISMA guidelines were followed in order to collect papers published in english, testing a BCI and including at least one DoC patient. Results Among the 527 papers identified with the first run of the search, 27 papers were included in the systematic review. Characteristics of the sample of participants, behavioral assessment, control signals employed to control the BCI, the classification algorithms, the characteristics of the paradigm, the applications and performance of BCI were the data extracted from the study. Control signals employed to operate the BCI were: P300 (N = 19), P300 and Steady-State Visual Evoked Potentials (SSVEP; hybrid system, N = 4), sensorimotor rhythms (SMRs; N = 5) and brain rhythms elicited by an emotional task (N = 1), while assessment, communication, prognosis, and rehabilitation were the possible applications of BCI in DoC patients. Conclusion Despite the BCI is a promising tool in the management of DoC patients, supporting diagnosis and prognosis evaluation, results are still preliminary, and no definitive conclusions may be drawn; even though neurophysiological methods, such as BCI, are more sensitive to covert cognition, it is suggested to adopt a multimodal approach and a repeated assessment strategy.
Collapse
Affiliation(s)
- Valentina Galiotta
- Neuroelectric Imaging and Brain-Computer Interface Laboratory, Fondazione Santa Lucia (IRCCS), Rome, Italy,Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Ilaria Quattrociocchi
- Neuroelectric Imaging and Brain-Computer Interface Laboratory, Fondazione Santa Lucia (IRCCS), Rome, Italy,Department of Computer, Control, and Management Engineering “Antonio Ruberti”, Sapienza University of Rome, Rome, Italy
| | - Mariagrazia D'Ippolito
- Neuroelectric Imaging and Brain-Computer Interface Laboratory, Fondazione Santa Lucia (IRCCS), Rome, Italy,*Correspondence: Mariagrazia D'Ippolito
| | - Francesca Schettini
- Neuroelectric Imaging and Brain-Computer Interface Laboratory, Fondazione Santa Lucia (IRCCS), Rome, Italy,Servizio di Ausilioteca per la Riabilitazione Assistita con Tecnologia, Fondazione Santa Lucia (IRCCS), Rome, Italy
| | - Pietro Aricò
- Department of Computer, Control, and Management Engineering “Antonio Ruberti”, Sapienza University of Rome, Rome, Italy,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy,BrainSigns srl, Rome, Italy
| | - Stefano Sdoia
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Rita Formisano
- Neurorehabilitation 2 and Post-Coma Unit, Fondazione Santa Lucia (IRCCS), Rome, Italy
| | - Febo Cincotti
- Department of Computer, Control, and Management Engineering “Antonio Ruberti”, Sapienza University of Rome, Rome, Italy
| | - Donatella Mattia
- Neuroelectric Imaging and Brain-Computer Interface Laboratory, Fondazione Santa Lucia (IRCCS), Rome, Italy,Servizio di Ausilioteca per la Riabilitazione Assistita con Tecnologia, Fondazione Santa Lucia (IRCCS), Rome, Italy
| | - Angela Riccio
- Neuroelectric Imaging and Brain-Computer Interface Laboratory, Fondazione Santa Lucia (IRCCS), Rome, Italy,Servizio di Ausilioteca per la Riabilitazione Assistita con Tecnologia, Fondazione Santa Lucia (IRCCS), Rome, Italy
| |
Collapse
|
4
|
Understanding, detecting, and stimulating consciousness recovery in the ICU. Acta Neurochir (Wien) 2022; 165:809-828. [PMID: 36242637 DOI: 10.1007/s00701-022-05378-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/07/2022] [Indexed: 11/01/2022]
Abstract
Coma is a medical and socioeconomic emergency. Although underfunded, research on coma and disorders of consciousness has made impressive progress. Lesion-network-mapping studies have delineated the precise brainstem regions that consistently produce coma when damaged. Functional neuroimaging has revealed how mechanisms like "communication through coherence" and "inhibition by gating" work in synergy to enable cortico-cortical processing and how this information transfer is disrupted in brain injury. On the cellular level, break-down of intracellular communication between the layer 5 pyramidal cell soma and the apical dendritic part impairs dendritic information integration, with up-stream effects on microcircuits in local neuronal populations and on large-scale fronto-parietal networks, which correlates with loss of consciousness. A breakthrough in clinical concepts occurred when fMRI, and later EEG, studies revealed that 15% of clinically unresponsive patients in acute and chronic settings are in fact awake and aware, as shown by their command following abilities revealed by brain activation during motor and locomotion imagery tasks. This condition is now termed "cognitive motor dissociation." Furthermore, epidemiological data on coma were literally non-existent until recently because of difficulties related to case ascertainment with traditional methods, but crowdsourcing of family observations enabled the first estimates of how frequent coma is in the general population (pooled annual incidence of 201 coma cases per 100,000 population in the UK and the USA). Diagnostic guidelines on coma and disorders of consciousness by the American Academy of Neurology and the European Academy of Neurology provide ambitious clinical frameworks to accommodate these achievements. As for therapy, a broad range of medical and non-medical treatment options is now being tested in increasingly larger trials; in particular, amantadine and transcranial direct current stimulation appear promising in this regard. Major international initiatives like the Curing Coma Campaign aim to raise awareness for coma and disorders of consciousness in the public, with the ultimate goal to make more brain-injured patients recover consciousness after a coma. To highlight all these accomplishments, this paper provides a comprehensive overview of recent progress and future challenges related to understanding, detecting, and stimulating consciousness recovery in the ICU.
Collapse
|
5
|
Huggins JE, Krusienski D, Vansteensel MJ, Valeriani D, Thelen A, Stavisky S, Norton JJS, Nijholt A, Müller-Putz G, Kosmyna N, Korczowski L, Kapeller C, Herff C, Halder S, Guger C, Grosse-Wentrup M, Gaunt R, Dusang AN, Clisson P, Chavarriaga R, Anderson CW, Allison BZ, Aksenova T, Aarnoutse E. Workshops of the Eighth International Brain-Computer Interface Meeting: BCIs: The Next Frontier. BRAIN-COMPUTER INTERFACES 2022; 9:69-101. [PMID: 36908334 PMCID: PMC9997957 DOI: 10.1080/2326263x.2021.2009654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022]
Abstract
The Eighth International Brain-Computer Interface (BCI) Meeting was held June 7-9th, 2021 in a virtual format. The conference continued the BCI Meeting series' interactive nature with 21 workshops covering topics in BCI (also called brain-machine interface) research. As in the past, workshops covered the breadth of topics in BCI. Some workshops provided detailed examinations of specific methods, hardware, or processes. Others focused on specific BCI applications or user groups. Several workshops continued consensus building efforts designed to create BCI standards and increase the ease of comparisons between studies and the potential for meta-analysis and large multi-site clinical trials. Ethical and translational considerations were both the primary topic for some workshops or an important secondary consideration for others. The range of BCI applications continues to expand, with more workshops focusing on approaches that can extend beyond the needs of those with physical impairments. This paper summarizes each workshop, provides background information and references for further study, presents an overview of the discussion topics, and describes the conclusion, challenges, or initiatives that resulted from the interactions and discussion at the workshop.
Collapse
Affiliation(s)
- Jane E Huggins
- Department of Physical Medicine and Rehabilitation, Department of Biomedical Engineering, Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, United States 325 East Eisenhower, Room 3017; Ann Arbor, Michigan 48108-5744, 734-936-7177
| | - Dean Krusienski
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23219
| | - Mariska J Vansteensel
- UMC Utrecht Brain Center, Dept of Neurosurgery, University Medical Center Utrecht, The Netherlands
| | | | - Antonia Thelen
- eemagine Medical Imaging Solutions GmbH, Berlin, Germany
| | | | - James J S Norton
- National Center for Adaptive Neurotechnologies, US Department of Veterans Affairs, 113 Holland Ave, Albany, NY 12208
| | - Anton Nijholt
- Faculty EEMCS, University of Twente, Enschede, The Netherlands
| | - Gernot Müller-Putz
- Institute of Neural Engineering, GrazBCI Lab, Graz University of Technology, Stremayrgasse 16/4, 8010 Graz, Austria
| | - Nataliya Kosmyna
- Massachusetts Institute of Technology (MIT), Media Lab, E14-548, Cambridge, MA 02139, Unites States
| | | | | | - Christian Herff
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | - Christoph Guger
- g.tec medical engineering GmbH/Guger Technologies OG, Austria, Sierningstrasse 14, 4521 Schiedlberg, Austria, +43725122240-0
| | - Moritz Grosse-Wentrup
- Research Group Neuroinformatics, Faculty of Computer Science, Vienna Cognitive Science Hub, Data Science @ Uni Vienna University of Vienna
| | - Robert Gaunt
- Rehab Neural Engineering Labs, Department of Physical Medicine and Rehabilitation, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA, 3520 5th Ave, Suite 300, Pittsburgh, PA 15213, 412-383-1426
| | - Aliceson Nicole Dusang
- Department of Electrical and Computer Engineering, School of Engineering, Brown University, Carney Institute for Brain Science, Brown University, Providence, RI
- Department of Veterans Affairs Medical Center, Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Providence, RI
- Center for Neurotechnology and Neurorecovery, Neurology, Massachusetts General Hospital, Boston, MA
| | | | - Ricardo Chavarriaga
- IEEE Standards Association Industry Connections group on neurotechnologies for brain-machine interface, Center for Artificial Intelligence, School of Engineering, ZHAW-Zurich University of Applied Sciences, Switzerland, Switzerland
| | - Charles W Anderson
- Department of Computer Science, Molecular, Cellular and Integrative Neurosience Program, Colorado State University, Fort Collins, CO 80523
| | - Brendan Z Allison
- Dept. of Cognitive Science, Mail Code 0515, University of California at San Diego, La Jolla, United States, 619-534-9754
| | - Tetiana Aksenova
- University Grenoble Alpes, CEA, LETI, Clinatec, Grenoble 38000, France
| | - Erik Aarnoutse
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
6
|
Istace T. Empowering the voiceless. Disorders of consciousness, neuroimaging and supported decision-making. Front Psychiatry 2022; 13:923488. [PMID: 36147989 PMCID: PMC9488582 DOI: 10.3389/fpsyt.2022.923488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
Patients suffering from (Prolonged) Disorder of Consciousness are deemed incompetent to give valid informed consent due to the presumed impairment of their cognitive functions and the impossibility to communicate with them. Neuroscientists have, however, discovered ways in which communication with some of these patients might be possible by using neuroimaging. This would for the first time make it possible to include them in the decision-making on their own medical treatment. In this article, I elaborate on the prospect of communicating with patients with impaired consciousness in order to obtain their informed consent. I first map the current state-of-the-art in neuroimaging research that exhibits the possibility of communicating with some of these patients. Secondly, I examine how obtaining informed consent from these patients might be possible, given that the specificities and limitations of communication via neuroimaging render the task of assessing their competence rather difficult. Thirdly, I identify some of the important ethical and legal considerations that have to be taken into account before introducing neuroimaging in clinical practice as a means to obtain informed consent. Lastly, I look into the concept of supported decision-making and how this concept relates to the use of neurotechnology to support minimally conscious patients in their abilities to decide over their own medical treatment.
Collapse
Affiliation(s)
- Timo Istace
- Department of Law, Research Group Personal Rights and Property Rights, University of Antwerp, Antwerp, Belgium.,Antwerp Health Law and Ethics Chair (AHLEC), Antwerp, Belgium
| |
Collapse
|
7
|
Xu R, Spataro R, Allison BZ, Guger C. Brain-Computer Interfaces in Acute and Subacute Disorders of Consciousness. J Clin Neurophysiol 2022; 39:32-39. [PMID: 34474428 DOI: 10.1097/wnp.0000000000000810] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
SUMMARY Disorders of consciousness include coma, unresponsive wakefulness syndrome (also known as vegetative state), and minimally conscious state. Neurobehavioral scales such as coma recovery scale-revised are the gold standard for disorder of consciousness assessment. Brain-computer interfaces have been emerging as an alternative tool for these patients. The application of brain-computer interfaces in disorders of consciousness can be divided into four fields: assessment, communication, prediction, and rehabilitation. The operational theoretical model of consciousness that brain-computer interfaces explore was reviewed in this article, with a focus on studies with acute and subacute patients. We then proposed a clinically friendly guideline, which could contribute to the implementation of brain-computer interfaces in neurorehabilitation settings. Finally, we discussed limitations and future directions, including major challenges and possible solutions.
Collapse
Affiliation(s)
- Ren Xu
- Guger Technologies OG, Schiedlberg, Austria
| | - Rossella Spataro
- g.tec medical engineering GmbH, Schiedlberg, Austria
- IRCCS Centro Neurolesi Bonino Pulejo, Palermo, Italy; and
| | - Brendan Z Allison
- Cognitive Science Department, University of California San Diego, La Jolla, California, U.S.A
| | - Christoph Guger
- Guger Technologies OG, Schiedlberg, Austria
- g.tec medical engineering GmbH, Schiedlberg, Austria
| |
Collapse
|
8
|
Aubinet C, Chatelle C, Gosseries O, Carrière M, Laureys S, Majerus S. Residual implicit and explicit language abilities in patients with disorders of consciousness: A systematic review. Neurosci Biobehav Rev 2021; 132:391-409. [PMID: 34864003 DOI: 10.1016/j.neubiorev.2021.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/13/2021] [Accepted: 12/01/2021] [Indexed: 01/14/2023]
Abstract
Language assessment in post-comatose patients is difficult due to their limited behavioral repertoire; yet associated language deficits might lead to an underestimation of consciousness levels in unresponsive wakefulness syndrome (UWS) or minimally conscious state (MCS; -/+) diagnoses. We present a systematic review of studies from 2002 assessing residual language abilities with neuroimaging, electrophysiological or behavioral measures in patients with severe brain injury. Eighty-five articles including a total of 2278 patients were assessed for quality. The median percentages of patients showing residual implicit language abilities (i.e., cortical responses to specific words/sentences) were 33 % for UWS, 50 % for MCS- and 78 % for MCS + patients, whereas explicit language abilities (i.e., command-following using brain-computer interfaces) were reported in 20 % of UWS, 33 % of MCS- and 50 % of MCS + patients. Cortical responses to verbal stimuli increased along with consciousness levels and the progressive recovery of consciousness after a coma was paralleled by the reappearance of both implicit and explicit language processing. This review highlights the importance of language assessment in patients with disorders of consciousness.
Collapse
Affiliation(s)
- Charlène Aubinet
- Coma Science Group, GIGA Consciousness, University of Liège, Belgium; Centre du Cerveau, University Hospital of Liège, Belgium.
| | - Camille Chatelle
- Coma Science Group, GIGA Consciousness, University of Liège, Belgium; Centre du Cerveau, University Hospital of Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA Consciousness, University of Liège, Belgium; Centre du Cerveau, University Hospital of Liège, Belgium; Fund for Scientific Research, FNRS, Belgium
| | - Manon Carrière
- Coma Science Group, GIGA Consciousness, University of Liège, Belgium; Centre du Cerveau, University Hospital of Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA Consciousness, University of Liège, Belgium; Centre du Cerveau, University Hospital of Liège, Belgium; Fund for Scientific Research, FNRS, Belgium
| | - Steve Majerus
- Fund for Scientific Research, FNRS, Belgium; Psychology and Neuroscience of Cognition Research Unit, University of Liège, Belgium.
| |
Collapse
|
9
|
Bianchi L, Antonietti A, Bajwa G, Ferrante R, Mahmud M, Balachandran P. A functional BCI model by the IEEE P2731 working group: data storage and sharing. BRAIN-COMPUTER INTERFACES 2021. [DOI: 10.1080/2326263x.2021.1968632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Luigi Bianchi
- Civil Engineering and Computer Science Engineering Dept, Tor Vergata University of Rome, Rome, Italy
| | - Alberto Antonietti
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Garima Bajwa
- Computer Science & Electrical Engineering, Capitol Technology University 11301 Springfield Road, Laurel, MD, USA
| | - Raffaele Ferrante
- Civil Engineering and Computer Science Engineering Dept, Tor Vergata University of Rome, Rome, Italy
| | - Mufti Mahmud
- Nottingham Trent University Clifton, Nottingham, UK
| | | |
Collapse
|
10
|
Hashimoto Y, Kakui T, Ushiba J, Liu M, Kamada K, Ota T. Portable rehabilitation system with brain-computer interface for inpatients with acute and subacute stroke: A feasibility study. Assist Technol 2021; 34:402-410. [PMID: 33085573 DOI: 10.1080/10400435.2020.1836067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The feasibility and safety of brain-computer interface (BCI) systems for patients with acute/subacute stroke have not been established. The aim of this study was to firstly demonstrate the feasibility and safety of a bedside BCI system for inpatients with acute/subacute stroke in a small cohort of inpatients. Four inpatients with early-phase hemiplegic stroke (7-24 days from stroke onset) participated in this study. The portable BCI system showed real-time feedback of sensorimotor rhythms extracted from scalp electroencephalograms (EEGs). Patients attempted to extend the wrist on their affected side, and neuromuscular electrical stimulation was applied only when the system detected significant movement intention-related changes in EEG. Between 120 and 200 training trials per patient were successfully and safely conducted at the bedside over 2-4 days. Our results clearly indicate that the proposed bedside BCI system is feasible and safe. Larger clinical studies are needed to determine the clinical efficacy of the system and its effect size in the population of patients with acute/subacute post-stroke hemiplegia.
Collapse
Affiliation(s)
- Yasunari Hashimoto
- Department of Electrical and Electronic Engineering, Kitami Institute of Technology, Kitami, Japan
| | - Toshiyuki Kakui
- Department of Physical Medicine & Rehabilitation, Asahikawa Medical University Hospital, Asahikawa, Japan
| | - Junichi Ushiba
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan.,Keio Institute of Pure and Applied Sciences (Kipas), Kanagawa, Japan
| | - Meigen Liu
- Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kyousuke Kamada
- Department of Neurosurgery, Asahikawa Medical University, Asahikawa, Japan
| | - Tetsuo Ota
- Department of Physical Medicine & Rehabilitation, Asahikawa Medical University Hospital, Asahikawa, Japan
| |
Collapse
|
11
|
Annen J, Mertel I, Xu R, Chatelle C, Lesenfants D, Ortner R, Bonin EA, Guger C, Laureys S, Müller F. Auditory and Somatosensory P3 Are Complementary for the Assessment of Patients with Disorders of Consciousness. Brain Sci 2020; 10:E748. [PMID: 33080842 PMCID: PMC7602953 DOI: 10.3390/brainsci10100748] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/30/2020] [Accepted: 10/14/2020] [Indexed: 11/24/2022] Open
Abstract
The evaluation of the level of consciousness in patients with disorders of consciousness (DOC) is primarily based on behavioural assessments. Patients with unresponsive wakefulness syndrome (UWS) do not show any sign of awareness of their environment, while minimally conscious state (MCS) patients show reproducible but fluctuating signs of awareness. Some patients, although with remaining cognitive abilities, are not able to exhibit overt voluntary responses at the bedside and may be misdiagnosed as UWS. Several studies investigated functional neuroimaging and neurophysiology as an additional tool to evaluate the level of consciousness and to detect covert command following in DOC. Most of these studies are based on auditory stimulation, neglecting patients suffering from decreased or absent hearing abilities. In the present study, we aim to assess the response to a P3-based paradigm in 40 patients with DOC and 12 healthy participants using auditory (AEP) and vibrotactile (VTP) stimulation. To this end, an EEG-based brain-computer interface was used at DOC patient's bedside. We compared the significance of the P3 performance (i.e., the interpretation of significance of the evoked P3 response) as obtained by 'direct processing' (i.e., theoretical-based significance threshold) and 'offline processing' (i.e., permutation-based single subject level threshold). We evaluated whether the P3 performances were dependent on clinical variables such as diagnosis (UWS and MCS), aetiology and time since injury. Last we tested the dependency of AEP and VTP performances at the single subject level. Direct processing tends to overestimate P3 performance. We did not find any difference in the presence of a P3 performance according to the level of consciousness (UWS vs. MCS) or the aetiology (traumatic vs. non-traumatic brain injury). The performance achieved at the AEP paradigm was independent from what was achieved at the VTP paradigm, indicating that some patients performed better on the AEP task while others performed better on the VTP task. Our results support the importance of using multimodal approaches in the assessment of DOC patients in order to optimise the evaluation of patient's abilities.
Collapse
Affiliation(s)
- Jitka Annen
- GIGA Consciousness, Coma Science Group, University of Liege, 4000 Liege, Belgium; (C.C.); (E.A.C.B.); (S.L.)
- Centre du Cerveau (C2), University Hospital Liege, 4000 Liege, Belgium
| | - Isabella Mertel
- Schoen Klinik Bad Aibling, 83043 Bad Aibling, Germany; (I.M.); (F.M.)
- Department of Clinical Psychology, University of Tuebingen-, 72074 Tuebingen, Germany
| | - Ren Xu
- Guger Technologies OG, 8020 Graz, Austria; (R.X.); (C.G.)
| | - Camille Chatelle
- GIGA Consciousness, Coma Science Group, University of Liege, 4000 Liege, Belgium; (C.C.); (E.A.C.B.); (S.L.)
- Centre du Cerveau (C2), University Hospital Liege, 4000 Liege, Belgium
- Laboratory for NeuroImaging of Coma and Consciousness—Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, 02114 MA, USA
| | - Damien Lesenfants
- Experimental Oto-rino-laryngology, Department of Neuroscience, Katholieke Universiteit Leuven, 3000 Leuven, Belgium;
| | | | - Estelle A.C. Bonin
- GIGA Consciousness, Coma Science Group, University of Liege, 4000 Liege, Belgium; (C.C.); (E.A.C.B.); (S.L.)
- Centre du Cerveau (C2), University Hospital Liege, 4000 Liege, Belgium
- Experimental Oto-rino-laryngology, Department of Neuroscience, Katholieke Universiteit Leuven, 3000 Leuven, Belgium;
| | - Christoph Guger
- Guger Technologies OG, 8020 Graz, Austria; (R.X.); (C.G.)
- g.tec Medical Engineering GmbH, 4521 Schiedlberg, Austria
| | - Steven Laureys
- GIGA Consciousness, Coma Science Group, University of Liege, 4000 Liege, Belgium; (C.C.); (E.A.C.B.); (S.L.)
- Centre du Cerveau (C2), University Hospital Liege, 4000 Liege, Belgium
| | - Friedemann Müller
- Schoen Klinik Bad Aibling, 83043 Bad Aibling, Germany; (I.M.); (F.M.)
| |
Collapse
|
12
|
Bai Y, Lin Y, Ziemann U. Managing disorders of consciousness: the role of electroencephalography. J Neurol 2020; 268:4033-4065. [PMID: 32915309 PMCID: PMC8505374 DOI: 10.1007/s00415-020-10095-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/18/2020] [Accepted: 07/18/2020] [Indexed: 02/07/2023]
Abstract
Disorders of consciousness (DOC) are an important but still underexplored entity in neurology. Novel electroencephalography (EEG) measures are currently being employed for improving diagnostic classification, estimating prognosis and supporting medicolegal decision-making in DOC patients. However, complex recording protocols, a confusing variety of EEG measures, and complicated analysis algorithms create roadblocks against broad application. We conducted a systematic review based on English-language studies in PubMed, Medline and Web of Science databases. The review structures the available knowledge based on EEG measures and analysis principles, and aims at promoting its translation into clinical management of DOC patients.
Collapse
Affiliation(s)
- Yang Bai
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
- Department of Neurology and Stroke, University of Tübingen, Hoppe‑Seyler‑Str. 3, 72076, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076, Tübingen, Germany
| | - Yajun Lin
- International Vegetative State and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
| | - Ulf Ziemann
- Department of Neurology and Stroke, University of Tübingen, Hoppe‑Seyler‑Str. 3, 72076, Tübingen, Germany.
- Hertie Institute for Clinical Brain Research, University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
13
|
Comanducci A, Boly M, Claassen J, De Lucia M, Gibson RM, Juan E, Laureys S, Naccache L, Owen AM, Rosanova M, Rossetti AO, Schnakers C, Sitt JD, Schiff ND, Massimini M. Clinical and advanced neurophysiology in the prognostic and diagnostic evaluation of disorders of consciousness: review of an IFCN-endorsed expert group. Clin Neurophysiol 2020; 131:2736-2765. [PMID: 32917521 DOI: 10.1016/j.clinph.2020.07.015] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 07/06/2020] [Accepted: 07/26/2020] [Indexed: 12/13/2022]
Abstract
The analysis of spontaneous EEG activity and evoked potentialsis a cornerstone of the instrumental evaluation of patients with disorders of consciousness (DoC). Thepast few years have witnessed an unprecedented surge in EEG-related research applied to the prediction and detection of recovery of consciousness after severe brain injury,opening up the prospect that new concepts and tools may be available at the bedside. This paper provides a comprehensive, critical overview of bothconsolidated and investigational electrophysiological techniquesfor the prognostic and diagnostic assessment of DoC.We describe conventional clinical EEG approaches, then focus on evoked and event-related potentials, and finally we analyze the potential of novel research findings. In doing so, we (i) draw a distinction between acute, prolonged and chronic phases of DoC, (ii) attempt to relate both clinical and research findings to the underlying neuronal processes and (iii) discuss technical and conceptual caveats.The primary aim of this narrative review is to bridge the gap between standard and emerging electrophysiological measures for the detection and prediction of recovery of consciousness. The ultimate scope is to provide a reference and common ground for academic researchers active in the field of neurophysiology and clinicians engaged in intensive care unit and rehabilitation.
Collapse
Affiliation(s)
- A Comanducci
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - M Boly
- Department of Neurology and Department of Psychiatry, University of Wisconsin, Madison, USA; Wisconsin Institute for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin-Madison, Madison, USA
| | - J Claassen
- Department of Neurology, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY, USA
| | - M De Lucia
- Laboratoire de Recherche en Neuroimagerie, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - R M Gibson
- The Brain and Mind Institute and the Department of Physiology and Pharmacology, Western Interdisciplinary Research Building, N6A 5B7 University of Western Ontario, London, Ontario, Canada
| | - E Juan
- Wisconsin Institute for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin-Madison, Madison, USA; Amsterdam Brain and Cognition, Department of Psychology, University of Amsterdam, Amsterdam, the Netherlands
| | - S Laureys
- Coma Science Group, Centre du Cerveau, GIGA-Consciousness, University and University Hospital of Liège, 4000 Liège, Belgium; Fondazione Europea per la Ricerca Biomedica Onlus, Milan 20063, Italy
| | - L Naccache
- Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France; Sorbonne Université, UPMC Université Paris 06, Faculté de Médecine Pitié-Salpêtrière, Paris, France
| | - A M Owen
- The Brain and Mind Institute and the Department of Physiology and Pharmacology, Western Interdisciplinary Research Building, N6A 5B7 University of Western Ontario, London, Ontario, Canada
| | - M Rosanova
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy; Fondazione Europea per la Ricerca Biomedica Onlus, Milan 20063, Italy
| | - A O Rossetti
- Neurology Service, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - C Schnakers
- Research Institute, Casa Colina Hospital and Centers for Healthcare, Pomona, CA, USA
| | - J D Sitt
- Inserm U 1127, CNRS UMR 7225, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - N D Schiff
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - M Massimini
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy; Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
| |
Collapse
|
14
|
Kondziella D, Bender A, Diserens K, van Erp W, Estraneo A, Formisano R, Laureys S, Naccache L, Ozturk S, Rohaut B, Sitt JD, Stender J, Tiainen M, Rossetti AO, Gosseries O, Chatelle C. European Academy of Neurology guideline on the diagnosis of coma and other disorders of consciousness. Eur J Neurol 2020; 27:741-756. [PMID: 32090418 DOI: 10.1111/ene.14151] [Citation(s) in RCA: 339] [Impact Index Per Article: 84.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/09/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE Patients with acquired brain injury and acute or prolonged disorders of consciousness (DoC) are challenging. Evidence to support diagnostic decisions on coma and other DoC is limited but accumulating. This guideline provides the state-of-the-art evidence regarding the diagnosis of DoC, summarizing data from bedside examination techniques, functional neuroimaging and electroencephalography (EEG). METHODS Sixteen members of the European Academy of Neurology (EAN) Scientific Panel on Coma and Chronic Disorders of Consciousness, representing 10 European countries, reviewed the scientific evidence for the evaluation of coma and other DoC using standard bibliographic measures. Recommendations followed the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system. The guideline was endorsed by the EAN. RESULTS Besides a comprehensive neurological examination, the following suggestions are made: probe for voluntary eye movements using a mirror; repeat clinical assessments in the subacute and chronic setting, using the Coma Recovery Scale - Revised; use the Full Outline of Unresponsiveness score instead of the Glasgow Coma Scale in the acute setting; obtain clinical standard EEG; search for sleep patterns on EEG, particularly rapid eye movement sleep and slow-wave sleep; and, whenever feasible, consider positron emission tomography, resting state functional magnetic resonance imaging (fMRI), active fMRI or EEG paradigms and quantitative analysis of high-density EEG to complement behavioral assessment in patients without command following at the bedside. CONCLUSIONS Standardized clinical evaluation, EEG-based techniques and functional neuroimaging should be integrated for multimodal evaluation of patients with DoC. The state of consciousness should be classified according to the highest level revealed by any of these three approaches.
Collapse
Affiliation(s)
- D Kondziella
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Neurosciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - A Bender
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany.,Therapiezentrum Burgau, Burgau, Germany
| | - K Diserens
- Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - W van Erp
- Coma Science Group, GIGA Consciousness, University and University Hospital of Liège, Liège, Belgium.,Department of Primary Care, Radboud University Medical Center, Nijmegen, The Netherlands
| | - A Estraneo
- Neurology Unit, Santa Maria della Pietà General Hospital, Nola, Italy.,IRCCS Fondazione don Carlo Gnocchi ONLUS, Florence, Italy
| | - R Formisano
- Post-Coma Unit, Neurorehabilitation Hospital and Research Institution, Santa Lucia Foundation, Rome, Italy
| | - S Laureys
- Coma Science Group, GIGA Consciousness, University and University Hospital of Liège, Liège, Belgium
| | - L Naccache
- Department of Neurology, AP-HP, Groupe hospitalier Pitié-Salpêtrière, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, Faculté de Médecine Pitié-Salpêtrière, Paris, France
| | - S Ozturk
- Department of Neurology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - B Rohaut
- Department of Neurology, AP-HP, Groupe hospitalier Pitié-Salpêtrière, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, Faculté de Médecine Pitié-Salpêtrière, Paris, France.,Neuro-ICU, Department of Neurology, Columbia University, New York, NY, USA
| | - J D Sitt
- Sorbonne Université, UPMC Univ Paris 06, Faculté de Médecine Pitié-Salpêtrière, Paris, France
| | - J Stender
- Department of Neurosurgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - M Tiainen
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - A O Rossetti
- Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - O Gosseries
- Coma Science Group, GIGA Consciousness, University and University Hospital of Liège, Liège, Belgium
| | - C Chatelle
- Coma Science Group, GIGA Consciousness, University and University Hospital of Liège, Liège, Belgium.,Laboratory for NeuroImaging of Coma and Consciousness - Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
15
|
Aubinet C, Cassol H, Gosseries O, Bahri MA, Larroque SK, Majerus S, Martial C, Martens G, Carrière M, Chatelle C, Laureys S, Thibaut A. Brain Metabolism but Not Gray Matter Volume Underlies the Presence of Language Function in the Minimally Conscious State (MCS): MCS+ Versus MCS- Neuroimaging Differences. Neurorehabil Neural Repair 2020; 34:172-184. [PMID: 31971884 DOI: 10.1177/1545968319899914] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background. The minimally conscious state (MCS) is subcategorized into MCS- and MCS+, depending on the absence or presence, respectively, of high-level behavioral responses such as command-following. Objective. We aim to investigate the functional and structural neuroanatomy underlying the presence of these responses in MCS- and MCS+ patients. Methods. In this cross-sectional retrospective study, chronic MCS patients were diagnosed using repeated Coma Recovery Scale-Revised assessments. Fluorodeoxyglucose-positron emission tomography data were acquired on 57 patients (16 MCS-; 41 MCS+) and magnetic resonance imaging with voxel-based morphometry analysis was performed on 66 patients (17 MCS-; 49 MCS+). Brain glucose metabolism and gray matter integrity were compared between patient groups and control groups. A metabolic functional connectivity analysis testing the hypothesis of preserved language network in MCS+ compared with MCS- was also done. Results. Patients in MCS+ presented higher metabolism mainly in the left middle temporal cortex, known to be important for semantic processing, compared with the MCS- group. The left angular gyrus was also functionally disconnected from the left prefrontal cortex in MCS- compared with MCS+ group. No significant differences were found in gray matter volume between patient groups. Conclusions. The clinical subcategorization of MCS is supported by differences in brain metabolism but not in gray matter structure, suggesting that brain function in the language network is the main support for recovery of command-following, intelligible verbalization and/or intentional communication in the MCS. Better characterizing the neural correlates of residual cognitive abilities of MCS patients contributes to reduce their misdiagnosis and to adapt therapeutic approaches.
Collapse
Affiliation(s)
- Charlène Aubinet
- Coma Science Group, GIGA-Consciousness, University of Liège, Liege, Belgium.,Centre du Cerveau², University Hospital of Liège, Liege, Belgium
| | - Helena Cassol
- Coma Science Group, GIGA-Consciousness, University of Liège, Liege, Belgium.,Centre du Cerveau², University Hospital of Liège, Liege, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness, University of Liège, Liege, Belgium.,Centre du Cerveau², University Hospital of Liège, Liege, Belgium
| | - Mohamed Ali Bahri
- GIGA-Cyclotron Research Center In Vivo Imaging, University of Liège, Liege, Belgium
| | - Stephen Karl Larroque
- Coma Science Group, GIGA-Consciousness, University of Liège, Liege, Belgium.,Centre du Cerveau², University Hospital of Liège, Liege, Belgium
| | - Steve Majerus
- Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liege, Belgium
| | - Charlotte Martial
- Coma Science Group, GIGA-Consciousness, University of Liège, Liege, Belgium.,Centre du Cerveau², University Hospital of Liège, Liege, Belgium
| | - Géraldine Martens
- Coma Science Group, GIGA-Consciousness, University of Liège, Liege, Belgium.,Centre du Cerveau², University Hospital of Liège, Liege, Belgium
| | - Manon Carrière
- Coma Science Group, GIGA-Consciousness, University of Liège, Liege, Belgium.,Centre du Cerveau², University Hospital of Liège, Liege, Belgium
| | - Camille Chatelle
- Coma Science Group, GIGA-Consciousness, University of Liège, Liege, Belgium.,Centre du Cerveau², University Hospital of Liège, Liege, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, University of Liège, Liege, Belgium.,Centre du Cerveau², University Hospital of Liège, Liege, Belgium
| | - Aurore Thibaut
- Coma Science Group, GIGA-Consciousness, University of Liège, Liege, Belgium.,Centre du Cerveau², University Hospital of Liège, Liege, Belgium
| |
Collapse
|
16
|
Chabuda A, Dovgialo M, Duszyk A, Stróż A, Pawlisz M, Durka P. Successful BCI communication via high-frequency SSVEP or visual, audio or tactile P300 in 30 tested volunteers. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2019-039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
17
|
Annen J, Laureys S, Gosseries O. Brain-computer interfaces for consciousness assessment and communication in severely brain-injured patients. BRAIN-COMPUTER INTERFACES 2020; 168:137-152. [DOI: 10.1016/b978-0-444-63934-9.00011-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|